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Abstract: Internal oxygen diffusion from shoot to root tips is enhanced by the formation of aerenchyma
(gas space) in waterlogged soils. Lysigenous aerenchyma is created by programmed cell death and
subsequent lysis of the root cortical cells. Rice (Oryza sativa) forms aerenchyma constitutively
under aerobic conditions and increases its formation under oxygen-deficient conditions. Recently,
we have demonstrated that constitutive aerenchyma formation is regulated by auxin signaling
mediated by Auxin/indole-3-acetic acid protein (AUX/IAA; IAA). While ethylene is involved in
inducible aerenchyma formation, the relationship of auxin and ethylene during aerenchyma formation
remains unclear. Here, we examined the effects of oxygen deficiency and ethylene on aerenchyma
formation in the roots of a rice mutant (iaa13) in which auxin signaling is suppressed by a mutation
in the degradation domain of IAA13 protein. The results showed that AUX/IAA-mediated auxin
signaling contributes to ethylene-dependent inducible aerenchyma formation in rice roots. An auxin
transport inhibitor abolished aerenchyma formation under oxygen-deficient conditions and reduced
the expression of genes encoding ethylene biosynthesis enzymes, further supporting the idea that
auxin is involved in ethylene-dependent inducible aerenchyma formation. Based on these studies, we
propose a mechanism that underlies the relationship between auxin and ethylene during inducible
aerenchyma formation in rice roots.
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1. Introduction

Internal oxygen movement from shoot to roots through aerenchyma is essential for plants to
adapt to waterlogged soils [1]. Lysigenous aerenchyma in roots is created by programmed cell death
(PCD) and subsequent lysis of the cortical cells [2,3]. In roots of upland plants, such as maize (Zea
mays ssp. mays) and wheat (Triticum aestivum), lysigenous aerenchyma is not generally formed under
aerobic conditions, but its formation is induced under oxygen-deficient conditions [4–7]. In roots
of the wetland plant rice (Oryza sativa), lysigenous aerenchyma is formed constitutively even under
aerobic conditions (constitutive aerenchyma formation), and its formation is further increased under
oxygen-deficient conditions (inducible aerenchyma formation) [4].

Plants 2020, 9, 610; doi:10.3390/plants9050610 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-6772-6506
http://dx.doi.org/10.3390/plants9050610
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/5/610?type=check_update&version=2


Plants 2020, 9, 610 2 of 11

Ethylene is involved in inducible aerenchyma formation in rice roots [4–7]. Under waterlogging, lower
diffusion rates of gases to the rhizosphere enhance the ethylene accumulation in roots [8,9]. Ethylene
is biosynthesized by the conversion of S-adenosylmethionine to 1-amino-cyclopropane-1-carboxylic
acid (ACC) by ACC synthase (ACS) and that of ACC to ethylene by ACC oxidase (ACO) [10]. During
inducible aerenchyma formation in rice roots, the expression levels of ACS1 and ACO5 are increased,
and they contribute to increased ethylene content in the roots [11]. Moreover, ethylene-induced
production of reactive oxygen species (ROS) by respiratory burst oxidase homolog H (RBOHH) is
involved in inducible aerenchyma formation in rice roots [12]. Ethylene and ROS signaling is also
involved in lysigenous aerenchyma formation in rice shoots [13].

Auxin signaling is mediated by a family of transcription factors called auxin response
factors (ARFs) [14]. ARF-dependent transcriptional regulation is repressed by the binding of
auxin/indole-3-acetic acid proteins (AUX/IAAs; IAAs) to ARFs [15]. The rice genome has 25 ARF
genes and 31 IAA genes [16,17]. IAA proteins have a conserved amino acid sequence motif (AUX/IAA
domain II), which is required for auxin-dependent proteolysis of the IAA proteins [18]. The auxin
signaling is suppressed in roots of the gain of function (dominant-negative) iaa13 mutant having
a single amino acid substitution in the AUX/IAA domain II of IAA13 protein [19]. Although until
recently it remained unclear what triggers constitutive aerenchyma formation in rice roots [6], we
demonstrated that constitutive aerenchyma formation in rice roots is regulated by the auxin signaling
through the functional analysis of the iaa13 mutant [20].

Exogenous treatment with ethylene stimulates aerenchyma formation in rice roots even under
aerobic conditions [21,22]. While inhibitors of ethylene perception or ethylene action reduce aerenchyma
formation in rice roots under oxygen-deficient conditions [12,21], they cannot abolish aerenchyma
formation under either oxygen-deficient or aerobic conditions [12,21,23]. On the other hand, an auxin
transport inhibitor completely blocks constitutive aerenchyma formation in rice roots under aerobic
conditions [20], implying that auxin signaling is required for the ethylene-dependent aerenchyma
formation. However, the relationship between auxin and ethylene during inducible aerenchyma
formation remains unclear.

The objective of this study was to test the possibility that auxin is involved in ethylene-dependent
aerenchyma formation. To this end, we used the iaa13 mutant in which the dominant negative IAA13
suppressed auxin signaling in the roots [19]. We examined the effect of enhancing ethylene signaling
on aerenchyma formation in roots of iaa13 and its wild type (WT; cv. Taichung 65; T65). We also
examined the effects of an auxin transport inhibitor on ethylene-dependent aerenchyma formation
and the expression levels of genes encoding ethylene biosynthesis enzymes in the roots of the WT.
Finally, we examined the effects of an ethylene precursor on aerenchyma formation in the presence of
the auxin transport inhibitor. Our results strongly suggest that auxin is involved in the regulation of
ethylene-dependent inducible aerenchyma formation in rice roots.

2. Results

2.1. Effect of Oxygen Deficiency on Aerenchyma Formation

During inducible aerenchyma formation under oxygen-deficient conditions, ethylene accumulation
increases in rice roots [11,12]. To test the effect of oxygen deficiency on aerenchyma formation in
iaa13, 20-d-old aerobically grown WT and iaa13 seedlings were transferred to aerated or stagnant
(deoxygenated) conditions, which mimic the changes in gas composition in waterlogged soils [24], for
48 h. After 48 h, root elongation of the WT was 12.9% less under stagnant conditions than under aerated
conditions, while root elongation of iaa13 was 18.2% less under stagnant conditions (Supplemental
Figure S1a). Subsequently, transverse sections along the adventitious roots were prepared (Figure 1a),
and the percentage of each cross-section occupied by aerenchyma was determined (Figure 1b,c).
Aerenchyma formation in the WT roots was significantly higher at 10, 20, 30, and 40 mm under stagnant
conditions than under aerated conditions (Figure 1a,b), whereas aerenchyma formation in the iaa13
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roots was significantly higher at all positions under stagnant conditions (Figure 1a,c). Aerenchyma
formation in the WT at 20, 30, 40, and 50 mm was significantly higher than that in iaa13 both under
aerated and stagnant conditions (Supplemental Figure S2a,b), suggesting that difference in aerenchyma
formation between the WT and iaa13 under stagnant conditions is largely affected by the reduced
constitutive aerenchyma formation in the iaa13 roots.
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both the WT and iaa13 by stagnant conditions (Supplemental Figure S1a). This suggests that ethylene 
accumulation, which is stimulated by ACC or oxygen deficiency, has similar effects on root 
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Figure 1. Aerenchyma formation under aerated or stagnant conditions. (a) Cross-sections at 30 mm
from the tips of adventitious roots of the wild-type (WT) and iaa13 mutant. Aerenchyma is indicated
by magenta arrowheads. Bars = 100 µm. (b,c) Percentages of aerenchyma in root cross-sectional area
at 10, 20, 30, 40, and 50 mm. Twenty-day-old aerobically grown WT (b) and iaa13 (c) seedlings were
further grown under aerated or stagnant conditions for 48 h. (b,c) Significant differences between the
conditions at p < 0.01 are denoted by ** (two-sample t-test). Boxplots show the median (horizontal
lines), 25th to 75th percentiles (edges of the boxes), minimum to maximum (edges of the whiskers), and
mean values (dots in the boxes) (n = 6).

2.2. Effect of an Ethylene Precursor on Aerenchyma Formation

Exogenously supplied ethylene stimulates aerenchyma formation in rice roots even under aerobic
conditions [21,22], and the treatment with an ethylene precursor ACC also induces its formation [11,23].
To further investigate the effect of ethylene on aerenchyma formation in the iaa13 roots, 20-d-old
aerobically grown WT and iaa13 seedlings were transferred to aerated conditions with or without 10
µM ACC. After 48 h, root elongation of the WT was 15.1% less under aerated conditions with ACC
than without ACC, while root elongation of iaa13 was 18.7% less under aerated conditions with ACC
(Supplemental Figure S1b). The suppression of root elongation in both the WT and iaa13 by ACC
treatment (Supplemental Figure S1b) was similar to the suppression of root elongation in both the WT
and iaa13 by stagnant conditions (Supplemental Figure S1a). This suggests that ethylene accumulation,
which is stimulated by ACC or oxygen deficiency, has similar effects on root elongation in the WT and
iaa13. As is the case with stagnant conditions, aerenchyma formation in the WT roots was significantly
higher at 10, 20, 30, and 40 mm from the root tips under aerated conditions with ACC than without
ACC (Figure 2a,b), whereas aerenchyma formation in the iaa13 roots was significantly higher at all
positions under aerated conditions with ACC (Figure 2a,c). Aerenchyma formation in the WT at 20, 30,
40 and 50 mm was significantly higher than that in iaa13 under aerated conditions without ACC, and
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aerenchyma formation in the WT at 20, 30, and 40 mm was significantly higher than that in iaa13 under
aerated conditions with ACC (Supplemental Figure S2c,d).
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Figure 2. Aerenchyma formation under aerated conditions with or without 1-aminocyclopropane-
1-carboxylic acid (ACC) treatment. (a) Cross-sections at 30 mm from the tips of adventitious roots
of the wild type (WT) and iaa13 mutant. Aerenchyma is indicated by magenta arrowheads. Bars =

100 µm. (b,c) Percentages of aerenchyma in root cross-sectional area at 10, 20, 30, 40, and 50 mm.
Twenty-day-old aerobically grown WT (b) and iaa13 (c) seedlings were further grown under aerated
conditions with or without 10 µM ACC for 48 h. (b,c) Significant differences between the conditions
at p < 0.05 and p < 0.01 are denoted by * and **, respectively (two-sample t-test). Boxplots show the
median (horizontal lines), 25th to 75th percentiles (edges of the boxes), minimum to maximum (edges
of the whiskers) and mean values (dots in the boxes) (n = 6).

2.3. Differences in Response to Oxygen Deficiency and ACC between the Wild Type and iaa13

Both oxygen deficiency (Figure 1c) and ACC (Figure 2c) increased aerenchyma formation in iaa13
roots, suggesting that ethylene-dependent inducible aerenchyma formation is not reduced in iaa13.
Interestingly, longitudinal patterns of the differences in aerenchyma formation between aerated and
stagnant conditions (Figure 3a), and between aerated conditions with and without ACC (Figure 3b),
were similar to each other. At 10 to 20 mm from the root tips, the differences were larger in the WT
roots than in iaa13 (Figure 3a,b). The differences were comparable at 30 mm and then became smaller in
the WT than those in iaa13 at 40 to 50 mm (Figure 3a,b). These results suggest that ethylene-dependent
aerenchyma formation in iaa13 is reduced at the apical part of the roots.
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Figure 3. Differences in aerenchyma formation between under aerated and stagnant conditions and
between aerated conditions with and without 1-aminocyclopropane-1-carboxylic acid (ACC) treatment.
(a,b) Differences in the percentages of aerenchyma (D Aerenchyma (%)) in root cross-sectional area at
10, 20, 30, 40, and 50 mm from the tips of adventitious roots of the wild type (WT) and iaa13 mutant.
The differences in the percentages of aerenchyma were calculated by the data obtained in Figures 1a
and 2b, respectively. (a,b) Significant differences between the genotypes at p < 0.05 and p < 0.01 are
denoted by * and **, respectively (two-sample t-test). Boxplots show the median (horizontal lines),
25th to 75th percentiles (edges of the boxes), minimum to maximum (edges of the whiskers) and mean
values (dots in the boxes) (n = 6).

2.4. Effect of an Auxin Transport Inhibitor on Aerenchyma Formation

To confirm the effect of auxin on the ethylene-dependent aerenchyma formation, we examined the
effect of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) on aerenchyma formation.
Twenty-day-old aerobically grown WT seedlings were transferred to aerated or stagnant conditions with
or without 0.5 µM NPA. After 48 h, root elongation of the WT was 19.0% less under aerated conditions
with NPA than without NPA, while root elongation of it was 17.4% less under stagnant conditions
with NPA (Supplemental Figure S1c). Root elongation in 48 h NPA treatment was 31.3 ± 3.4 mm under
aerated conditions and 26.8 ± 4.7 mm under stagnant conditions (Supplemental Figure S1c). These
results indicate that root cortical cells at 10 to 30 mm under aerated conditions and at 10 to 20 mm under
stagnant conditions are generated in the presence of NPA. Under aerated conditions, NPA completely
blocked aerenchyma formation at 10 to 30 mm from the root tips (Figure 4a,b). Interestingly, NPA also
completely blocked aerenchyma formation at 10 to 20 mm under stagnant conditions (Figure 4a,c).
These results strongly suggest that auxin is also involved in ethylene-dependent aerenchyma formation
in rice roots.

2.5. Effect of NPA on the Expression of Ethylene Biosynthesis Genes

To test the effect of the auxin transport inhibitor on the ethylene biosynthesis in rice roots, the
transcript levels of ethylene biosynthesis genes were analyzed by quantitative reverse transcription
(qRT)-PCR analysis. Previously, we showed that, among six ACS and seven ACO genes in the rice
genome, ACS1 and ACO5 had the highest transcript levels during inducible aerenchyma formation in
rice roots [23]. The transcript levels of ACS1 and ACO5 were significantly increased under stagnant
conditions and peaked at 15–25 mm from the root tips (Figure 5a,b), where aerenchyma formation
is highly induced (at 20 mm; Figure 4c). NPA significantly reduced the transcript level of ACS1 at
5–15 mm and 25–35 mm (Figure 5a), and it also reduced that of ACO5 at 15–25 mm (Figure 5b). By
contrast, under aerated conditions, the transcript levels of ACS1 and ACO5 with NPA treatment were
comparable to those without NPA treatment (Figure 5a,b). These results suggest that auxin contributes
to the transcriptional induction of the ACS1 and ACO5 genes under stagnant conditions.
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Figure 4. Aerenchyma formation under aerated or stagnant conditions with or without
N-1-naphthylphthalamic acid (NPA) treatment. (a) Cross-sections at 30 mm from the tips of adventitious
roots of the wild type (WT). Aerenchyma is indicated by magenta arrowheads. Bars = 100 µm. (b,c)
Percentages of aerenchyma in root cross-sectional area at 10, 20, 30, 40, and 50 mm. Twenty-day-old
aerobically grown WT seedlings were further grown under aerated (b) or stagnant (c) conditions with
or without 0.5 µM NPA for 48 h. (b,c) Significant differences between the conditions at p < 0.01 are
denoted by ** (two-sample t-test). Boxplots show the median (horizontal lines), 25th to 75th percentiles
(edges of the boxes), minimum to maximum (edges of the whiskers) and mean values (dots in the
boxes) (n = 6).
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aerated conditions with or without 0.5 μM NPA and/or 10 μM ACC. After 48 h, root elongation of 
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Figure 5. Expression of ethylene biosynthesis genes in adventitious roots under aerated or stagnant
conditions with or without N-1-naphthylphthalamic acid (NPA) treatment. Twenty-day-old aerobically
grown wild type (WT) seedlings were further grown under aerated or stagnant conditions with or
without 0.5 µM NPA for 48 h. Relative transcription levels of ACS1 (a) and ACO5 (b) at 5–15, 15–25,
and 25–35 mm from the tips of adventitious roots. The gene encoding transcription initiation factor
IIE (TFIIE) was used as a control. Different lowercase letters denote significant differences among the
conditions (p < 0.05, one-way ANOVA followed by Tukey’s test for multiple comparisons). Values are
means ± SD (n = 3).
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2.6. Effect of ACC on Aerenchyma Formation in the Presence of NPA

The reduction of ACS1 and ACO5 genes in the WT roots by the NPA treatment suggested that auxin
stimulates ethylene biosynthesis through the transcriptional regulation of ethylene biosynthesis genes.
To test this hypothesis, the WT roots were treated with the ethylene precursor ACC in the presence of
NPA. Twenty-day-old aerobically grown WT seedlings were transferred to aerated conditions with or
without 0.5 µM NPA and/or 10 µM ACC. After 48 h, root elongation of NPA treated seedlings (31.3
± 3.4 mm) was 25.4% less than that of untreated seedlings (42.0 ± 7.0 mm), while root elongation of
NPA- and ACC-treated seedlings (14.8 ± 4.1 mm) was 64.9% less than that of untreated seedlings
(Supplemental Figure S1d). NPA almost completely blocked aerenchyma formation at 10 to 30 mm
from the root tips (Figure 6a,b), whereas ACC restored its formation at 30, 40, and 50 mm (Figure 6a,b).
These results indicate that the prevention of ethylene-dependent aerenchyma formation by NPA is at
least partly canceled by adding the ethylene precursor ACC.
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Figure 6. Aerenchyma formation under aerated conditions with or without N-1-naphthylphthalamic
acid (NPA) or 1-aminocyclopropane-1-carboxylic acid (ACC) treatments. (a) Cross-sections at 30 mm
from the tips of adventitious roots of the wild type (WT). Aerenchyma is indicated by magenta
arrowheads. Bars = 100 µm. (b) Percentages of aerenchyma in root cross-sectional area at 10, 20, 30,
40, and 50 mm. Twenty-day-old aerobically grown WT seedlings were further grown under aerated
conditions without NPA and ACC, with 0.5 µM NPA and without ACC or with 0.5 µM NPA and 10 µM
ACC for 48 h. Different lowercase letters denote significant differences among the conditions (p < 0.05,
one-way ANOVA followed by Tukey’s test for multiple comparisons). Boxplots show the median
(horizontal lines), 25th to 75th percentiles (edges of the boxes), minimum to maximum (edges of the
whiskers), and mean values (dots in the boxes) (n = 4–6).

3. Discussion

The present results demonstrate that auxin is required for inducible aerenchyma formation in rice
roots. Aerenchyma formation in the WT and iaa13 roots was induced by the growth under stagnant
conditions (Figure 1b,c), and under aerated conditions with an ethylene precursor ACC treatment
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(Figure 2b,c). These results suggest that oxygen deficiency and ethylene can stimulate inducible
aerenchyma formation in iaa13. On the other hand, the mutated IAA13 (iaa13) gene is expressed
predominantly at the apical part of the iaa13 roots, and the dominant negative effect of the mutated
IAA13 protein on aerenchyma formation is restricted to the apical part of the roots [20]. Moreover, the
curly root phenotype in the rice pin2 mutant, which is caused by the asymmetric auxin distribution at
the apical part of the roots, is rescued in roots of the pin2 iaa13 double mutant [25]. These observations
suggest that the mutated IAA13 protein affects ethylene-dependent aerenchyma formation at the apical
part of the roots. Indeed, the difference in the levels of aerenchyma formation at 20 mm from the
root tips between aerated and stagnant conditions, and between aerated conditions with and without
ACC, was significantly lower in iaa13 than that in the WT (Figure 3a,b). These results suggest that
the AUX/IAA-mediated auxin signaling is involved in ethylene-dependent inducible aerenchyma
formation under oxygen-deficient conditions.

During constitutive aerenchyma formation in rice roots, the auxin transport inhibitor NPA
completely blocks the death of the cortical cells [20]. NPA also abolished aerenchyma formation at 10 to
20 mm from the root tips under stagnant conditions (Figure 4c). As the elongation of the WT roots with
NPA was ~25 mm under stagnant conditions (Supplemental Figure S1c), aerenchyma formation in the
cortex was completely blocked by NPA even under stagnant conditions. These results are interesting
because they showed that auxin is required not only for constitutive aerenchyma formation but also
for inducible aerenchyma formation in rice roots. In Arabidopsis roots, exogenous ACC treatment was
found to reduce lateral root formation by enhancing auxin level at the apical part of the roots, whereas
a knockout mutant of the ethylene-signaling gene ETHYLENE INSENSITIVE2 (EIN2) is defective in
these responses [26]. Similar observations were reported in the apical hook formation [27] and the
control of root gravitropism [28], all of which are directly regulated by the auxin signaling [29–31]. If
this is also the case for aerenchyma formation, it is reasonable that inhibition of auxin transport from
the shoots to root tips by NPA abolished aerenchyma formation under oxygen-deficient conditions
(Figure 4c).

On the other hand, another possibility is that auxin affects ethylene biosynthesis during inducible
aerenchyma formation in rice roots, as the NPA treatment reduced the expression levels of ACS1
and ACO5 (which have highest expression levels among the ACS and ACO homologs in rice roots
during inducible aerenchyma formation [23]) under stagnant conditions (Figure 5a,b). In Arabidopsis,
some ACS and ACO genes are transcriptionally activated by auxin [32–34]. In roots of maize,
exogenous natural auxin treatment increases aerenchyma formation, possibly by stimulating ethylene
biosynthesis [35]. In maize roots, auxin-dependent constitutive aerenchyma formation does not
generally occur under aerobic conditions [36–38], which suggests that exogenous auxin stimulates the
ethylene-dependent pathway [35]. These results further support the idea that auxin is involved in
ethylene-dependent aerenchyma formation through the control of ethylene biosynthesis. Indeed, the
exogenous treatment of ACC partly restored aerenchyma formation in the WT roots in the presence
of NPA (Figure 6b). Although the expression level of ACO5 was decreased by the NPA treatment
(Figure 5b), the exogenously supplied ACC could still enhance the ethylene production by the remaining
activity of ACOs, thereby stimulating ethylene-dependent inducible aerenchyma formation in the WT
roots (Figure 6b). Similar observations were previously obtained for a rice mutant, which has lower
expression levels of ACS1 and ACO5 in the roots [11,23]. So far, we cannot rule out the possibility that
the reduced root elongation rate by NPA and ACC affects the amounts of aerenchyma formation, as
the root elongation of the WT is severely reduced by the NPA and ACC treatments (Supplemental
Figure S1d). Further studies using the auxin and ethylene biosynthesis and/or signaling mutants
are needed to understand the molecular mechanisms underlying the relationship between auxin
and ethylene during inducible aerenchyma formation and how this relationship contributes to the
fine-tuning of lysigenous aerenchyma formation in rice roots under oxygen-deficient conditions.



Plants 2020, 9, 610 9 of 11

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Seeds of the rice iaa13 mutant [19] and its background wild type (cv. Taichung 65; T65) were
sterilized in 0.5% (v/v) sodium hypochlorite for 30 min and rinsed with deionized water. The seeds
were germinated on petri dishes filled up with deionized water and put in a growth chamber at 28 ◦C
under dark conditions. After 2 days, seeds were placed on a mesh floating on top of an aerated
quarter strength nutrient solution at 28 ◦C under 24 h light conditions (photosynthetically active
radiation, 200–250 µmol m−2 s−1) for 4 d. The composition of the nutrient solution is described by
Colmer et al. [22]. Seedlings (6-d-old) were then transferred to 5-L pots (8–12 plants per pot, 250 mm
height × 120 mm length × 180 mm width) containing aerated full-strength nutrient solution. After
7 days, 13-day-old rice plants were transferred newly prepared full-strength nutrient solution and
further grown for 7 days. Twenty-day-old seedlings were transferred to 5-L pots containing an aerated
full-strength nutrient solution or stagnant solution. Stagnant solution, which mimics waterlogged
soils [24], contained 0.1% (w/v) dissolved agar and was deoxygenated (dissolved O2, <0.5 mg L−1)
prior to use by flushing with N2 gas.

4.2. Chemical Treatments

For each treatment, 20-day-old rice seedlings were transferred to 2-L pots (4 plants per
pot, 250 mm height × 80 mm length × 120 mm width) containing nutrient solution. For the
1-aminocyclopropane-1-carboxylic acid (ACC) and N-1-naphthylphthalamic acid (NPA) treatments,
20-d-old aerobically grown rice seedlings were further grown in aerated or stagnant nutrient
solutions with or without 10 µM ACC and/or with or without 0.5 µM NPA for 48 h. The stock
solutions of ACC and NPA (both Sigma-Aldrich) were prepared to 100 mM in sterilized water and
dimethylformamide, respectively.

4.3. Anatomical Observations

Root cross-sections were prepared from 4-mm-long segments of adventitious roots. For analysis
of aerenchyma formation, root segments were cut at the indicated distances (±2 mm) from the
tips of adventitious roots. Cross-sections were prepared by hand sectioning with a razor blade.
The root cross-sections were photographed using an optical microscope (BX60; OLYMPUS) with
a charge-coupled device (CCD) camera (DP70; OLYMPUS). The percentages of each cross-section
occupied by aerenchyma were determined with ImageJ software (Ver. 1.43u, US National Institutes
of Health).

4.4. qRT-PCR Analysis

Root segments at the indicated distances from the tips of adventitious roots were ground in
liquid nitrogen. Total RNA was extracted from the frozen fixed tissues using a RNeasy Plant Mini
Kit (QIAGEN) according to the instructions of the manufacturer. Transcript levels were measured
using a StepOnePlus Real-Time PCR System (Applied Biosystems) and One Step SYBR PrimeScript
RT-PCR Kit II (Takara Bio) as described by Yamauchi et al. [12]. Transcript levels were normalized to
the transcript level of transcription initiation factor IIE (TFIIE). Primer sequences used for the qRT-PCR
are shown in Supplemental Table S1.

4.5. Statistical Analyses

Statistical differences between means were calculated using two-sample t-tests. For multiple
comparisons, data were analyzed by one-way ANOVA and post hoc Tukey’s test using SPSS Statistics
Version 25 (IBM Software).
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