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Abstract: Background: The seedling stage has received little attention in maize breeding to identify
genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight
(expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction
studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at
seedling stage. Methods: 109 genotyped-by-sequencing (GBS) elite maize inbreds were phenotyped
for HKW and planted in controlled conditions (16/8 day/night, 25 ◦C, 50% RH, 200 µMol/m2/s) in
trays filled with soil. Plants in control (C) were watered every two days, while watering was stopped
for 10 days in water withholding (WW). Fresh weight (FW), dry weight (DW), and dry matter content
(DMC) were measured. Results: Adding HKW as a covariate increased the power of detection of
associations in FW and DW by 44% and increased genomic prediction accuracy in C and decreased in
WW. Conclusions: Seed weight was effectively incorporated into association studies for biomass traits
in maize seedlings, whereas the incorporation into genomic predictions, particularly in water-stressed
plants, was not worthwhile.
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1. Introduction

Developing crop cultivars that can perform well in water-limited environments exacerbated by
climate change is an important breeding goal throughout the world. However, drought tolerance is
a complex trait demanding a search for additional traits and methods to identify drought tolerant
genotypes at different stages of growth. In maize, it is recognized that flowering time is the most
critical time for water stress to impact plant performance, although water deficit can damage the field
anytime throughout the season by which the seedling stage has received little attention.

Performance traits in maize seedlings are fresh and dry weight, as well as dry matter content of
plant biomass, which reliably reflect the effects of water deficit altering the plant’s morpho-physiological
status [1]. These traits, however, are assessed by destructive means underscoring the need for some
secondary traits which would have higher heritabilities, exhibit enough genetic variability, and are
genetically correlated with the performance traits. In this regard, seed size i.e., seed weight expressed
as hundred kernel weight (HKW) prior to planting could be an appropriate secondary trait for assessing
tolerance for water deficit at the seedling stage. The large seed offers the potential benefit of having
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larger amounts of available stored energy, while the smaller seed offers the benefit of higher nutrient
concentration [2]. However, studies investigating the impact of having larger seed on heterotrophic
growth under water-limited conditions are sparse although seed size/weight determines the plant’s
early vigor [3] and early growth potential [4].

In recent years, genome-wide association studies (GWAS) were developed into a valuable approach
for identifying trait-marker associations overcoming several limitations of biparental quantitative trait
loci (QTL) mapping. GWAS provides higher resolution of QTL mapping because it assays a wide range
of natural variations resulting from many historical recombination events [5]. Genomic prediction
represents a step further from GWAS, and aims to fit all the marker data into a model without prior
assessment of the significance of their associations with the phenotype [6]. However, GWAS and
genomic prediction methods can be seen as complementary rather than exclusive considering their
different aims. The aim of this study is to evaluate the incorporation of seed weight as a covariate into
genomic predictions and association studies for three biomass traits in a panel of elite maize inbred
lines challenged by water withholding at the end of a seedling stage.

2. Results

2.1. Genetic Structure and Linkage Disequilibrium

According to the ∆K method for determination of the number of founder populations (K) based
on genetic markers, two genetic subgroups were detected in the STRUCTURE analysis (Figure 1a).
In alignment with the values of population membership coefficients (Q) of the reference lines B73
and Mo17, the two subgroups were designated Stiff Stalk (SS) and non-Stiff Stalk (NS) for brevity.
Principal component (PC) analysis indicated higher diversity in NS compared to the SS subgroup
(Figure 1b). The Q matrix for all 109 lines used in this study is available in Supplementary Table S1.
Linkage disequilibrium decayed across all 10 chromosomes below the arbitrary threshold of R2 < 0.2 at
120 kbp average distance between pairs of markers (Figure 1c).
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Figure 1. Genetic properties of the 109 genotyped-by-sequencing (GBS) genotyped maize inbred lines:
(a) Q matrix from STRUCTURE analysis assigning the inbred lines to two groups: Stiff Stalk (SS) and
Non-Stiff Stalk (NS); (b) results of principal component (PC) analysis using 40777 SNPs—marked green
and blue are the lines with Q > 0.9 for SS and NS, respectively; (c) linkage disequilibrium decay across
all chromosomes.
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2.2. Variance Components, Heritabilities, and Responses to Water Withholding

The significant effects of WW treatment were detected for all three examined traits (Table 1).
Effects of water withdrawal manifested as significant 41.3% reduction in mean fresh weight (FW), 19.5%
reduction in mean dry weight (DW), and 39.7% increase in dry matter content (DMC) relative to control
(C). High estimates of genetic variance were observed for all examined traits (Table 1). Interestingly,
while the genetic variances of FW and DW have decreased in WW treatment, the genetic variance of
DMC increased 4.4 times in WW. A larger estimate of genotype-treatment interaction (72% of σ2

G)
was detected for DMC compared to FW and DW in the combined analysis. Very high repeatabilities
and heritabilities were estimated for all examined traits. The high repeatability values of HKW, FW,
and DMC were obtained because of low estimates of error variances in addition to the high estimated
values of σ2

G. Heritability estimates of FW, DW, and DMC across both treatments were expectedly
lower because of correction with the genotype-treatment variance.

Table 1. Means ± standard deviations, ranges, variance components, repeatabilities, and heritabilities
for hundred kernel weight (HKW) in grams and biomass traits fresh weight (FW) in grams, dry
weight (DW) in milligrams, and dry matter content (DMC) as % of FW in control (C) and water
withholding (WW) treatments. The values calculated within treatments are repeatabilities, while the
values calculated across treatments represent heritabilities. Repeatability of HKW was calculated for
year of seed multiplication (2018).

Trait Treatment Mean ± SD a Range σ2
G σ2

GxT σ2
e H2

HKW (g) – 24.91 ± 4.07 14.68–38.40 14.79 – 1.90 0.96

FW (g) C 925.8 ± 267.7 a 314.4–1492.2 49868 – 19741 0.88

WW 540.6 ± 181.8 b 114.1–1002.2 21542 – 10630 0.86

DW (mg) C 60.29 ± 19.71 a 13.78–106.07 265.00 – 124.10 0.86

WW 48.57 ± 17.45 b 11.10–87.62 199.00 – 107.40 0.85

DMC (%) C 6.51 ± 1.05 b 3.99–10.26 0.55 – 0.50 0.77

WW 9.10 ± 1.86 a 3.96–13.16 2.43 – 1.05 0.87

FW (g) Combined 733.2 ± 297.4 114.1–1492.2 27431 8295 15135 0.80

DW (mg) Combined 54.44 ± 19.51 11.10–106.07 210.72 21.11 116.16 0.88

DMC (%) Combined 7.80 ± 1.98 3.96–13.16 0.86 0.63 0.78 0.66
a different letters denote significant differences between treatments according to LSD test at α = 0.05. b H2 represents
repeatability of HKW and biomass traits within treatments, and heritability in the combined analysis.

Responses of the two genetic subgroups (SS and NS) of inbreds were further analyzed to identify
the sources of favorable alleles for responses to water withholding in this stage (Figure 2). Inbreds
were split to SS and NS groups according to their respective results from STRUCTURE analysis.
Only responses of lines with ancestry coefficient > 0.9 were analyzed in this regard. Similar responses
to WW were observed in both groups. Interestingly, lines PHW65 and LH38 from NS pool with related
pedigrees showed mild increase in FW values in WW, accompanied with increase in DW. Increase
in DW and FW was also observed in three related lines LH132, LH195, and LH205 from the SS pool.
The largest relative increase in DMC was observed in line C103 (3.99% in C, 9.84% in WW).



Plants 2020, 9, 275 4 of 18

Strong phenotypic correlations were observed for FW and DW between treatments, while
correlation of DMC between the treatments was moderate (Table 2, upper triangle). Correlations
between FW and DW were strong to very strong within and between C and WW. Weak to moderate
correlation was observed between DW and DMC across the treatments, while there were no significant
correlations detected for FW and HKW with DMC. Weak to moderate correlations were detected for FW
and DW with HKW in both C and WW. Correlations between marker effects of traits calculated using
Bayesian ridge regression (BRR) (Table 2, lower triangle) clearly resembled phenotypic correlations,
which reflects the high estimates of genetic variances for the traits within the treatments and low
error estimates (Table 1). Very low estimates of correlation of marker effects between DMC and FW
indicated that there were no shared significantly associated marker loci for these traits. Correlation of
marker effects between FW and DW was mildly stronger in WW treatment. Correlation of DMC across
the treatments was moderate. Weak correlations between FW, and DW in WW with DMC indicated
different mechanisms in genetic regulation of these traits.Plants 2020, 9, x FOR PEER REVIEW 4 of 18 
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Figure 2. Relative changes in fresh weight (FW), dry weight (DW), and dry matter content (DMC) in
water withholding (WW) treatment compared to control (C) of inbred lines with Q > 0.9 belonging to
SS or NS genetic group (Figure 1a) along with hundred kernel weight (2nd y axis).
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Table 2. Pearson’s correlation coefficients (upper triangle) among fresh weight (FW), dry weight (DW),
dry matter content (DMC) between control and water withholding (ww) treatments and with hundred
kernel weight (HKW). Lower triangle represents Pearson’s correlations between BRR estimates of
marker effects between traits. ** represents significance at α = 0.01, *** represents significance at α =

0.001. All correlations among BRR marker effects are significant at α = 0.001.

FW FWww DW DWww DMC DMCww HKW

FW – 0.729 *** 0.921 *** 0.749 *** 0.126 0.117 0.405 ***

FWww 0.792 – 0.632 *** 0.827 *** −0.001 −0.175 0.309 **

DW 0.918 0.681 – 0.786 *** 0.471 *** 0.336 *** 0.420 ***

DWww 0.825 0.827 0.856 – 0.325 *** 0.381 *** 0.287 **

DMC 0.125 0.053 0.469 0.375 – 0.610 *** 0.102

DMCww 0.252 −0.044 0.479 0.493 0.634 – 0.015

HKW 0.399 0.351 0.367 0.249 −0.043 −0.067 –

2.3. Allelic Effects and Candidate Genes

According to the absence of significant correlations between HKW and DMC (Table 2), HKW
was not used as covariate in association analysis for this trait. Inspection of quantile-quantile (QQ)
plots showed there were no associations crossing the Bonferroni threshold of 5.45 for FW in C and
WW and DW in C in GWAS using mixed linear model with covariates population membership (Q),
kinship (K) and HKW (MLM + Q + K + HKW), and DMC in WW in MLM + Q+ K without HKW
association mapping procedure. Positive deviations from the expected distribution of –log(P) values
of associations were observed above value of 3 for DMC in C and above 4 for DW in WW. The total
number of loci crossing the arbitrary –log(P) threshold of 4 was 34 (Figure 3), while only 4 loci crossed
the calculated Bonferroni threshold of 5.45, single locus for DW in WW and three loci for DMC in C
(Figure 3d,e). Two SNPs crossing the arbitrary threshold of 4 were detected for FW in C, and three
in WW. For DW, larger number of SNPs crossing the threshold of 4 was detected in C (5) compared
to WW (3). Totally 18 loci were detected for DMC in C, and only three in C. Single pleiotropic locus
was detected affecting FW in WW and DW in C and WW on chromosome 2, position 17.341 Mbp.
This association also had an effect on FW in C, but did not cross the arbitrary threshold of 4 (Figure 3,
marked in green, p = 0.000325). Interestingly, the effects of this loci were stronger in WW compared to
C. An association on chromosome 6, position 101.971 Mbp detected for DMC in C was also detected in
WW. Inclusion of HKW as a covariate in FW and DW association analysis yielded 44 percent increase in
power of detection as 13 compared to 9 loci were detected (Table 3). The detected loci were distributed
over 7 of 10 chromosomes (1, 2, 3, 6, 7, 8, 9). Variance explained by the detected loci (R2) ranged from
4.35 to 10.06% (Table 3).



Plants 2020, 9, 275 6 of 18

Plants 2020, 9, x FOR PEER REVIEW 6 of 18 

 

Figure 3. The Manhattan and the respective quantile-quantile (Q-Q) plots of the –log(P) values of 

the associations from MLM+Q+K+HKW analysis for fresh weight in control (a), fresh weight in 

water withholding treatment (b), dry weight in control (c), dry weight in water withholding 

treatment (d) and MLM+Q+K for dry matter content in control (e) and dry matter content in water 

withholding treatment (f). Blue line represents arbitrary threshold value of 4, while the red line 

represents the Bonferroni corrected threshold value of 5.45. Marked in green in plots (a – d) is the 

SNP S10_139734834 on chromosome 2, associated with Calmodulin binding protein. 

Table 3. SNPs crossing arbitrary threshold of 4 associated with biomass traits fresh weight in grams 

(FW), dry weight in milligrams (DW), and dry matter content as % of FW (DMC) in control (C) and 

water withholding (WW) treatments. In bold are the SNPs crossing Bonferroni corrected threshold 

value for significance at α = 0.05. Shown are the results for MLM + Q + K + HKW analysis for DW and 

FW and MLM + Q + K for DMC. Results of MLM + Q + K without HKW for FW and DW are available 

as Supplementary Table S2. 

Trait Treatment Marker Chr. Pos.(Mbp) -log(p) R2,a SNP - HKWb 

FW c S2_212536183 2 219.349 4.003 4.35 C/T No 

FW c S9_108404061 9 110.992 4.728 5.32 A/G No 

FW ww S1_12465724 1 12.660 4.011 4.61 C/T No 
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Figure 3. The Manhattan and the respective quantile-quantile (Q-Q) plots of the –log(P) values of the
associations from MLM+Q+K+HKW analysis for fresh weight in control (a), fresh weight in water
withholding treatment (b), dry weight in control (c), dry weight in water withholding treatment (d)
and MLM+Q+K for dry matter content in control (e) and dry matter content in water withholding
treatment (f). Blue line represents arbitrary threshold value of 4, while the red line represents the
Bonferroni corrected threshold value of 5.45. Marked in green in plots (a–d) is the SNP S10_139734834
on chromosome 2, associated with Calmodulin binding protein.
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Table 3. SNPs crossing arbitrary threshold of 4 associated with biomass traits fresh weight in grams
(FW), dry weight in milligrams (DW), and dry matter content as % of FW (DMC) in control (C) and
water withholding (WW) treatments. In bold are the SNPs crossing Bonferroni corrected threshold
value for significance at α = 0.05. Shown are the results for MLM + Q + K + HKW analysis for DW and
FW and MLM + Q + K for DMC. Results of MLM + Q + K without HKW for FW and DW are available
as Supplementary Table S2.

Trait Treatment Marker Chr. Pos.(Mbp) -log(p) R2,a SNP -HKW b

FW c S2_212536183 2 219.349 4.003 4.35 C/T No

FW c S9_108404061 9 110.992 4.728 5.32 A/G No

FW ww S1_12465724 1 12.660 4.011 4.61 C/T No

FW ww S10_139734834 2 17.341 4.938 5.67 C/A Yes

FW ww S2_207355968 2 214.210 4.187 5.03 T/C No

DW c S10_139734834 2 17.341 4.643 5.29 C/A No

DW c S2_212536183 2 219.349 4.289 4.75 C/T No

DW c S8_171512464 8 176.755 4.044 4.51 C/T No

DW c S9_108404061 9 110.992 4.906 5.61 A/G No

DW c S9_149744969 9 152.879 4.029 4.92 G/C No

DW ww S10_139734834 2 17.341 5.886 7.01 C/A Yes

DW ww S2_21818202 2 23.110 4.449 5.31 G/A No

DW ww S9_14021178 9 13.709 4.210 5.14 T/C Yes

DMC c S1_8741690 1 8.775 6.584 9.33 C/G –

DMC c S1_34204183 1 34.541 4.516 5.93 C/T –

DMC c S1_37203165 1 37.582 4.232 5.11 A/G –

DMC c S1_37207054 1 37.586 4.518 5.55 A/G –

DMC c S1_37215825 1 37.594 4.284 5.13 A/T –

DMC c S1_101643332 1 103.985 4.208 5.17 C/T –

DMC c S1_173422581 1 175.378 4.03 4.91 T/C –

DMC c S1_295988910 1 301.48 4.401 5.31 G/A –

DMC c S2_2805417 2 2.802 4.068 4.78 T/C –

DMC c S2_6191374 2 6.146 4.456 5.35 C/T –

DMC c S2_7183324 2 7.092 4.207 5.11 G/A –

DMC c S3_189463222 3 192.36 4.461 5.35 C/G –

DMC c S6_127195 6 0.177 4.165 5.18 C/T –

DMC c S6_370986 6 0.392 4.096 4.83 C/T –

DMC c S6_8833007 6 9.248 6.596 9.07 G/C –

DMC c S6_95602988 6 98.45 6.342 8.41 G/C –

DMC c S6_99136681 6 101.971 4.948 6.36 G/A –

DMC c S7_176216182 7 181.799 4.097 4.82 C/A –

DMC ww S1_168415551 1 170.174 4.081 4.89 A/G –

DMC ww S6_99127885 6 101.962 4.403 5.66 A/C –

DMC ww S6_130004982 6 134.089 4.300 5.24 C/T –
a R2 represents percentage of variance explained by the SNP. b Yes marks if the association was also detected in
MLM+Q+K without HKW as covariate (Supplementary Table S2).

2.4. Genomic Prediction Models

Genomic prediction models with and without phenotypic covariate HKW were set to elucidate
the role of HKW in more precisely accounting for genotypic effects on biomass traits. All assessed
predictive abilities were significantly different from zero. Highest predictive ability of the genomic
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prediction model without covariates was observed for trait DMC in WW treatment (0.62), while the
lowest was for FW in C (0.49). Adding HKW as covariate significantly increased the predictive abilities
for FW and DW in C. Contrarily, adding HKW as covariate significantly decreased the predictive
abilities for FW and DW in WW. Decrease in predictive abilities when HKW was used as covariate
was also noted in both C and WW for trait DMC, reflecting the absence of significant correlations
between these traits (Figure 4, Table 2). The results of predictive abilities were further corroborated
with corresponding values of root mean square error of predictions (RMSEP, Supplementary Table S3).Plants 2020, 9, x FOR PEER REVIEW 8 of 18 
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Figure 4. Predictive abilities of genomic prediction models with and without hundred kernel weight
(HKW) as a linear covariate for fresh weight (FW), dry weight (DW), and dry matter content (DMC).
Dark lines within the boxplots represent the median, and the dark dots represent means of 500 random
folds in k-fold cross validation. Gray dots are the predictive abilities from each fold. Differences
between mean predictive abilities for each trait with and without covariate are significantly different at
α = 0.05.

3. Discussion

The aim of this study is to evaluate the incorporation of seed weight as a covariate into genomic
predictions and association studies for three biomass traits in panel of elite maize inbred lines challenged
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by water withholding at the seedling stage. HKW is a commonly available information in most breeding
programs and it is known to affect early plant growth and development [7].

3.1. Genetic Structure

The results of PC analysis in this study were similar to those of Beckett et al. [8] in a study of
genetic diversity in ex-PVP germplasm. In their study, STRUCTURE method combined with ∆K
population number selection procedure was able to differentiate three independent clusters, namely
SS, NS, and Iodent, while in our study Iodent, although visually present, was not empirically different
from NS pool because of insufficient number of inbreds with unmixed origin from two putative NS
subgroups. Linkage disequilibrium (LD) was higher in current study compared to large diversity
panels [8,9] but comparable to recent reports with the medium sized maize diversity panels [10,11].
LD is the utmost factor determining the precision of GWAS. A significant marker-trait association thus
means that the causative polymorphism of the trait variation resides within the estimated LD region.
Another important implication of LD is that its extent determines the number of genetic markers
required to obtain maximum resolution of association analysis [12].

3.2. Responses to Water Withholding

Fresh and dry matter accumulation in early vegetative stages of growth is heavily influenced by
water deficit, and phenotyping for these traits in diverse germplasm panels under water deficit is one
of the first steps in understanding the tolerance to water deficit [13]. Avramova et al. [14] showed that
biomass traits such as FW, DW, and DMC are valuable in monitoring responses to water deficit, and
can feasibly differentiate even the slight differences in responses of different cultivars. The drought
treatment in their study was more severe (14 day WW) compared to 10 days of WW in the current
study and the plants were analyzed in different stages compared to this present study (V4 compared
to V3) which also changed the scale of responses in all traits. Ge et al. [15] also used these traits
for phenotyping two maize inbred lines differing in tolerance to water deficit. It was shown that
differences in responses are expected very shortly after the water withholding. Most interestingly, two
inbreds from NS pool and two from SS pool in our study considerably increased their DW in WW
treatment (>10%). Such responses to WW by increase in DW were reported in literature for drought
resistant maize inbred lines [16,17]. The accumulation of DW in WW might have been induced by the
accumulation of osmolytes such as proline [18].

The choice of mixed modelling approach in variance components analysis was supported by
the results of van Eeuwijk et al. [19] that more and more researchers use mixed models to precisely
address the GxE variance. The GxT variance in our study is also a form of GxE variance, although
with strictly specified conditions of E and changes compared to reference environment (C). The very
high repeatabilities of traits examined in this study were expected for experiments set in the controlled
conditions addressing the quantitative traits. The low estimates of GxT interaction for FW and DW were
accompanied by high levels of plasticity in reactions of examined genotypes for these traits. Plasticity
was detected through the correlation analysis in which performances of FW and DW in C were strongly
correlated to performances in WW. In contrast, considerable proportion of GxT variance for DMC was
accompanied by lower correlation estimates for performance between treatments which indicated the
presence of different mechanisms of coping with water deficit, and divergence in responses of different
genotypes to stress [20]. The interaction between genotype and watering regime is usually caused by
different sensitivities of inbreds to WW treatment [21] thus causing crossover of genotype reactions.
These results show that DMC might be more valuable in breeding compared to FW and DW as it
allows more sensitivity in discrimination of tolerant and sensitive genotypes to WW. Notably, DMC
is calculated only from these two parameters (FW and DW), but it is an inverse to the current water
content of plant shoot [14,22]. In field environments, lower heritability values are expected with higher
divergence in reactions due to the large number of uncontrolled conditions occurring throughout the
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growing period. From that perspective, the repeatabilities and heritabilities in controlled conditions
are overestimated for quantitative traits.

Line performance for early vigor traits is moderately genetically correlated to general combining
ability [23] for that trait, so selection for early biomass accumulation should to certain extent reflect
in hybrid performance. Traits FW and DW were moderately correlated to HKW in control which
was supported by the findings that early vigor of maize plants is influenced by kernel weight [3,24].
However, the correlations dropped in WW treatment as higher kernel weight appears to offer less
advantage when water is sparse [25], as the translocation of nutrients from kernel to shoot is limited.
In water deficit genotypic effects on biomass traits become more pronounced, and the selection for
early drought tolerance in maize inbred lines should be based on genetic information rather than on
kernel weight. However, since the relationship between biomass accumulation and kernel weight
is well established [3,4,24] and it represents an a priori available information in many breeding
programs. HKW was integrated as covariate into the association analysis of biomass traits FW and
DW, while DMC was analyzed with no HKW as covariate due to the absence of significant correlations.
The appropriate selection of covariates that are correlated with phenotypes of interest can increase the
power of association detection more than two-fold [26].

3.3. Allelic Effects and Candidate Genes

In correlation analysis between marker effects of traits (Table 2, lower triangle) according to the
studies of Ziyomo and Bernardo [27] and Galic et al. [28], it was shown that marker effects for FW in C
explain ~56% of variance for FW in WW. The marker effects for DW in C explain ~63% variance for DW
in WW, while the marker effects for DMC in C explain only 37% variance of marker effects for DMC in
WW. Interestingly, marker effects for FW in WW treatment explain ~68% variance of marker effects
for DW in WW treatment. It is expected that FW and DW are highly correlated, as accumulation of
osmotically active compounds into the aboveground plant parts is a strategy contributing to increase
in both FW and DW in water-limited conditions [14]. The high estimates of correlations between the
marker effects for traits between treatments show there is much of the overlap between the allelic
effects for these responses, although small number of loci affecting same traits between treatments was
detected in GWAS. This is partially explained by the findings that the allelic effects for quantitative
traits are highly sensitive to environmental changes that could be attributed to different scenarios [29].
Certain alleles affecting quantitative traits can decrease in effect size in conditions when water is
in deficit [30], which could be the reason for the small number of significant allelic effects between
treatments despite the high correlations between the marker effects. In addition to that, the limiting
factor in detection of loci is still relatively strict threshold of 4 applied in association analysis compared
to arbitrary thresholds found in literature.

The GWAS analyses of responses to relevant stresses using phenotypes such as plant’s biomass
provide information not only valuable in that particular regard, but also in wider perspective of
plant stress responses, as the plant genetic mechanisms of coping with different stresses are similar
to certain extent [31]. The search for candidate genes was limited to loci that crossed the Bonferroni
threshold. Considering genes located within the estimated 240 kbp window (± estimated linkage
disequilibrium block of 120 kbp) from loci crossing Bonferroni threshold, 11 candidate genes were
counted for the association on chromosome 1, position 8.775 Mbp, 5 for association affecting FW and
DW on chromosome 2, position 17.341 Mb, 1 candidate gene for the association on chromosome 6,
position 9.248 Mbp, and 7 candidates for the association on chromosome 6, position 98.450 Mbp.

The use of phenotypic covariates in association analyses can help gain the statistical power by
reduction of noise thus compensating for small sample sizes [26]. Hundred kernel weight is a good
covariate in association studies, as it helps differentiate the true genetic from maternal effects, and is as
such regularly used in breeding research [32,33]. In our study, not only that the power of association
detection was increased, as seen through increase in number of detected loci for FW and DW by 44%
(Table 3), but also, some loci have changed positions.
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The association on chromosome 1, position 8.775 Mbp, affecting DMC in C is found near the
putative cellulose synthase. According to [34,35], this gene is expressed mostly in the topmost leaves
of maize plants at three-leaf stage, affecting the cellulose biosynthesis in young plants. This gene
plays a key role in the determination of plant architecture, determining the organ size [36]. Cellulose is
the building material of cell walls and vascular bundles, and the variations in cellulose synthesis are
expected to have effect on dry matter accumulation. Interestingly, the association on chromosome 2,
position 17.341 Mbp was found to affect biomass related traits FW and DW in both C and WW treatment,
although the effect on FW in C was below the arbitrary threshold of 4, but >3 (Figure 3, marked in
green). The associated SNP was located within the position of gene coding for calmodulin-binding
protein known to be expressed in SAM and topmost leaf during the three-leaf phase [34,35]. Calcium
cell signaling is one of the key plant mechanisms in both tissue specification, as well as sensing of
the environmental changes [37], probably causing the increase in effects of this association in WW
treatment. Near the association on chromosome 6, position 9.248, affecting the DMC in C, putative
gene Zm00001d035195 is found. The expression of this gene is linked to germination and early plant
development, and it belongs to LSD family of transcription factors (TFs), probably zinc finger protein
(LSD1) [38]. The function of LSD1 might affect the dry matter content in young maize plants, as
it was shown to regulate the tissue differentiation in young plants of Oryza sativa and promotes
callus differentiation [39]. The gene magnesium transporter 2 (mgt2) is found in proximity of the
association on chromosome 6, position 98.450, affecting DMC in C. The gene mgt2 controls partitioning
of magnesium in developing tissues, and magnesium loading in shoot effects on plant growth are
manifold. Growth maintenance requires magnesium translocation [40] first for the utilization in
chlorophyll synthesis [41,42], and second for maintenance of osmotic balance, as Mg2+ ions are
osmotically highly active. Control of vacuolar magnesium contents in developing tissues is a highly
important process for maintenance of plant growth affected by many cell-specific processes [43].

We speculated that since the relationship between biomass accumulation and kernel weight is
established [3,4,24] and it improves the power of association analysis, adding HKW as covariate might
also increase the accuracy of genomic predictions. The increase in prediction accuracies in C and
decrease in WW confirmed that higher seed weight might facilitate the increase of prediction accuracy
given that the water is not in deficit. This was also confirmed in phenotypic studies in maize [44],
peanut [45], and soybean [46]. However, in the current study, genomic prediction was shown to be
efficient in predicting early biomass accumulation, with accuracies somewhat lower, but comparable
to those obtained for biomass accumulation in the later growth stages [47]. Contrarily, Brauner et
al. [48] reported comparable prediction accuracies for early vigor when the genomic predictions were
performed in lines combined from several genetic pools. Significant differences between means of
prediction accuracies obtained with and without HKW as covariate confirmed what was expected after
the correlation analysis. The contribution of HKW in biomass accumulation lowers in water deficit
which further reflects in lowering of predictive abilities. Adding HKW as a covariate in prediction
analysis of DMC decreased the predictive abilities in both C and WW, corroborating the importance of
correlation analysis in selection of covariates.

4. Conclusions

HKW was weakly to moderately correlated with FW and DW performance in C, while correlations
dropped in WW treatment meaning advantages of having larger kernel lower when the water is sparse
at this stage. This was corroborated with finding that HKW as a covariate contributes more to predictive
abilities of genomic predictions in control than in water withholding. In association analysis for FW and
DW adding HKW as a covariate yielded 44% increase in power of detection compared to MLM+Q+K
mapping procedure. Four associations were detected passing the Bonferroni threshold. They were
mapped in genetically rich regions and their potential value as breeding targets need to be further
elucidated. In genomic prediction analysis, adding HKW as covariate has significantly increased the
prediction abilities but only in C, while in WW, predictive abilities were lowered. This was in line with
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the findings from correlation analysis that the advantage of having a larger seed lowers when water is
sparse. The use of biomass traits in breeding for tolerance to water withholding in early vegetative
stages of growth appears to offer cost-effective, data-rich approach, but more studies are needed
linking these traits to other physiological processes thus facilitating the build-up of understanding
the processes involved in abiotic stress responses. When analyzing the quantitative traits, use of a
priori available covariates is advised. Although their incorporation into the genomic prediction models
might not improve the prediction accuracy in stressful conditions, they might serve as a good tool
facilitating the more precise dissection of various effects on complex phenotypes.

5. Materials and Methods

5.1. Plant Material and Experimental Design

The seeds of 154 maize inbred lines with expired PVP certificates were obtained from USA
Department of Agriculture NCRPIS (Ames, Iowa). Seeds were planted in growing season 2018 and
selfed to obtain sufficient quantity of seeds for experiments. Selfing in sufficient quantity was successful
for totally 109 inbred lines. The list of 109 inbred lines with data from patents and repositories is
available in Supplementary Table S1.

Experiments were set in growth chamber (25 ◦C, RH = 50%, 16/8 day/night, 200 µmol/m2/s) in
trays (510 × 350 × 200 mm). Each tray was filled with 20 l of soil (pH (CaCl3) = 5.7, N (NH4

+ + NO3
−)

= 70 mg/L, P (P2O5) = 50 mg/L, K (K2O) = 90 mg/L, EC = 40 mS/m) and divided to 15 rows with 7
planting spaces (50 × 35 mm) each. The experiment was set with single water withholding treatment
(WW) and control (C) in three replicates. In every tray, 15 genotypes were planted in single row (7
plants). Three trays of each set of 15 genotypes were considered a single replicate. Trays in the growth
room were randomly shuffled every day before the lights turned on. Watering regime was optimized
in preliminary trials to obtain 50% reduction in fresh weight per plant in WW treatment compared
to C. Plants in C were watered continuously across the experiment every two days with spray bottle
with 8 mL of tap water per plant. Plants in WW were watered in planting with full dose (8 mL)
and continuously thereafter until the fourth day when the watering was stopped. Plant emergence
was observed on fourth day, and only plants that emerged on the fourth day were further analyzed
(>95%). After that, water was withheld to 14th day (10-day old plantlets) when the aboveground parts
of three equally developed plants per genotype in each replicate were harvested and prepared for
further analysis. Plants were weighed on a precise four decimal scale to obtain fresh weight (FW)
and the 1 g samples were chopped, put in previously weighed 10 mL Falcon tubes and weighed
together. Samples were oven-dried at 80 ◦C, and weighed. Dry weight (DW) was calculated from
product of FW and weight of a dried sample/weight of a fresh sample. Dry matter content (DMC) was
calculated as (DW/FW) x 100. Additionally, the hundred kernel weight (HKW) was estimated from five
self-pollinated ears. Self-pollination was carried out in the growing season of 2018 in a water-managed
field. Each inbred line was sown in a two-row plot of 7 m2 and ten plants were self-pollinated. Ears of
the self-pollinated plants were dried to 10% moisture content prior to shelling. Five well pollinated
ears were selected, and their kernels were bulked. Five 100-kernel subsamples were taken from the
bulk, and hundred kernel weight (HKW) was estimated by weighing.

5.2. Phenotypic Data Analysis

Variance components of the phenotypic data were analyzed with mixed linear model in sommer
library [49] using R programming language [50]. Unstructured error variance was assumed. Mixed
model was estimated as:

yi jk = µ+ treatmenti + genotype j + REPk(i) + gxti j + εi jk

where yi jk represents the k-th observation of the j-th genotype in the i-th treatment,µ represents the grand
mean, treatmenti represents the effect of the i-th treatment (i = 1, 2), genotype j represents the genotypic
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effect ( j = 1 . . . g), REPk(i) represents the effect of the k-th replicate (k = 1, 2, 3) within treatment i, gxti j
represents the genotype by treatment interaction, and εi jk is the error term. Repeatabilities within the
treatments were estimated from variance components as H2 = σ2

G/(σ2
G + σ2

e/r), while the heritability
of each trait was estimated as H2 = σ2

G/(σ2
G + σ2

GxT/t + σ2
e/tr) where G represents the genotypic

effects, GxT is genotype-treatment interaction, e is error, and t and r are the numbers of treatments
and replicates respectively. Fisher’s LSD test was performed using the R/agricolae package [51] and
generalized linear model with treatment, genotype, and replicate main-effects and genotype-treatment
interaction using Gaussian family and default link function.

5.3. GBS Data and Filtering

The GBS genotyping was performed at Cornell University [9] according to protocol developed by
Elshire et al. [52] and the data were obtained from PANZEA organization [53] repository. The original
dataset contained 945,574 SNPs that were annotated, partially imputed, and assigned to chromosomes.
Filtering of the low quality SNPs was performed with Tassel software [54] version 5.2.5. Namely,
maximum of heterozygotes was set to 0%, minor allele frequency to 2.5%, and maximum of missing data
per position to 5%. After filtering there were 229,680 SNPs left. To avoid redundancy of SNPs in similar
positions, thinning to 1 SNP per 1000 bp was carried out leaving totally 40,777 high quality markers.

5.4. Genetic Structure Analysis and Linkage Disequilibrium

The genetic structure present in the collection was determined with software STRUCTURE,
version 2.3.4 [55]. Random sample of 10,000 SNPs was taken as the input for genetic structure analysis.
Analysis was carried out with 10,000 burn-in cycles and 50,000 MCMC runs and population admixture
assumed. STRUCTURE analysis was set with ten populations (K = 10) and four runs were carried
out for each value of K. The best number of K was 2 and it was chosen according to ∆K method [56]
using CLUMPAK software [57]. The germplasm set was divided into groups corresponding to Stiff
Stalk (SS) and Non-Stiff Stalk (NS) derived germplasm. Additional run with 50,000 burn-in cycles and
100,000 runs was carried out to assess the population membership estimates of individual genotypes
(Q matrix). The Q matrix is available in Supplementary Table S1.

The linkage LD decay with physical distance was calculated from all 40,777 filtered markers using
Tassel software with window size of 50 bp comprising totally 2,622,025 calculations. The LD decay
plot has been constructed in R using the local regression smoothing function loess.

5.5. GWAS and Genomic Predictions

Analyses were performed with Tassel software version 5.2.5. Mixed linear modelling approach
with population membership (Q) and kinship (K) matrices (MLM+Q+K) was used for GWAS analysis
to control for spurious associations and false positives [58]. Hundred kernel weight (HKW) was used
as a covariate only for FW and DW according to significant correlation between these traits. The model
was calculated according to Bradbury et al. [54] as:

y = X1β1 + X2β2 + X3β3 + (X4β4) + Zu + ε

where y represents vector of observations, β1 is a vector of unknown fixed effects containing SNP, β2

population structure (Q), β3 replicate factor, and (β4) HKW covariate in MLM+Q+K+HKW model, u is
a vector of unknown random additive genetic effects from multiple background QTLs, X1...4 and Z are
the design matrices and ε is normally distributed error with zero mean and variance. The variance
assumption for u and ε vectors is

Var
(

u
ε

)
=

(
G 0
0 R

)
where G = σ2

aK with σ2
a as the unknown additive genetic variance and K is the kinship matrix estimated

using identity by state (IBS) method based on all 40,777 filtered markers; R is residual with homogenous
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variance R = Iσ2
ε with σ2

ε representing the unknown residual variance. The Q matrix for MLM was
calculated using all 40,777 SNP markers with principal component analysis with two axes according to
the results of ∆K method in STRUCTURE analysis. Correlations between Q1 and Q2 values assessed by
STRUCTURE method and Q1 and Q2 values assessed by principal component analysis were 0.98 and
0.98 respectively. According to the assessed correlation structure and biological relationship between
the traits, HKW was set as phenotypic covariate for FW and DW. Two thresholds for controlling
the false detection rate (FDR) were applied. The first threshold was determined according to the
Bonferroni correction for α = 0.05 significance level. Namely, the alpha value (α = 0.05) was divided by
the effective number of markers (Me f f = 14, 155) and the value of 5.4519 was obtained. The value of
Me f f was calculated according to multiple testing method as implemented in SimpleM R script [59,60].
According to the results of Bian and Holland [61] that showed the stable predictive abilities of the loci
detected in the range of –log(P) thresholds from value of 4 to Bonferroni corrected value in oligogenic
and polygenic traits, the second, less-stringent threshold of 4 was applied. Candidate genes were
identified through the interface of Maize GDB webpage [62]. The analysis of candidate genes was
limited to protein-coding genes within the same linkage disequilibrium block (R2 < 0.2) of 120 kbp
around the SNP position crossing the Bonferroni threshold. Physical locations of SNPs are reported
according to Maize B73 RefGen_v4 map.

Marker effects were modelled in R/BGLR package [63] according to Pérez-Rodríguez et al. [64]
with linear covariate as:

yi = µ+

p∑
i=1

Xi jβ j + Xikβk + ε

where yi is the observed phenotype,
p∑

i=1
Xi jβ j is the sum of marker effects, Xik is a design vector for

linear covariate, and βk is a scalar of effects for linear covariate. Marker effects were modelled with zero

mean and homogenous variance or Gaussian prior density - p
(
β j

∣∣∣∣σ2
β

)
= N

(
β j

∣∣∣∣0, σ2
β

)
with σ2

β representing

prior-variance of marker effects corresponding to commonly used ridge regression best linear unbiased
prediction (rrBLUP) method in a Bayesian framework e.g., Bayesian ridge regression (BRR). The marker
data for calculation of BRR estimates of marker effects were re-coded with Plink software version
1.07 [65] and R interface. K-fold cross validation of genomic prediction models with and without
phenotypic covariate was carried out to assess the distribution density of predictive abilities by the
use of bootstrapping procedure with 500 random folds of ~20% of phenotypes setting 1000 burn-in
cycles and 10000 replicates in the Gibbs sampler per each fold. In cross-validation procedure root

mean square error of prediction (RMSEP) was calculated in each bootstrap as RMSEP =

√
(
∑

i=1 µ−yi)
2

n
along with the correlation between predicted and observed values (predictive ability). Differences
among predictive abilities and significance of their differences from zero were tested by the means of
t-test. The correlations between the marker effects of different traits were calculated in R according
to Ziyomo and Bernardo [27] and Galic et al. [28] to estimate the correspondence of small-effect loci
governing the different traits even if they fall below the thresholds set for GWAS. Model for estimation
of marker effect for correlation analysis was not validated and was set without phenotypic covariates

(yi = µ+
p∑

i=1
Xi jβ j + ε). Calculations were performed in R programming language [50].

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/2/275/s1.
Table S1 (xlsx): Publicly available information for 109 maize inbred lines along with heterotic group designation
(H group) and Q values from STRUCTURE analysis. Table S2: Results of association mapping without HKW as
covariate (MLM+Q+K). Table S3: RMSEP values of genomic prediction models. Data (xlsx): All data needed to
reproduce the results presented in the manuscript (filtered GBS markers, phenotypic data with fixed covariates
and HKW)
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Abbreviations

HKW hundred kernel weight
C control
WWl water withholding
FW fresh weight
DW dry weight
DMC dry matter content
GWAS genome wide association study
BRR Bayesian ridge regression
rrBLUP ridge regression best linear unbiased predictions
MLM mixed linear model
K kinship
Q population membership coefficient
PC principal component
SS Stiff Stalk
NS non-Stiff Stalk
QTL quantitative trait loci
SNP single nucleotide polymorphism
GBS genotyping by sequencing
LD linkage disequilibrium
Q-Q quantile-quantile
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