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Abstract: Artificial small RNAs (art-sRNAs), such as artificial microRNAs (amiRNAs) and synthetic
trans-acting small interfering RNAs (syn-tasiRNAs), are highly specific 21-nucleotide small RNAs
designed to recognize and silence complementary target RNAs. Art-sRNAs are extensively used in
gene function studies or for improving crops, particularly to protect plants against viruses. Typically,
antiviral art-sRNAs are computationally designed to target one or multiple sites in viral RNAs
with high specificity, and art-sRNA constructs are generated and introduced into plants that are
subsequently challenged with the target virus(es). Numerous studies have reported the successful
application of art-sRNAs to induce resistance against a large number of RNA and DNA viruses in
model and crop species. However, the application of art-sRNAs as an antiviral tool has limitations,
such as the difficulty to predict the efficacy of a particular art-sRNA or the emergence of virus variants
with mutated target sites escaping to art-sRNA-mediated degradation. Here, we review the different
classes, features, and uses of art-sRNA-based tools to induce antiviral resistance in plants. We also
provide strategies for the rational design of antiviral art-sRNAs and discuss the latest advances in
developing art-sRNA-based methodologies for enhanced resistance to plant viruses.

Keywords: RNA silencing; artificial small RNA; amiRNA; atasiRNA; syn-tasiRNA; antiviral resistance;
VSR; plant virus; viroid

1. Introduction

RNA interference (RNAi) is a biological process conserved in most eukaryotes and characterized
by the sequence-specific degradation of target RNA by complementary small RNAs (sRNAs) [1].
RNAi pathways are triggered by double-stranded RNA (dsRNA) processed into sRNA duplexes by
Dicer ribonucleases [1,2]. One of the strands of the duplex is preferentially loaded into an ARGONAUTE
(AGO) protein, and the resulting complex, termed RNA-induced silencing complex (RISC), recognizes
and silences complementary target RNA through diverse mechanisms [3,4]. The seminal observation
that exogenously applied dsRNA can artificially trigger RNAi of specific genes in Caenorabtitis elegans [1]
fueled the development of a plethora of RNAi-based tools in multiple organisms for the study of gene
function and for more applied purposes, including medical therapies and diverse biotechnological uses.

In plants, RNAi tools have been extensively used to confer antiviral resistance. Early RNAi
approaches, such as virus-induced gene silencing (VIGS) and hairpin (hp)-based silencing, consisted of
the expression of dsRNA or hpRNA precursors, respectively, bearing sequences of the target virus
(for a recent review see [5]). Although very popular, these approaches lacked high specificity as the
large populations of sRNAs produced from these type of precursors favor the accidental targeting
of complementary cellular transcripts [6]. This limitation was overcome with the development of a
series of tools based on artificial sRNAs (art-sRNAs) [7], 21-nucleotide sRNAs expressed in planta
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from endogenous sRNA precursors and computationally designed to silence target RNAs with high
specificity [8].

Here, we describe the different classes, features, and uses of art-sRNA-based RNAi (art-sRNAi)
tools to target viral RNAs and induce antiviral resistance in plants. We also provide basic rules
for art-sRNA design and describe which viral regions are typically targeted. Finally, we discuss
the latest art-sRNAi strategies providing enhanced antiviral resistance, such as the high-throughput
identification of highly effective antiviral art-sRNAs and their simultaneous co-expression for the
multi-targeting of viral RNAs.

2. Classes, Features, and Uses of Antiviral Art-sRNAi Tools

Artificial microRNAs (amiRNAs) and artificial/synthetic trans-acting small interfering RNAs
(atasiRNAs/syn-tasiRNAs, hereafter syn-tasiRNAs) are the two main classes of plant art-sRNAs [8].
Despite differing in their biogenesis pathway (see below), both classes of art-sRNAs function similarly
by associating with AGO1 to specifically silence target RNAs through endonucleolytic cleavage or
translation repression (Figure 1).

2.1. AmiRNAs

AmiRNAs are produced in planta by expressing amiRNA transgenes containing a functional
plant MIRNA precursor in which the endogenous miRNA guide/miRNA star sequences are substituted
by the amiRNA guide/amiRNA star sequences (Figure 1a) [8,9]. Importantly, other sequences of the
precursor are modified to preserve the original secondary structure required for accurate Dicer-like 1
(DCL1) processing. The amiRNA transgene is transcribed to produce the amiRNA primary transcript
(pri-amiRNA). Sequential processing by DCL1 produces the pre-amiRNA followed by the amiRNA
duplex, and the amiRNA guide strand is incorporated into AGO1 to target complementary viral RNA
typically in a single site (Figure 1a).

AmiRNAs were first used to confer single and dual resistance against two RNA viruses,
Turnip yellow mosaic virus (TYMV) and Turnip mosaic virus (TuMV), in transgenic Arabidopsis thaliana
(Arabidopsis) plants expressing one or two amiRNA transgenes, respectively [10]. In this pioneering
study, amiRNAs were designed to target a single site in P69 and HC-Pro RNAs of TYMV and TuMV,
respectively, encoding the viral silencing suppressor protein (VSR) of each virus (Table 1). Since then,
amiRNAs have been widely used to induce resistance against a large number of DNA and RNA viruses
in multiple model and crop species (Table 1). AmiRNAs produced from a plethora of different MIRNA
precursors in multiple configurations have been designed to target viral RNAs corresponding to VSRs
and other key viral proteins (Table 1). However, one important limitation of the amiRNA approach
has been the emergence of virus variants (or “escapes”) with mutated target site sequences in plants
expressing single amiRNAs targeting single sites [11–14].

2.2. Syn-tasiRNAs

Syn-tasiRNAs are produced in planta by expressing syn-tasiRNA transgenes containing a
functional TAS precursor in which a subset of the endogenous tasiRNA sequences is substituted by
one or several syn-tasiRNA sequences in tandem (Figure 1b) [8,15]. The syn-tasiRNA transgene is
transcribed to produce the syn-tasiRNA primary transcript (pri-syn-tasiRNA) which is cleaved by a
miRNA/AGO complex. One of the cleaved products is used by RNA-dependent RNA polymerase
6 (RDR6) as a template to synthesize dsRNA that is sequentially processed by DCL4 into phased
syn-tasiRNA duplexes in 21-nucleotide registered with the miRNA cleavage site. Importantly, dsRNA
is synthesized from 3′ cleavage products originated by miR173/AGO1 cleavage of TAS1 precursors,
and from 5′ cleavage products resulting from miR390/AGO7 cleavage of TAS3 precursors (Figure 2).
In all cases, syn-tasiRNA guide strands are incorporated into AGO1 to target multiple sites in one or
multiple viral RNAs (Figures 1b and 2).
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Figure 1. Antiviral art-sRNA pathways in plants. (a) The antiviral amiRNA pathway. The amiRNA
transgene expresses a monocistronic MIRNA precursor sequentially processed into an amiRNA targeting
a single site in a single viral RNA. (b) The antiviral syn-tasiRNA pathway. The syn-tasiRNA transgene
expresses a polycistronic TAS precursor sequentially processed into four different syn-tasiRNAs targeting
multiple sites in multiple viral RNAs. Both amiRNA and syn-tasiRNA guide strands associated with
AGO1 to silence viral RNAs through endonucleolytic cleavage or translational inhibition.

1 
 

Figure 2. TAS-based antiviral syn-tasiRNA pathways in plants. Left, TAS1-based syn-tasiRNA pathway.
Right, TAS3-based syn-tasiRNA pathway. Other details are as in Figure 1.
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Syn-tasiRNAs were first used to confer multiple virus resistance in transgenic Arabidopsis
co-expressing three syn-tasiRNAs against Cucumber mosaic virus (CMV) and three syn-tasiRNAs
against TuMV from a single TAS3a precursor [16]. More recently, TAS1c precursors were used to
express five and six syn-tasiRNAs, respectively, against Potato spindle tuber viroid (PSTVd) in Nicotiana
benthamiana [17] and Tomato spotted wilt virus (TSWV) in N. benthamiana [18] and Solanum lycopersicum
(tomato) [14] (Table 1). Importantly, a study comparing the effects of amiRNA and syn-tasiRNA against
TSWV in S. lycopersicum reported that syn-tasiRNAs induced higher antiviral resistance most likely
because of the simultaneous targeting of multiple viral RNAs [14]. As mentioned before [19], sRNAs
produced from large gene fragments in MiRNA-Induced Gene Silencing (MIGS) [20] constructs should
not be considered as authentic syn-tasiRNAs. Therefore, the antiviral resistance reported when using
MIGS constructs [21–23] is not considered here.

3. Design of Antiviral Art-sRNAs

The efficacy of a particular art-sRNA depends on multiple factors. The degree of base pairing
between the art-sRNA and the target RNA is one of them and is considered by the automated design
webtools during the art-sRNA design process (see below). However, other factors, such as target
site accessibility and stability, are much difficult to predict. For instance, target site accessibility may
be limited in those sites with high secondary structures or occupied by an RNA-binding protein.
Moreover, upon infection some target sites in viral RNAs may accumulate nucleotide substitutions
compatible with viral replication but affecting art-sRNA binding and activity. It is also possible that
VSRs interfere with art-sRNA biogenesis or action. For all these reasons, it is difficult to predict if
a particular art-sRNA will be effective in vivo. However, we provide next a series of basic rules for
art-sRNA design. We also describe the diverse viral regions that have been targeted with art-sRNAs
and discuss the strategy of targeting conserved nucleotide sequences in viral RNAs.

3.1. General Design Rules

The two main webtools for the automatized design of art-sRNAs are WMD3 (from Web MicroRNA
Designer 3) [9] and P-SAMS (from Plant Small RNA Maker Suite) [24], which were optimized for
both the effectiveness and the specificity of the designed art-sRNA. Regarding the effectiveness,
art-sRNAs are designed to extensively base pair with the target RNA, with limited or no mismatches
near the cleavage site and the 5′ seed region of the art-sRNA, and at least one mismatch in the 3′

end of the art-sRNA to avoid transitivity (due to priming and extension by RDRs). Regarding the
specificity, the art-sRNA is designed to target exclusively the intended target(s) with no off-target
effects. The specificity of the art-sRNA is assessed through the genome-wide computational analysis of
all possible base pairing interactions between the candidate art-sRNA and the complete set of cellular
transcripts. Thus, this type of analysis is possible in plant species with an annotated transcriptome or an
expressed sequence tag (EST) collection. Other general design criteria are: (i) position 1 of the art-sRNA
is a U to favor AGO1 association, (ii) position 19 of the art-sRNA is a C to generate an art-sRNA with
a star strand including an AGO1 non-preferred 5′G (in P-SAMS), and (iii) the hybridization energy
of the amiRNA/target RNA interaction is between −35 and −40 kcal/mole (in WMD3). The complete
set of rules specific to WMD3 and P-SAMS designs have been explained in detail previously [9,24].
For the design of highly specific art-sRNAs against viruses, both webtools allow the input of the target
viral RNA sequence in FASTA format and the activation of the target specificity module.
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Table 1. Uses of art-sRNAi to induce antiviral resistance in plants.

Art-sRNA
Class/ Type of
Precursor

Precursor(s) No.
Art-sRNAs

Target
Virus(es) 1

Target Region(s) 2 Effects Type of Expression 3/
Transformation Method

Plant Species Ref.

amiRNA/single
monocistronic

AthMIR156 1 CGMMV CP High protection. TE/leaf agroinfiltration Nicotiana benthamiana [25]
AthMIR159a 1 CBSV P1, P3, NIb, 3′UTR High protection when targeting P1 or. NIb (also

against UCBSV).
SE/leaf disc Nicotiana benthamiana [26]

1 CMV 3′ UTR (RNA3) High protection when target site is not in tRNA-like
structures.

SE/floral dip Arabidopsis thaliana [27]

1 CMV 3′ UTR (RNA3) High protection when target site is not in tRNA-like
structures.

SE/leaf disc Nicotiana tabacum [27]

1 CMV 2a/2b, 3′ UTR Higher protection when targeting 2a/2b. SE/cotyledonary explants Solanum lycopersicum [28]
1 PVX p25 High protection, even at increased viral pressure. SE/leaf disc Nicotiana tabacum [29]
1 PVY HC-Pro High protection, even at increased viral pressure. SE/leaf disc Nicotiana tabacum [29]

1 TSWV N, NSs
High protection when targeting N.
No protection when targeting NSs.

TE/leaf agroinfiltration Nicotiana benthamiana [30]
SE/leaf disc Nicotiana tabacum

1 TuMV HC-Pro
High protection. SE/floral dip Arabidopsis thaliana [10]
Virus escapes emerge at subinhibitory amiRNA
concentrations.

SE/floral dip Arabidopsis thaliana [13]

Intermediate protection. SE/floral dip Arabidopsis thaliana [31]
1 TuMV CP High protection. SE/floral dip Arabidopsis thaliana [31]
1 TYMV P69 High protection. SE/floral dip Arabidopsis thaliana [10]
1 UCBSV P1, P3, CI, NIb, CP,

3′UTR
High protection when targeting P1 or. CP (lower
against UCBSV).

SE/leaf disc Nicotiana benthamiana [26]

1 WSMoV A, B1, B2, C, D, E
(RdRP)

Intermediate protection when targeting B2 and D. SE/leaf disc Nicotiana benthamiana [32]

AthMIR164 1 CGMMV MP High protection. TE/leaf agroinfiltration Nicotiana benthamiana [25]
AthMIR167b 1 PVX p25 Intermediate protection.

Broken resistance after re-inoculation.
SE/leaf disc Nicotiana tabacum [29]

1 PVY HC-Pro
AthMIR169a 1 CLCuBuV V2 Low or high protection when the precursor was or

was not modified, respectively.
SE/leaf disc Nicotiana benthamiana [33]

AthMIR171a 1 CMV 2b Inhibition of 2b silencing suppressor function. TE/leaf agroinfiltration Nicotiana benthamiana, [34]
63.3% of the lines were resistant. SE/leaf disc Nicotiana tabacum

1 CGMMV Rep High protection. TE/leaf agroinfiltration Nicotiana benthamiana [25]
1 PVX p25 Intermediate protection.

Broken resistance after re-inoculation.
SE/leaf disc Nicotiana tabacum [29]

1 PVY HC-Pro
AthMIR319a 1 GFLV CP AmiRNAs are active against GFLV target sites located

in a GUS mRNA sensor.
TE/somatic embryos at
cotyledonary stage

Vitis vinifera [35]

1 PVY CI, NIa, NIb, CP Higher protection when targeting NIb or CP. SE/leaf disc Nicotiana tabacum [36]
1 PVYO +

PVYN
NIb (PVYO) + NIb
(PVYN)

33% and 17% of the lines were resistant to PVYO and
PVYN, respectively.

SE/leaf disc Nicotiana tabacum [37]

1 TEV CI, NIa, NIb, CP Higher protection when targeting NIb or CP. SE/leaf disc Nicotiana tabacum [36]
1 ToLCNDV AV1, AV1 + AV2 High tolerance when targeting AV1 + AV2. Moderate

tolerance when targeting AV1.
SE/cotyledonary explants Solanum lycopersicum [38]
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Table 1. Cont.

Art-sRNA
Class/ Type of
Precursor

Precursor(s) No.
Art-sRNAs

Target
Virus(es) 1

Target Region(s) 2 Effects Type of Expression 3/
Transformation Method

Plant Species Ref.

AthMIR390a 1 PSTVd TL, C, V [PSTVd(+)], Delay of viroid accumulation in all cases. TE/leaf agroinfiltration Nicotiana benthamiana [17]
1 PSTVd TL, P, C, V, TR

[PSTVd(−)]
Delay of viroid accumulation when targeting TL
and C.

1 TBSV 5′ terminus
TBSV(+) RNA

40–90% of plants were symptom-free. TE/leaf agroinfiltration Nicotiana benthamiana [39]

1 TSWV N, NSm, NSs, RdRP 50–100% of the plants did not accumulate TSWV
when targeting NSm or RdRP.

TE/leaf agroinfiltration Nicotiana benthamiana [18]

1 TSWV RdRP 22% of the lines were resistant. SE/cotyledonary explants Solanum lycopersicum [14]
HvuMIR171a 1 WDV MP, Rep, RepA,

RepA + Rep
AmiRNAs against Rep and RepA + Rep were
selected based on a reporter system.

TE/leaf agroinfiltration Nicotiana benthamiana [40]

SlyMIR159a 1 ToLCNDV AV1, AV1 + AV2 High tolerance when targeting AV1 + AV2. Moderate
tolerance when targeting AV1.

SE/cotyledonary explants Solanum lycopersicum [38]

SlyMIR168a 1 ToLCNDV AV1, AV1 + AV2 High tolerance when targeting AV1 + AV2. No
accumulation of amiRNAs against AV1.

ZmaMIR159a 1 RBSDV P6 High protection. SE/ear immature embryos Zea mays [41]

amiRNA/single
monocistronic
in tandem
repeats

AthMIR159a 2 PVX +
PVY

P25 (PVX) + HC-Pro
(PVY)

High protection against both viruses. SE/leaf disc Nicotiana tabacum [29]

TuMV +
TYMV

HC-Pro (TuMV) +
P69 (TYMV)

High protection against both viruses SE/floral dip Arabidopsis thaliana [10]

3 WSMoV RdRP High protection SE/leaf disc Nicotiana benthamiana [32]
AthMIR171a 2 TBSV P19 + P33 Effective antiviral silencing in agroinfiltrated leaves. TE/leaf agroinfiltration Nicotiana benthamiana [42]
AthMIR319a 2 PVYO +

PVYN
NIb (PVYO) + NIb
(PVYN)

52% and 30% of the lines were resistant to PVYO and
PVYN, respectively.

SE/leaf disc Nicotiana tabacum [37]

HvuMIR171a 3 WDV Rep + RepA One line was fully resistant. SE/spike immature
embryos

Hordeum vulgare, [40]

Efficient silencing of the overexpressed Rep mRNA at
15ºC and 23ºC.

TE/leaf agroinfiltration Nicotiana benthamiana

OsaMIR528 2 CymMV +
ORSV

RdRP (CymMV) +
RdRP (ORSV)

73% and 16% of the lines were resistant to CymMV
and ORSV, respectively.

SE/leaf disc Nicotiana benthamiana [43]

OsaMIR528 2 RBSDV +
RSV

CP (RBSDV) + CP
(RSV)

54% and 27% of the lines were resistant to RBSDV
and RSV, respectively.

SE/scutellum-derived
calli

Oryza sativa [44]

amiRNA/single
polycistronic

OsaMIR395 5 WSMV 5′ UTR + P1 +
HC-Pro + P3

Three types of lines were observed: completely
immune; initially resistant with resistance breaking
down over time; and initially susceptible followed by
plant recovery.

SE/microparticle
bombardment of embryos

Triticum aestivum [45]

amiRNA/multiple
monocistronic
in tandem

AthMIR157 +
AthMIR159 +
AthMIR171

3 PPV CP No protection. SE/hypocotyl slices Prunus domestica [46]
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Table 1. Cont.

Art-sRNA
Class/ Type of
Precursor

Precursor(s) No.
Art-sRNAs

Target
Virus(es) 1

Target Region(s) 2 Effects Type of Expression 3/
Transformation Method

Plant Species Ref.

amiRNA/multiple
monocistronic
in trans

AthMIR159a 2 TuMV CP + HC-Pro High protection. SE/floral dip Arabidopsis thaliana [31]
AthMIR390a 7 TBSV 5′ terminus TBSV(+)

RNA
80% of plants were symptom-free. TE/leaf agroinfiltration Nicotiana benthamiana [39]

amiRNA +
siRNA/multiple
monocistronic
in tandem

AthMIR319a +
shRNA

2 PVYO +
PVYN

NIb (PVYO) + NIb
(PVYN)

69% and 47% of the lines were resistant to PVYO and
PVYN, respectively.

SE/leaf disc Nicotiana tabacum [37]

syn-tasiRNA/
single
polycistronic AthTAS1c

1 TSWV RdRP Delay of viroid accumulation. TE/leaf agroinfiltration Nicotiana benthamiana [7]

4 TSWV NSm + RdRP
100% of the plants were resistant. TE/leaf agroinfiltration Nicotiana benthamiana, [18]
83% of the lines were resistant. SE/cotyledonary explants Solanum lycopersicum [14]

5 PSTVd TL + C + V + TR
[PSTVd(+)] + TL +
TR [PSTVd(−)]

Delay of viroid accumulation. TE/leaf agroinfiltration Nicotiana benthamiana [17]

AthTAS3a 6 CMV +
TuMV

RdRP + 2b (CMV) +
P1 + P3 + CP (TuMV)

All lines were resistant to both viruses. SE/floral dip Arabidopsis thaliana [16]

1 CBSV, Cassava brown streak virus; CGMMV, Cucumber green mottle mosaic virus; CLCuBuV, Cotton leaf curl Burewala virus; CMV, Cucumber mosaic virus; CymMV, Cymbidium
mosaic virus; GFLV, Grapevine fanleaf virus; ORSV, Odontoglossum ringspot virus; PPV, Plum pox virus; PSTVd, Potato spindle tuber viroid; PVX, Potato virus X; PVY, Potato virus Y;
PVYN, Potato virus Y nectrotic strain; PVYO, Potato virus Y common strain; RBSDV, Rice black streaked dwarf virus; RSV, Rice stripe virus; TBSV, Tomato bush stunt virus; TEV, Tobacco
etch virus; ToLCNDV, Tomato leaf curl New Delhi virus; TSWV, Tomato spotted wilt virus; TuMV, Turnip mosaic virus; TYMV, Turnip yellow mosaic virus; UCBSV, Ugandan cassava
brown streak virus; WDV, Wheat dwarf virus; WSMoV, Watermelon silver mottle virus; WSMV, Wheat streak mosaic virus. 2 C, conserved domain; CI, cylindrical inclusion protein; CP,
coat protein; HC-Pro, helper component proteinase; MP, movement protein; N, nucleocapsid protein; NSs, nucleocapsid segment S silencing suppressor protein; NSm, nucleocapsid
segment S movement protein; NIa, nuclear inclusion a protein; NIb, nuclear inclusion b protein; P, pathogenic domain; Rep and RepA, proteins associated with viral replication; RdRP,
RNA-dependent RNA polymerase; TL, terminal left domain; TLS, tRNA-like structure; TR, terminal right domain; UTR, untranslated region; V, variable domain.3 SE, stable expression; TE,
transient expression.



Plants 2020, 9, 669 8 of 16

3.2. Selection of Target Sequences in Viral RNAs

Art-sRNAs have been used to interfere with key viral functions, such as the suppression of host
defense mechanisms by VSRs or the replication of viral RNAs by RNA-dependent RNA polymerases
(RdRPs) [47]. VSR RNAs have been frequent targets, as reported for 2b of CMV, AV2 of Tomato leaf
curl New Delhi virus (ToLCNDV), HC-Pro of Potato virus Y (PVY), TuMV and Wheat streak mosaic virus
(WSMV), NSs of Tomato spotted wild virus (TSWV), P19 of Tomato bush stunt virus (TBSV), p25 of Potato
virus X (PVX), P69 of TYMV, Rep and RepA of Wheat dwarf virus (WDV), and V2 of Cotton leaf curl
Burewala virus (CLCuBuV) (Table 1). Other studies have described the targeting of RdRP RNAs of
Cymbidium mosaic virus (CYmMV), Green mottle mosaic virus (CGMMV), Odontoglossum ringspot virus
(ORSV), TSWV, Water silver mottle virus (WSMoV), and WDV, or of coat protein (CP) RNAs of Cucumber
green mottle mosaic virus (CGMMV), Grapevine fanleaf virus (GFLV), Plum pox virus (PPV), PVY, Rice black
streaked dwarf virus (RBSDV), Rice stripe virus (RSV), Tobacco etch virus (TEV), TuMV, and Ugandan cassava
brown streak virus (UCBSV) (Table 1). Target sequences in viral RNAs were mostly included in coding
regions, but also in 3′ untranslated or antigenomic regions. The complete list of viral regions targeted
with art-sRNAs is shown in Table 1.

When selecting the region(s) of the virus to be targeted, a frequent strategy has been the
identification of regions with conserved nucleotide sequences. In principle, the targeting of such
conserved regions should minimize the possibility of emergence of escape mutants and/or allow the
multitargeting of different virus isolates or species. For instance, an amiRNA targeting conserved
sequences in the 3′ end of TuMV CP cistron induced high levels of antiviral resistance when stably
expressed in Arabidopsis, and no virus variants with mutated target sites were observed [31]. In a
different study, an amiRNA designed to target a conserved site of low entropy value included in TSWV
RdRP RNAs induced high resistance against two different TSWV isolates when transiently expressed
in N. benthamiana [18]. Interestingly, when the same amiRNA was stably expressed in tomato plants,
TSWV variants with nucleotide substitutions at the conserved target site were observed, most likely
as a consequence of the higher selective pressure imposed in amiRNA-overexpressing transgenic
plants [14]. These mutations were silent, did not modify the amino acid sequence of the viral RdRP
and, therefore, did not affect viral replication [14]. Hence, this study alerts that the targeting of a
conserved sequence may limit but not fully impede the emergence of virus escapes.

4. Recent Advances in Art-sRNAi for Enhanced Antiviral Resistance

Important improvements in antiviral art-sRNAi methodologies have been reported lately and
are presented next. We also discuss the possibility of further improving art-sRNAi based on recent
findings in the biogenesis and mode of action of plant miRNAs.

4.1. Identification of Effective Art-sRNAs with High Antiviral Activity

As explained above, the antiviral efficacy of a particular art-sRNA is difficult to predict a priori.
Thus, systems for the rapid screening of the antiviral activity of large numbers of art-sRNAs are
necessary for the identification of effective art-sRNAs prior to the time-consuming generation of stably
transformed plants. Recently, a systematic and high-throughput methodology for the simple and
fast-forward design, generation, and functional analysis of large numbers of art-sRNA constructs
has been described [48]. Briefly, highly specific antiviral amiRNAs are designed with the P-SAMS
web tool [24], and selected amiRNA candidate sequences are cloned into BsaI/ccdB “B/c” vectors [19],
a new generation of vectors for one-step amiRNA cloning and efficient gene silencing in plants [49].
Each amiRNA construct is transiently expressed in several N. benthamiana plants, which are subsequently
inoculated with the virus of interest. The antiviral activity of each amiRNA construct is assessed by
monitoring viral symptom appearance, and through molecular analysis of virus accumulation in plant
tissues. This methodology was successfully applied to identify highly effective amiRNAs against
RNAs of PSTVd [17] and TSWV [18] in N. benthamiana. Other amiRNA screening systems, such as
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ETPamiR screenings in plant protoplasts [50,51], have been successfully applied to identify highly
effective amiRNAs against endogenous genes but not yet against viral RNAs.

Another possibility is to express as art-sRNAs those immunologically effective small interfering
RNAs (esiRNAs) that are generated by DCLs from viral dsRNAs produced during viral replication [39].
Because the majority of virus-derived sRNAs are ineffective against the producing virus [52–55], it has
been difficult to distinguish esiRNAs reliably and efficiently until very recently. Gago-Zachert and
colleagues recently reported the identification of TBSV-derived esiRNAs using an in vitro system of
cytoplasmic extracts from N. tabacum BY-2 protoplasts expressing TBSV dsRNAs and selected AGO
members [39]. First, 21-nucleotide sRNAs derived from TBSV dsRNAs and loaded by AGO1 or
AGO2 were identified by immunoprecipitation followed by sRNA sequencing. Second, the cleavage
efficiency of each of these sRNAs was analyzed in in vitro cleavage assays, and third, the protective
effects of several of these siRNAs were analyzed in N. benthamiana plants by agroinfiltrating each
sRNA as an amiRNA, and subsequently inoculating TBSV in the same leaf-sites. Results showed
that the functionality of esiRNAs mainly depended on the binding affinity to AGO proteins and the
ability to target RNA [39]. Thus, this methodology could be attractive to identify naturally occurring
virus-derived sRNAs that are efficient in silencing viral RNAs.

4.2. Co-Expression of Multiple Art-sRNAs for Viral RNA Multi-Targeting

In addition to the pioneering work by Niu and colleagues [10], the in vivo co-expression of
multiple antiviral amiRNAs through different strategies (Figure 3) has proven effective in several
plant/virus pathosystems (Table 1). Furthermore, resistance against PVY was achieved by co-expressing
an amiRNA and a siRNA from a MIRNA precursor and a short hairpin RNA (shRNA) precursor,
respectively, in tandem [37] (Table 1). Despite the success in generating virus resistant plants through
all these strategies, methods to generate such amiRNA constructs are rather long and tedious. 

2 

 
Figure 3. Strategies for the co-expression of multiple art-sRNAs in plants. Multiple amiRNAs are
generated from several monocistronic precursors expressed in trans, from a single monocistronic
precursor in tandem repeats, from multiple monocistronic precursors in tandem or from a single
polycistronic precursor. Multiple syn-tasiRNAs are generated from a single polycistronic TAS precursor.
Other details are as in Figure 1.
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On the other hand, TAS precursors possess a “natural” multiplexing capability allowing the
insertion of multiple syn-tasiRNAs in a single construct (Figure 3). This feature combined with the
availability of high-throughput syn-tasiRNA “B/c” vectors [7,49] allows for the efficient generation
of antiviral syn-tasiRNA constructs. An interesting possibility is to combine in a single syn-tasiRNA
construct a number of effective amiRNAs previously identified in large screens. Indeed, this type of
strategy has been already applied and resulted in high levels of resistance against PSTVd and TSWV in
N. benthamiana and S. lycopersicum plants, respectively [14,17]. Interestingly, the comparative analysis
of plants expressing a single amiRNA or four syn-tasiRNAs against conserved sites in TSWV RNAs
showed that most of the plants expressing syn-tasiRNAs were resistant, while only plants expressing
particularly low syn-tasiRNA levels were infected. In contrast, the majority of amiRNA-expressing
plants were susceptible, and accumulated virus variants with mutated target sites [14]. These results
suggest that the simultaneous multi-targeting of TSWV RNAs with various syn-tasiRNAs most likely
limits the ability of the virus to mutate all target sites, whereas subinhibitory amiRNA accumulation
favors the emergence of target site mutations in the replicating virus.

4.3. Other

Some VSRs counter endogenous miRNA function by interfering with miRNA biogenesis,
AGO loading, or AGO/miRNA action [47,56]. For example, it has been reported that TBSV P19
binds to miRNA duplexes [57]. Similarly, Zhang and colleagues recently observed that anti-TBSV
amiRNA duplexes were bound and sequestered by P19, and hypothesized that decreasing P19 binding
to amiRNA duplexes should reestablish proper duplex processing and amiRNA silencing function [42].
For that purpose, Zhang and colleagues tested if the presence of an asymmetric bulge (AB) in the
amiRNA duplex region could affect the interaction between P19 and the amiRNA duplex, as unpaired
nucleotides of ABs get flipped out from the RNA helices at the miRNA duplex region according to
structural modelling [58,59]. A systematic study of the silencing effect and P19 binding of a series of
amiRNA duplexes including an AB at various positions in the guide or star strands showed that in
two of the configurations the AB enhanced amiRNA silencing activity and anti-TBSV resistance [42].
Unfortunately, the reasons explaining why ABs at specific positions induced higher interfering effects
were not clear. Because this approach can only be used to counteract VSRs that bind amiRNA duplexes,
the broad application of this strategy for increased amiRNA-mediated antiviral resistance in plants
seems unlikely.

Another recent work reported that plant miRNAs have specific GC signatures required for
abundant miRNA production, possibly by influencing the local structure of the precursor to enhance
DCL1 partner HYL1-binding and selection [60]. When applying these GC signatures to amiRNAs
targeting endogenous or artificial genes, some of the amiRNAs accumulated to higher levels and induced
higher target silencing when transiently expressed in Nicotiana tabacum leaves [60]. In another recent
work, it was suggested that in vivo mRNA structure regulates miRNA cleavage in Arabidopsis [61].
In particular, the single-strandedness of the two nucleotides immediately downstream of the miRNA
target site, named Target Adjacent structure Motif (TAM), seems to favor miRNA cleavage [61]. It is
tempting to speculate that art-sRNAs targeting viral target sites with TAMs may have an increased
cleavage activity and, subsequently, an enhanced antiviral activity. However, whether the targeting of
TAM-including target sites or the addition of GC signatures increases the efficacy of antiviral amiRNAs
still needs experimental confirmation.

5. Application of Art-sRNAs to Control Viral Diseases in Crops

Transgenes producing antiviral art-sRNAs from endogenous sRNA precursors have been
introduced in diverse crop species to generate antiviral resistance (Table 1). Regarding amiRNAs,
transgenic tomato plants expressing amiRNAs against CMV [28], ToLCNDV [38], or TSWV [14]
were resistant, as were barley, maize, rice, and wheat transgenic plants expressing amiRNAs against
WDV [40], RBSDV [41], RBSDV/RSV [44], and WSMV [45], respectively. Regarding syn-tasiRNAs, the
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recent development of highly resistant transgenic tomato plants expressing four different syn-tasiRNAs
against TSWV is the only example reported [14]. However, the antiviral resistance of these transgenic
crops expressing art-sRNAs has not been examined under field conditions. Indeed, the confirmation
that the durability of the antiviral resistance in the field lasts for multiple generations seems necessary
before the approval of a transgenic crop for its commercial release. To date, only a few transgenic crops
expressing transgenes including short stretches of viral sequences in sense or antisense orientation have
been commercially released (for a recent review see [62]). Unfortunately, the current legislations and
long paths for the commercialization of a transgenic crop, particularly in those countries where GMO
crops are highly regulated, are still barriers to overcome before the release of the first art-sRNA-based
crop onto the market.

An alternative to the transgenic expression of antiviral RNAs is their topical delivery into plants.
This approach was first used to interfere with Alfalfa mosaic virus (AMV), TEV, or Pepper mild mottle
virus (PMMoV) infection by mechanically co-inoculating N. tabacum leaves with naked dsRNAs of
virus sequence and their corresponding target virus [63]. Later, the same strategy was also applied
successfully to interfere with the infection of several viroids [64]. Since these early works, dsRNAs
of viral sequence have been delivered to plants though diverse methods to induce resistance against
a large number of plant viruses in multiple model and crop species (reviewed recently in [65–68]).
However, several limitations of these approaches may include the lack of affordable methods for
dsRNA production, and the low specificity, potential toxicity, and reduced efficiency of certain dsRNAs.
To date, the exogenous application of art-sRNAs to plants has not been reported. In principle, art-sRNA
precursors topically delivered into plants will be processed by the endogenous RNAi machinery to
produce the antiviral art-sRNAs. Certainly, some of the limitations of the dsRNA approach, such as
the lack of efficient production and delivery methods, may also compromise the successful exogenous
application of art-sRNA precursors into plants. In this context, several bacterial systems for the
efficient production of recombinant RNAs [69–72] may be used to produce large amounts of art-sRNA
precursors in a time- and cost-effective manner. In addition, a possibility to increase the stability
and efficient delivery of art-sRNA precursors could be their conjugation to cationic nanoparticles,
clay nanosheets, surfactants, or peptide-based RNA delivery systems, as described for other RNAs [66].
For example, sprayed dsRNAs bound to layered double hydroxide (LDH) nanosheets have been
successfully used to confer resistance to PMMoV and CMV in N. tabacum [73], in a non-toxic and
sustainable manner, and extend the durability of the protection described in previous studies [63].
Thus, the exogenous application of art-sRNA precursors conjugated to new generation nanoparticles
may represent a novel, highly efficient, and sustainable strategy to induce antiviral resistance in crops
in a GMO-free manner.

6. Concluding Remarks and Future Perspectives

Art-sRNAi tools have been broadly used in plants to confer antiviral resistance against multiple
RNA and DNA viruses, and to viroids as well. Currently, the relative simplicity of the webtool-assisted
design of highly specific antiviral art-sRNA, combined with the availability of efficient cloning methods,
facilitates the design and generation of antiviral art-sRNA constructs for plant delivery. However,
one important drawback in the use of art-sRNAi is the difficulty to predict the effectiveness of a
particular art-sRNA. Recently described high-throughput systems for rapid in vitro or in vivo screening
of the antiviral activity of virus-derived sRNAs or computationally designed art-sRNAs, respectively,
seem to have overcome this limitation. Another drawback is the emergence of resistance-breaking virus
variants with mutated target sites when using single amiRNAs targeting single sites in viral RNAs.
In this case, the artificial multiplexing of amiRNAs in different precursor configurations or the use of
syn-tasiRNA precursors, both allowing the co-expression of multiple art-sRNAs, should circumvent
this problem. The synchronized targeting of multiple viral RNAs by co-expressed art-sRNAs may
minimize the possibility that the virus simultaneously mutates all different target sites to fully escape
each art-sRNA, and thus enhance the antiviral resistance.
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In the current genome editing era of bacterial CRISPR/Cas-based technologies, we anticipate that
art-sRNAi tools will continue to be broadly used to confer antiviral resistance in plants because of their
unique features of high simplicity, specificity, and efficacy, as well as for their multiplexing capability
and for the availability of high-throughput methodologies for the design, generation, and validation
of art-sRNAi constructs. The development of efficient methodologies for the production and topical
delivery to plants of art-sRNA precursors, as well as a better knowledge of the basic mechanisms
governing art-sRNA biogenesis, mode of action, and viral targeting, are needed to further refine
art-sRNAi tools in view of their broader use for enhanced crop protection.
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AB asymmetric bulge
art-sRNA artificial small RNA
art-sRNAi art-sRNA-based RNA interference
AGO argonaute
amiRNA artificial microRNA
atasiRNA artificial trans-acting small interfering RNA
CP coat protein
DCL Dicer-like
dsRNA double-stranded RNA
esiRNA immunologically effective small interfering RNA
hp hairpin
MIRNA microRNA
pri-amiRNA primary artificial microRNA precursor
pri-syn-tasiRNA primary synthetic trans-acting small interfering RNA precursor
RdRp RNA-dependent RNA polymerase
RNAi RNA interference
sRNA small RNA
syn-tasiRNA synthetic trans-acting small interfering RNA
VSR viral silencing suppressor protein
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