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Abstract: Plant posture is controlled by various environmental cues, such as light, temperature,
and gravity. The overall architecture is determined by the growth angles of lateral organs, such as
roots and branches. The branch growth angle affected by gravity is known as the gravitropic setpoint
angle (GSA), and it has been proposed that the GSA is determined by balancing two opposing
growth components: gravitropism and anti-gravitropic offset (AGO). The molecular mechanisms
underlying gravitropism have been studied extensively, but little is known about the nature of the
AGO. Recent studies reported the importance of LAZY1-LIKE (LZY) family genes in the signaling
process for gravitropism, such that loss-of-function mutants of LZY family genes resulted in reversed
gravitropism, which we term it here as the “anti-gravitropic” phenotype. We assume that this
peculiar phenotype manifests as the AGO due to the loss of gravitropism, we characterized the
“anti-gravitropic” phenotype of Arabidopsis lzy multiple mutant genetically and physiologically.
Our genetic interaction analyses strongly suggested that gravity-sensing cells are required for
the “anti-gravitropic” phenotype in roots and lateral branches. We also show that starch-filled
amyloplasts play a significant role in the “anti-gravitropic” phenotype, especially in the root of the
lzy multiple mutant.
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1. Introduction

Plants use various signals, such as light and gravity signals, to optimize shoot and root
architecture to achieve directional organ growth. Previous studies have suggested that amyloplasts,
plastids that accumulate starch, move in the direction of gravity to trigger a signaling process, known as
gravitropism [1–3]. This starch-statolith hypothesis is supported by the reduced gravitropism of the
starchless phosphoglucomutase (pgm) mutant [1,3,4]. The cell ablation studies demonstrated that root
cap columella cells containing sedimentable amyloplasts are important for root gravitropism [5,6].
Thus, columella cells are considered to be major gravity sensing cells in roots. Meanwhile, additional
genetic studies with a series of shoot gravitropism (sgr) mutants provided evidence for gravity-sensing
cells in the Arabidopsis shoot [7]. It has been reported that sgr1 (also known as scarecrow (scr)) and sgr7
(also known as short-root (shr)) are agravitropic in the shoot, and these mutants lack endodermal cell
layers in inflorescence stems [8]. The endodermal cells in Arabidopsis shoots contain amyloplasts that
can fall due to gravity. Furthermore, the endodermal-amyloplast less 1 (eal1) mutant was reported as an
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agravitropic mutant in inflorescence stem [9]. The eal1 was mapped on the At4g37650 locus which is
also known as SHR locus. The eal1 carries three nucleotides deletion which correspond to glutamate
230 and results in a single amino acid deletion of SHR [10]. The eal1 develops endodermal-like tissues
without gravity sensing ability [10], while the sgr7 completely loses endodermis [8]. Thus, the eal1 is
thought to be a hypomorphic mutant allele of sgr7/shr. These results indicate that endodermal cells are
gravity-sensing cells in the Arabidopsis shoot [11].

Recently, key genes for gravitropism, including LAZY1 and its orthologous LAZY1-LIKE (LZY)
family genes, were identified in rice and Arabidopsis [12,13]. The loss-of-function mutants of LAZY1 in
rice and LZY1 in Arabidopsis resulted in reduced shoot gravitropism [12,13]. In Arabidopsis, LZY1, LZY2,
and LZY3 genes are expressed in the endodermis and function redundantly in shoot gravitropism [14,15].
LZY2 and LZY3 are localized to the plasma membrane, while LZY1 is localized to the nucleus and
plasma membrane [13–15]. Although a mutated LZY1 does not localize in the nucleus, it remains
associated with shoot gravitropism, suggesting that plasma membrane-localized LZY1 is functionally
important for gravitropism [13]. In root, LZY2, LZY3, and LZY4 are expressed in columella cells and
function redundantly in gravitropism [14–16]. Recently, we reported that LZY3 is localized to the
plasma membrane and changed its polar localization in response to gravi-stimulation by reorienting
its roots [17]. It has been suggested that polar localized LZY3 recruits RCC1-LIKE DOMAIN (RLD)
proteins to control polar auxin transport via auxin efflux carrier PIN proteins [17]. Taken together,
LZY proteins likely play a central role in gravity-sensing cells to connect signals from physical
amyloplast sedimentation to polar auxin transport. Asymmetrically distributed auxin then induces
differential organ growth to achieve the gravitropic response.

Lateral roots and shoot branches maintain specific growth angles relative to the direction of
gravity, which is known as the gravitropic setpoint angle (GSA). It has been proposed that the GSA is
determined by a balance between gravitropism and anti-gravitropic offset (AGO), which is a growth
component that counteracts gravitropic growth [18]. Physiological and genetic analyses suggest that
auxin signaling, transport, and its regulatory control of gene expression are all involved in AGO and
gravitropism [19,20]. In addition, sgr5 was identified as a gravitropism-deficient mutant, and its lateral
branches tend to grow horizontally [21]. The SGR5 gene encodes a C2H2-type zinc finger protein, and it
has been demonstrated that SGR5/INDETERMINATE DOMAIN15 (IDD15), IDD14, and IDD16 control
auxin distribution via transcriptional control of auxin biosynthetic genes and the auxin transporter
PIN1 [21,22]. Loss-of-function mutants of LZY genes have reduced gravitropism, and their shoot
branches and lateral roots tend to grow horizontally [13–15]. Therefore, LZY family proteins appear to
contribute to GSA control through gravity signaling that regulates polar auxin transport. However,
in contrast to this understanding of the molecular mechanism underlying gravitropism, little is known
about the mechanisms controlling AGO.

It has been reported that LZY family genes control growth direction of the primary root in
Medicago truncatula and Arabidopsis [14,16,23]. Loss of function of three LZY genes, namely, LZY2, LZY3,
and LZY4, reverses the growth direction of primary roots in response to gravi-stimulation [14,16,23].
This phenotype is termed “negative gravitropism” [14,16,23], but the “negative gravitropic” phenotype
is not simply a mirror image of the normal positive gravitropism. Rather, the responsiveness to
gravi-stimulation of primary roots of the lzy triple mutant is considerably weak [14]. Meanwhile,
we reported that primary shoots of the lzy1;2;3 triple mutant are agravitropic, while its lateral branches
curl downward [15]. We refer to this phenotype of reversed growth direction observed in both the
primary root of the lzy2;3;4 mutant and the lateral branches of the lzy1;2;3 mutant as “anti-gravitropic.”
Therefore, with respect to GSA, both “anti-gravitropic” phenotypes of primary roots and lateral
branches lead us to hypothesize that the loss of LZY function results in manifestation of AGO [24].

In this study, we characterized the “anti-gravitropic” phenotype by analyzing lzy multiple
mutants and gravitropism-deficient mutants in primary roots and lateral branches. Our genetic
and physiological studies highlight the importance of columella and endodermal cells in roots
and shoots for GSA determination. In this process, we demonstrated that starch-accumulated
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amyloplasts in columella cells are required for the recognition of the gravity vector to achieve both
gravitropism and “anti-gravitropic” phenotypes in primary root. In shoots, while there is a marginal
contribution of amyloplasts, endodermal cells remain functionally important for gravitropism and
“anti-gravitropic” phenotypes.

2. Results

2.1. Amyloplast Sedimentation Leads to Directional Growth of the Primary Root

We assessed the growth direction of primary roots of 5-day-old seedlings on a vertically standing
plate (Figure 1). Wild-type roots grew in the direction of gravity, but roots of the lzy2;3;4 triple
mutant tended to grow upward in an “anti-gravitropic” direction, as previously reported [14,23]
(Figure 1A,B,E,F,I). For gravitropism, amyloplast sedimentation in gravity-sensing cells is important
to recognize the direction of gravity [2,11]. The pgm mutant is starch synthesis deficient with “light”
starchless amyloplasts and partially complete root gravitropism (Figure 1D,H) [4]. To examine whether
amyloplasts that accumulate starch were important for the “anti-gravitropic” phenotype of the lzy2;3;4
triple mutant, we analyzed the genetic interaction between lzy2;3;4 and pgm by generating the lzy2;3;4;
pgm quadruple mutant and testing the growth direction of primary roots. Since pgm carries a mutation
in the phosphoglucomutase gene which is involved in starch biosynthesis and results in starchless
“light” amyloplasts development, it is an ideal mutant to investigate the contribution of starch-filled
amyloplasts to “anti-gravitropic” phenotype. Interestingly, directional growth against gravity was
eliminated by adding the pgm mutation in lzy2;3;4 plants (Figure 1C,G). As reported previously,
starch accumulation was not observed in pgm and lzy2;3;4;pgm (Figure 1L,M), while wild-type and
lzy2;3;4 accumulated starch (Figure 1J,K). These results demonstrate that pgm mutation is epistatic to
the lzy2;3;4 mutant, and starch accumulation in amyloplasts is necessary for the “anti-gravitropic”
phenotype of the lzy2;3;4. Therefore, gravitropic and “anti-gravitropic” growth is likely to share a
similar gravity-sensing mechanism in primary roots.
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Figure 1. Genetic analysis of growth direction of primary roots. Polar distribution of growth direction of
primary root in wild-type Col (A), lzy2;3;4 (B), lzy2;3;4;pgm (C), and pgm (D). Growth angles were plotted
on histograms and distributions were evaluated with boxplots from wild-type Col (E), lzy2;3;4 (F),
lzy2;3;4;pgm (G), and pgm (H). Schematic representation of growth angle quantification (I). Each bar
indicates the number of roots. Lugoal’s staining of primary roots of wild-type Col (J), lzy2;3;4 (K),
lzy2;3;4;pgm (L), and pgm (M) at 7 days after transferring to phytocabinet. Bars indicate 100 µm.
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2.2. Lateral Branch Responses to Gravi-Stimulation in the lzy1;2;3 Mutant

As reported previously, the lzy1;2;3 triple mutant displayed severe defects in gravitropism in the
primary shoot and downward curling of lateral branches [14,15]. However, it remains unclear whether
the downward-curling phenotype of the lateral branch is the result of a response to gravi-stimulation
or simple epinastic growth. To address this question, we inverted 4-week-old plants containing
1.5–2 cm lateral branches and measured the growth angle of lateral branches (Figure 2A). In wild-type
plants, lateral branches began growing upward within 60 min after inversion and completely changed
their posture within 120 min (Figure 2B,F,G, Video S1). By contrast, the lateral branches of lzy1;2;3
gradually grew downward after inversion, and it took considerably longer to complete the posture
change (Figure 2C,F,G, Video S2). This result indicates that the lateral branches of lzy1;2;3 respond to
gravi-stimulation and exhibit the “anti-gravitropic” phenotype. This result also suggests that the loss
of function of LZYs resulted in the “anti-gravitropic” phenotype in lateral branches, resulting in the
downward curling of branches.
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Figure 2. The gravitropic responses of lateral branches. (A) Graphical image of the quantification
of growth angles of lateral branches. Time-lapse images of lateral branches from wild-type Col
(B), lzy1;2;3 (C), pgm (D), lzy1;2;3;pgm (E) plants after inversion. Immediately after inverting plants,
images were obtained at 5 min intervals. Quantification of growth posture change of lateral branches
during the gravitropic responses (F) and differences of growth angle from initial angles (G).
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2.3. Endodermal Cells are Required for the “Anti-Gravitropic” Phenotype in Shoots

In addition to the roots, amyloplast sedimentation is thought to be important for gravity sensing
in shoot gravitropism [2,9]. Therefore, we examined whether starch-accumulated amyloplasts were
required for the “anti-gravitropic” phenotype of lateral branches in the lzy1;2;3 mutant. First, using the
lzy1;2;3;pgm quadruple mutant, we analyzed the lateral branch phenotype. When lateral branches
reached 10 cm, plants were photographed and growth angles of axillary branches were calculated
(Figure 3A). Differences from vertical axis were calculated as growth angles and plotted as a histogram
(Figure 3J). Lateral branches of wild-type plants tended to grow at a 30◦ angle (Figure 3B,K), while those
of lzy1;2;3 mutants grew at an angle of around 150◦ (Figure 3F,O). The growth angle of lateral branches
of the pgm mutant was significantly wider than the wild type, but the phenotype was much weaker
than that of the lzy1;2;3 mutant (Figure 3E,N). Based on our results from the primary roots, we expected
that pgm also would be epistatic to lzy1;2;3 in lateral branches. However, this does not appear to be the
case with regard to the “anti-gravitropic” phenotype of lateral branches (Figure 3E,F,I,N,O,R).
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Figure 3. Growth angles of lateral branches. Schematic representation of growth angle evaluation for
posture of lateral branches (A) and differences from the vertical main axes (J). Growth angles of lateral
branches from wild-type Col (B), eal1 (C), sgr1 (D), pgm (E), lzy1;2;3 (F), lzy1;2;3;eal1 (G), lzy1;2;3;sgr1 (H),



Plants 2020, 9, 615 6 of 12

and lzy1;2;3;pgm (I). Distribution of differential growth angles from the primary flower stem
from wild-type Col (K), eal1 (L), sgr1 (M), pgm (N), lzy1;2;3 (O), lzy1;2;3;eal1 (P), lzy1;2;3;sgr1 (Q),
and lzy1;2;3;pgm (R). Distributions were evaluated as boxplots. Expression patterns of LZY1,
LZY2, and LZY3 in lateral branches. GUS staining of lateral branches expressing pLZY1:GUS (S),
pLZY2:GUS (T), and pLZY3:GUS (U). Bars indicate 100 µm.

To investigate the contribution of pgm in more detail, we examined the gravitropic response of pgm
and lzy1;2;3;pgm plants upon gravi-stimulation by reorientation. Lateral branches of the pgm mutant
were able to respond to a new gravity vector, but it took longer to complete the gravitropic response
(Figure 2D,F,G and Video S3). Although no clear difference was observed in the growth angles of lateral
branches between lzy1;2;3 and lzy1;2;3;pgm under normal growth conditions (Figure 3E,F,I,N,O,R),
the pgm mutation delayed the “anti-gravitropic” response in lzy1;2;3 plants upon gravi-stimulation
(Figure 2E–G and Video S4). Even if the pgm has a minor impact on the lateral branch phenotype of
lzy1;2;3 plants, our results suggest that pgm is an epistatic mutation to lzy1;2;3.

We then investigated the relationship between the endodermis and the “anti-gravitropic”
phenotype in lzy1;2;3 plants. Endodermal cells where LZY genes are expressed and function
are gravity-sensing cells for shoot gravitropism [8]. As has been shown in primary shoots [15],
promoter activity of LZY1, LZY2, and LZY3 were detected in the endodermis of lateral branches
(Figure 3S–U) and affect the growth angle phenotype. Two key transcription factors, SCR and SHR,
function during development of the endodermis in Arabidopsis [25–28]. LZY genes were downregulated
in the eal1 mutant, a hypomorphic allele of sgr7/shr, as well as in sgr1/scr [15]. The eal1 mutant
expressed SHR with an amino acid deletion form endodermal-like tissue which lacked the ability as a
gravity-sensing tissue [9,10]. In contrast to eal1, sgr1 completely lost its endodermis in the inflorescence
stem [8]. Both endodermis-deficient mutants display almost completely horizontal lateral branches,
with 100◦–110◦ growth angles (Figure 3C,D,L,M). To investigate their genetic relationship, we generated
quadruple mutants, lzy1;2;3;eal1 and lzy1;2;3;sgr1, and analyzed the growth angles of the lateral branches.
The downward-curling phenotype observed in the lzy1;2;3 mutant was clearly suppressed by eal1 and
sgr1, resulting in straight lateral branches growing horizontally (Figure 3G,H,P,Q). Moreover, lateral
branches of eal1 and lzy1;2;3;eal1 plants failed to respond to gravi-stimulation by inversion (Figure 4D–G,
Supplementary Movie S5,6). While eal1 and lzy1;2;3;eal1 failed to develop endodermal tissues, they
developed properly in lateral branches of wild-type and lzy1;2;3 plants. Taken together, the endodermal
tissue appears crucial for the normal gravitropism and “anti-gravitropic” phenotypes of lateral
branches in lzy1;2;3 triple mutants, but it remains unclear whether gravitropism and “anti-gravitropic”
phenotypes share a similar gravity-sensing mechanism.
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of growth angles of lateral branches. Time-lapse images of lateral branches from wild-type Col (B),
lzy1;2;3 (C), eal1 (D), lzy1;2;3;eal1 (E) plants after inversion. Immediately after inverting plants, images
were obtained at 5 min intervals. Quantification of growth posture change of lateral branches during
the gravitropic responses (F) and differences of growth angle from initial angles (G). Images of Col and
lzy1;2;3 are identical to Figure 2.

2.4. Suppressor Screening of lzy2;3;4 in Primary Roots

To investigate the molecular nature of the “anti-gravitropic” phenotype in the primary roots of
the lzy2;3;4 mutant, plants were mutagenized and screened to isolate suppressor mutants. M2 seeds
were obtained from mutagenized M1 populations and sown on 1×MS medium. In the first screening,
plants that showed a primary root growing below the horizontal line (between 0◦ and −180◦) were
selected as suppressor of lazy triple in root (sltr) candidates (Supplemental Figure S1). We isolated 103
sltr candidates and obtained M3 seeds. For the second screening, we assessed the growth direction
of primary roots and growth angles between the hypocotyl/root joint and root tip. Eight out of 103
sltr candidates changed their growth direction of the primary root. To test the reproducibility with
larger populations, eight lines of M4 sltr seeds were sown, and we quantified their growth direction
(Figure 5A–L). Although more than 50% of lzy2;3;4 roots grew between −45◦ and −135◦ (Figure 5B),
the growth direction of lzy2;3;4;pgm roots occurred randomly as a consequence of the pgm mutation,
with only 25% of roots between −45◦ and −135◦ (Figure 5C). Among the eight candidates, less than
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50% of sltr4-1, sltr134-6, and sltr136-1 roots grew between −45◦ and −135◦ (Figure 5E,H,I). Since pgm
is a sltr (Figure 1), the mutation causing starchless amyloplasts also may be a sltr. Thus, root tips of
these sltr mutants were subjected to Lugoal’s staining to test whether sltr candidates were starchless.
While pgm and lazy2;3;4;pgm do not accumulate starch, starch accumulation in all tested sltr mutants
was observed (Figure 5M–S, Supplemental Figure S2). These results indicate that sltr4-1, sltr134-6,
and sltr136-1 provide new directions for future studies on the nature of the “anti-gravitropic” phenotype
in primary roots.
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Figure 5. Genetic screening of lzy2;3;4 suppressors. Growth direction of primary roots in wild-type 
Col (A), lzy2;3;4 (B), lzy2;3;4;pgm (C), and pgm (D) and sltr candidates, sltr4-1 (E), sltr77-2 (F), sltr97-3 
(G), sltr134-6 (H), sltr136-1 (I), sltr156-4 (J), sltr182-6 (K), and sltr185-1 (L). More than 150 plants were 
evaluated for all genotypes. Bars indicate the number of plants. Lugoal’s staining of primary roots of 
wild-type Col (M), lzy2;3;4 (N), lzy2;3;4;pgm (O), pgm (P), sltr134-6 (Q), sltr136-1 (R), and sltr156-4 (S) 
at 7 days after transferring to phytocabinet. Bars indicate 100 µm. 
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Figure 5. Genetic screening of lzy2;3;4 suppressors. Growth direction of primary roots in wild-type
Col (A), lzy2;3;4 (B), lzy2;3;4;pgm (C), and pgm (D) and sltr candidates, sltr4-1 (E), sltr77-2 (F), sltr97-3 (G),
sltr134-6 (H), sltr136-1 (I), sltr156-4 (J), sltr182-6 (K), and sltr185-1 (L). More than 150 plants were
evaluated for all genotypes. Bars indicate the number of plants. Lugoal’s staining of primary roots of
wild-type Col (M), lzy2;3;4 (N), lzy2;3;4;pgm (O), pgm (P), sltr134-6 (Q), sltr136-1 (R), and sltr156-4 (S) at
7 days after transferring to phytocabinet. Bars indicate 100 µm.
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3. Discussion

Overall plant architecture is determined by various environmental cues, such as light, temperature,
and gravity. Previous studies have demonstrated that LAZY1 and LAZY1-like family genes are
involved in gravitropism in rice, Arabidopsis, Medicago, and maize [12–15,29]. LZY1, LZY2, LZY3,
and LZY4 facilitate gravitropism in shoots and roots, such that loss of their function is expected to
cause non-responsiveness to gravi-stimulation. However, in addition to the lzy2;3;4 and lzy1;2;3 triple
mutants losing normal gravitropism, they also exhibited “anti-gravitropic” phenotypes [14–16,23].
While LAZY1 family genes have been characterized extensively in various plant species due to their
effects on gravitropism, the nature of “anti-gravitropic” phenotypes of lzy multiple mutant had not
been characterized. Here, we focused on the “anti-gravitropic” phenotypes of the lzy1;2;3 mutant in
lateral branches and the lzy2;3;4 mutant in the primary root.

Lateral branches and lateral roots develop at a specific angle called the gravitropic setpoint
angle, GSA [30]. It has been proposed that the GSA is determined a result of the balance between
gravitropism and the AGO [18,19]. Thus, we assumed that the balance between gravitropism and the
AGO was disrupted in lzy1;2;3 and lzy2;3;4 mutants, and the AGO manifested as the “anti-gravitropic”
phenotypes [24]. In the primary root, the AGO may share a similar gravity-sensing mechanism with
gravitropism. Since sedimentation of starch-filled amyloplasts in collumela cells triggers gravitropsim
in primary root, we investigated the contribution of amyloplasts in the “anti-gravitropic” phenotype of
lzy2;3;4 by introducing pgm mutation. The epistasis analysis between lzy2;3;4 and pgm resulted in the
suppression of “anti-gravitropic” phenotypes of lazy2;3;4 plants by the pgm mutation (Figure 1B,C,F,G).
Thus, based on previous studies and our results, we deduce that the gravitropism and AGO share a
similar gravity-sensing mechanism in the primary root. It has been reported that a reversed asymmetric
auxin distribution is formed upon gravi-stimulation in the root tip of lzy2;3;4 [16], suggesting that
this reversed auxin flow is triggered by amyloplast sedimentation. In contrast, the effect of the pgm
mutation on lateral branches in lzy1;2;3 plants was subtle (Figure 2C–G). Thus, it is possible that
gravity-sensing mechanisms or dependency of sensing mechanisms underlying the AGO might differ
between roots and shoots. Moreover, other mechanisms for gravity sensing, such as the protoplast
presser hypothesis, have been proposed [31], suggesting that other mechanisms besides the starch
statolith might be involved in AGO in shoots.

It is widely accepted and supported that the endodermal cells take place in gravity sensing through
the amyloplasts sedimentation in shoot. The eal1 and sgr1 are agravitropic mutants and commonly
have defects in formation of the endodermis [8–10]. Thus, we introduced eal1 and sgr1 mutations into
lzy1;2;3 triple mutant to investigate the relation between endodermis and “anti-gravitropic” phenotype
of lzy1;2;3. Our genetic interaction analysis demonstrates that eal1 and sgr1 mutations are epistatic to
lzy1;2;3, and quadruple mutants resulted in eal1 or sgr1 like phenotypes (Figure 3G,H,P,Q). These results
clearly indicate that functions of the SHR and SCR are required for the “anti-gravitropic” phenotype of
lzy1;2;3. It is known that SHR and SCR proteins function together as a protein complex in endodermis
development [32]. Therefore, we deduce that the endodermis plays a crucial role for AGO as well as
gravitropism in shoots.

Although LZY1, LZY2, and LZY3 were downregulated in eal1 and sgr1, a phenotypic difference
between lzy1;2;3 plants and eal1 or sgr1 plants was observed (Figure 3C,D,F,L,M,O). It is hard to explain
the eal1 and sgr1 phenotypes only by downregulation of LZY1, LZY2, and LZY3. Thus, besides LZY
genes, it is expected that the key component genes in AGO are altered in eal1 and sgr1 mutants. We have
reported the difference in gene expression between wild type and eal1 or sgr1 in inflorescence stems and
showed that TILLER ANGLE CONTROL 1 (TAC1) as a markedly downregulated gene in eal1 and sgr1
plants [15,17]. The TAC1 encodes a protein that shares similarity with LAZY1 family proteins but lacks
the CCL domain which is essential for interacting with RLD proteins. TAC1 was identified in rice as a
regulator of tiller angle [33], and in peach tree (Prunus persica), PpeTAC1 was identified as a causal gene
of the broomy mutant that leads to vertical growth of branches [34]. In Arabidopsis, lateral branches of
the attac1 mutant exhibited vertical growth habits [34]. Thus, AtTAC1 might coordinate growth angle
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control in response to gravity signals with LZYs. However, based on the public expression database
eFP browser, AtTAC1 expression is barely detected in roots, making its contribution in AGO limited.

To deepen our understanding of AGO in root, we isolated lzy2;3;4 suppressors and identified
three sltr mutants (Figure 5E,H,I). We showed that these lzy suppressor genes are not related to the
starch biosynthetic pathway (Figure 5M–S, Supplementary Figure S2). Although further genetic and
physiological analyses will be necessary, the three sltr mutants are promising candidates to elucidate
the nature of AGO in primary roots.

4. Materials and Methods

4.1. Plant Materials and Growth Condition

Arabidopsis thaliana Columbia-0 (Col) was used as the wild type. lzy1;2;3, pLZY1:GUS, pLZY2:GUS,
pLZY3:GUS [15], eal1 [9], sgr1 [7], and pgm [4] were previously described. lzy2;3;4, lzy2;3;4;pgm,
lzy1;2;3;pgm, lzy1;2;3;eal1, and lzy1;2;3;sgr1 were generated in this study by genetic crossing. lzy2 and
lzy3 were previously described [15], and lzy4 (GABI_479C08) was used. For the phenotypic analysis of
primary roots, surface-sterilized seeds were sown on Murashige and Skoog medium supplemented
with 1% sucrose, 0.01% myo-inositol, 0.05% MES-KOH (pH5.7), and 0.5% Gellan Gum. For germination
induction, plates were kept in the dark at 4 ◦C for 3 days and then transferred to 22 ◦C in a growth
chamber under continuous light (defined as Day 0). For the phenotypic analysis of axillary branches,
seeds were sterilized and kept in the dark at 4 ◦C for 3 days, sown on soil directly, and grown under
continuous light.

4.2. Gene Nomenclature

In this manuscript, the following genes were mentioned: EAL1/SHR/SGR7 (At4g37650), SGR1/SCR
(At3g54220), PGM (At5g51820), LZY1 (At5g14090), LZY2 (At1g17400), LZY3 (At1g72490), LZY4 (At1g19115),
AtTAC1 (At2g46640), SGR5/IDD15 (At2g01940), IDD14 (At1g68130), IDD16 (At1g25250), PIN1 (At1g73590).

4.3. Lugoal’s Staining

Root tips of 7-day-old seedlings were collected and incubated with 5 mM iodine solution for
1 min and rinsed with deionized water. Stained root tips were mounted in chloral hydrate solution
and photographed.

4.4. Shoot Inversion

After flowering, when lateral branches reached 1.5–2.0 cm, plants were inverted and photographed
at 5 min intervals using the GoPro HERO Black 7. Growth angles were quantified manually from
time-lapse images using ImageJ software. Experiments were repeated more than three times and
representative results were used for quantification.

4.5. GUS Staining

Tissues were fixed in 80% ice-cold acetone for 15 min and incubated in GUS staining solution (100
mM sodium phosphate (pH7.0), 10 mM ferricyanide, 10 mM ferrocyanide, 0.1% Triton X-100, 2 mM
5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid) at 37 ◦C. For thin section preparation, samples were
fixed with 4% paraformaldehyde, dehydrated in an ethanol series, and embedded in plastic resin
(Technovit 7100). Embedded samples were sectioned in 10µm thickness with a microtome. Thin sections
were stained with neutral red (0.01%) and mounted with Entellan for microscopy.

4.6. Data Visualization and Statistical Analysis

R (version 3.5.1) was used for data visualization and statistical analysis. The following statistical
tests were used to calculate the corresponding p-values. The F-test was used to compare the distribution
of two data sets. Tukey–Kramer’s test was used for multiple comparisons of all possible data pairs.



Plants 2020, 9, 615 11 of 12

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/5/615/s1,
Figure S1: Schematic representation of genetic screening of lzy2;3;4 suppressors. Figure S2: Lugoal’s staining
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Gravitropic response of lateral branch from eal1 plant; Video S6. Gravitropic response of lateral branch from
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