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Abstract: Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective
pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however,
many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent.
In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test
the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent
self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine
the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms
(SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered
through 11 generations. When the rate of cytosine deamination was increased by mitochondrial
expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only
in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective
in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through
a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of
UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria.
It is important to note that the developmental stage of tissues is critically important for these types
of experiments.
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1. Introduction

Plant mitochondrial genomes have very low base substitution rates but expand and rearrange
rapidly [1–5]. The low substitution rate and the high rearrangement rate of plant mitochondria can be
explained by selection and the specific DNA damage-repair mechanisms available. These mechanisms
can also account for the genome expansions often found in land plant mitochondria [6]. The low
nonsynonymous substitution rates in protein coding genes indicate that selective pressure to maintain
the genes is high, and the low synonymous substitution rates indicate that the DNA-repair mechanisms
are very accurate [7,8]. Despite the low mutation rate of mitochondrial genes over evolutionary time,
mitochondrial genomes in mature cells accumulate DNA damage that is not repaired [9]. This indicates
that there are fundamental differences between DNA maintenance in genomes meant to be passed on to
the next generation and genomes that are not. In meristematic cells, mitochondria fuse together to form
a large mitochondrion [10]. This fusion brings mitochondrial genomes together for genome replication
but also ensures that there is a homologous template available for DNA repair. These meristematic
cells eventually produce the reproductive tissue of a plant; from embryogenesis to egg cell production,
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the mitochondrial genomes inherited from parents and passed down to offspring will have homologous
templates available to them [11].

Much less is known about the multiple pathways of DNA repair in plant mitochondria than in
other systems, such as the nucleus. So far, there is no evidence of nucleotide excision repair (NER)
or mismatch repair (MMR) in plant mitochondria [12,13]. It has been hypothesized that, in plant
mitochondria, the types of DNA damage that are usually repaired through NER and MMR are repaired
through double-strand break repair (DSBR) [14,15]. Plant mitochondria do have the nuclear-encoded
base excision repair (BER) pathway enzyme Uracil DNA glycosylase (UNG) [12]. UNG is an enzyme
that can recognize and bind to uracil in DNA and that can begin the process of base excision repair
by enzymatically excising uracil (U) from single-stranded or double-stranded DNA [16]. Uracil can
appear in a DNA strand due to the spontaneous deamination of cytosine or by the misincorporation of
dUTP during replication [17]. Unrepaired uracil in DNA can lead to G-C to A-T transitions within
the genome.

In light of the apparent absences of NER and MMR in plant mitochondria, it is possible that many
lesions, including mismatches, are repaired by creating double-strand breaks and by using a template
to repair both strands. Our hypothesis is that DSBR accounts for most of the repair in meristematic
plant mitochondria and that both error-prone and accurate subtypes of DSBR lead to the observed
patterns of genome evolution [18]. One way of testing this is to eliminate the pathway of uracil base
excision repair and to ask if the G-U mispairs that occur by spontaneous deamination are repaired and,
if so, are instead repaired by DSBR. In this work, we examine an Arabidopsis thaliana UNG knockout line
and investigate the effects on the mitochondrial genome over many generations. To disrupt the genome
further, we express the cytidine deaminase APOBEC3G in the Arabidopsis mitochondria (MTP-A3G)
to increase the rate of cytosine deamination and to accelerate DNA damage.

One of the hallmarks of DSBR in plant mitochondria is the effect on the non-tandem repeats
that exist in virtually all plant mitochondria [19]. The Arabidopsis thaliana mitochondrial genome
contains two pairs of very large repeats (4.2 and 6.6 kb) that commonly undergo recombination [20–22],
producing multiple isoforms of the genome. The mitochondrial genome also contains many non-tandem
repeats between 50 and 1000 base pairs [19,22–24]. In wild type plants, these repeats recombine at very
low rates, but they have been shown to recombine with ectopic repeat copies at higher rates in several
mutants in DSBR-related genes, such as msh1 and reca3 [25–27]. Thus, genome dynamics around
non-tandem repeats can be an indicator of increased DSBs. In this work, we show that a loss of uracil
base excision repair leads to alterations in repeat dynamics, allowing us to observe an increase in
genome abandonment in older leaves.

Numerous proteins known to be involved in the processing of plant mitochondrial DSBs have been
characterized. Plants lacking the activity of mitochondrially targeted recA homologs have been shown
to be deficient in DSBR [26,28]. In addition, it has been hypothesized that the plant MSH1 protein may
be involved in binding to DNA lesions and in initiating DSBs [14,15]. The MSH1 protein contains
a mismatch binding domain fused to a GIY-YIG type endonuclease domain which may be able to make
DSBs [29,30], although an in vitro assay with a C-terminal fragment of the protein had no detectable
endonuclease activity [31]. In this work, we provide evidence that, in the absence of mitochondrial
UNG activity, several genes involved in DSBR, including MSH1, are transcriptionally upregulated,
providing a possible explanation for the increased DSBR. We also provide additional evidence to support
the hypothesis that mitochondrial DNA maintenance is abandoned in non-meristematic tissue [32],
calling attention to the need to closely control for age and developmental state in experiments involving
the mitochondrial genome.
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2. Results

2.1. Lack of UNG Activity in Mutants

It has previously been reported that cell extracts of the Arabidopsis thaliana UNG T-DNA insertion
strain used in this experiment, GK-440E07 (ABRC seed stock CS308282), show no uracil glycosylase
activity [12]. To increase the rate of cytosine deamination in the mitochondrial genome and to show that
effects of the UNG knockout on mitochondrial mutation rates could be detected, the catalytic domain
of the human APOBEC3G–CTD 2K3A cytidine deaminase (A3G) [33] was expressed under the control
of the ubiquitin-10 promoter [34] in both wild-type and UNG Arabidopsis thaliana lines and targeted
the mitochondria by an amino-terminal fusion of the 62 amino acid mitochondrial targeting peptide
(MTP) from the alternative oxidase 1A protein. Fluorescence microscopy of Arabidopsis thaliana
expressing an MTP-A3G-GFP fusion shows that the MTP-A3G construct is expressed and targeted
the mitochondria (Figure S1).

We expected that, in the absence of UNG, there would be an increase in G-C to A-T substitution
mutations. To test this prediction, we sequenced a wild-type Arabidopsis plant (Col-0), a wild-type
Arabidopsis plant expressing the MTP-A3G construct (Col-0 MTP-A3G), and a UNG plant expressing
the MTP-A3G construct (UNG MTP-A3G) using an Illumina Hi-Seq4000 system. Mitochondrial sequence
reads from these plants were aligned to the Columbia-0 reference genome (modified as described in
the Materials and Methods section) using BWA-MEM [35], and single nucleotide polymorphisms were
identified using VarDict [36]. VarDict was chosen due to its high sensitivity and accuracy compared with
other low-frequency variant callers when analyzing Illumina HiSeq data [37].

There were no SNPs that reached fixation (an allele frequency of 1) in any plant. Mitochondrial
genomes are not diploid; each cell can have many copies of the mitochondrial genome. Therefore,
it is possible that an individual plant could accumulate low-frequency mutations in some of
the mitochondrial genomes in the cell. VarDict was used to detect heteroplasmic SNPs at allele
frequencies as low as 0.01. VarDict’s sensitivity in calling low-frequency SNPs scales with depth of
coverage and quality of the sample, so it is not possible to directly compare heteroplasmic mutation
rates in samples with different depths of coverage. However, because the activity of the UNG
protein is specific to uracil, the absence of the UNG protein should not have any effect on mutation
rates other than G-C to A-T transitions. Comparing the numbers of G-C to A-T transitions to all
other substitutions should reveal if the rate of mutations that can be repaired by UNG is elevated
compared to the background rate. If the UNG MTP-A3G line is accumulating G-C to A-T transitions
at a faster rate than the Col-0 MTP-A3G line, we would expect to see an increased ratio of G-C to
A-T transitions compared to other mutation types. Complicating the analysis, significant portions of
the A. thaliana mitochondrial genome have been duplicated in the nucleus, forming regions called
NuMTs, an abbreviation of Nuclear Mitochondrial DNA [38–40]. Mutations in the NuMTs might
appear to be low-frequency SNPs in the mitochondrial genome, confounding the results. However,
these mutations are likely to be shared in the common nuclear background of all our lines. To avoid
attributing SNPs in NuMTs to the mitochondrial genome, only those SNPs unique to individual plant
lines were used in this comparison. In addition, many of the shared SNPs were flanked by a number
of paired-end reads with one end in the mitochondrial genome and the other in the nuclear genome,
additional evidence that they are NuMTs. The Col-0 plant had a heteroplasmic GC-AT/total SNPs ratio
of 0, the Col-0 MTP-A3G plant had a heteroplasmic GC-AT/total SNPs ratio of 0.47, while the UNG
MTP-A3G plant had a heteroplasmic GC-AT/total SNPs ratio of 0.92 (Table 1). Therefore, when the rate
of cytosine deamination is increased by the activity of APOBEC3G, Arabidopsis plants accumulate
GC-AT SNPs and our computational pipeline is able to detect this increase.



Plants 2020, 9, 261 4 of 18

Table 1. Heteroplasmic mitochondrial single nucleotide polymorphisms (SNPs) in Col-0 wild-type,
generation 10 uracil DNA glycosylase (UNG) mutant lines, Col-0 MTP-A3G, and UNG MTP-A3G:
SNPs were called using VarDict as described in the Methods section. SNP counts are shown for
the entire mitochondrial genome. For the full spectrum of SNP types, including allele frequencies,
see Supplementary File 2.

Sample A-C A-G A-T C-A C-G C-T G-A G-C G-T T-A T-C T-G Total GC-AT/Total Ratio

Col-0 0 17 1 0 0 0 0 0 0 0 11 0 29 0
UNG10 115 0 7 0 0 0 0 0 0 1 0 7 0 15 0
UNG10 159 0 15 0 0 0 0 0 0 0 0 21 0 36 0
UNG10 163 1 305 10 3 1 3 7 0 1 21 281 0 633 0.016
UNG10 176 0 97 3 0 0 0 1 0 2 4 76 0 183 0.0055
UNG10 198 0 9 0 0 0 1 0 0 0 1 6 0 17 0.059
UNG10 201 0 12 1 0 0 0 1 0 0 1 15 0 30 0.033
UNG10 203 0 9 1 0 0 0 0 0 0 1 5 0 16 0

Col-0 MTP A3G 0 6 0 0 0 3 4 0 0 0 2 0 15 0.47
UNG MTP A3G 0 0 0 0 0 5 7 0 0 0 1 0 13 0.92

2.2. Mutation Accumulation in the Absence of UNG

To determine the effects of the UNG knockout across multiple generations, we performed
a mutation accumulation study [41]. We chose 23 different UNG homozygous plants derived from
one hemizygous parent. These 23 plants were designated as generation 1 UNG and were allowed
to self-cross. The next generation was derived by single-seed descents from each line, and this was
repeated until generation 10 UNG plants were obtained. Leaf tissue and progeny seeds from each line
were kept at each generation.

The leaf tissue from generation 10 of the UNG mutation accumulation lines and a wild-type
Col-0 were sequenced and analyzed with VarDict as described above. Similar to the MTP-A3G plants,
there were no SNPs in any of our UNG mutation accumulation lines that had reached fixation (an allele
frequency of one). In contrast, there was no relative increase in the ratios of GC-AT/total SNPs between
the UNG lines and Col-0 (see Table 1). Because detection of low-frequency SNPs depends on read depth,
we only report the 7 UNG samples with an average mitochondrial read depth above 125× for this
comparison. In the absence of a functional UNG protein and under normal greenhouse physiological
conditions, plant mitochondria do not accumulate cytosine deamination mutations at an increased rate.

2.3. Nuclear Mutation Accumulation

UNG is the only uracil-N-glycosylase in Arabidopsis thaliana and may be active in the nucleus as well
as the mitochondria [12]. To test for nuclear mutations due to the absence of UNG, sequences were
aligned to the Columbia-0 reference genome using BWA-MEM and single nucleotide polymorphisms
were identified using Bcftools Call [42]. The UNG mutation accumulation lines do not have an elevated
G-C to A-T mutation rate compared to wild-type (Table 2).

2.4. Alternative Repair Pathway Genes

Because the UNG mutants show increased double-strand break repair but not an increase of G-C
to A-T transition mutations, we infer that the inevitable appearance of uracil in the DNA is repaired via
conversion of a G-U pair to a double-strand break and efficiently repaired by the DSBR pathway. If this
is true, genes involved in the DSBR processes of breakage, homology surveillance, and strand invasion
in mitochondria will be upregulated in UNG mutants. To test this hypothesis, we assayed transcript
levels of several candidate genes known to be involved in DSBR [13,23,25–28,43–46] in UNG lines
compared to wild-type using RT-PCR. MSH1 and RECA2 were significantly upregulated in UNG lines
(MSH1: 5.60-fold increase, unpaired T-test p < 0.05. RECA2: 3.19-fold increase, unpaired T-test p < 0.05;
see Figure 1). The single-strand binding protein gene OSB1 was also measurably upregulated in UNG
lines (3.07-fold increase, unpaired T-test p = 0.053). RECA3, SSB, and WHY2 showed no significant
differential expression compared to wild-type (unpaired T-test p > 0.05).



Plants 2020, 9, 261 5 of 18

Table 2. Nuclear SNPs in Col-0 wild-type, UNG mutant lines, Col-0 MTP-A3G, and UNG
MTP-A3G: SNPs were called using Bcftools Call as described in the Methods section. SNP counts
are for each chromosome, excluding chromosome 2. For individual data on each chromosome,
see Supplementary File 2.

Sample GC-AT SNPs Total SNPs GC-AT/Total Ratio

Col-0 0 0 0
UNG10 115 21 69 0.30
UNG10 159 27 79 0.34
UNG10 163 10 43 0.23
UNG10 176 28 74 0.38
UNG10 198 23 73 0.32
UNG10 201 53 131 0.40
UNG10 203 35 97 0.36

Col-0 MTP-A3G 0 0 0
UNG MTP-A3G 44 154 0.29
Col-0 1 Young 31 81 0.38
Col-0 2 Young 44 101 0.44

UNG11 163 1 Young 31 111 0.28
UNG11 163 2 Young 59 141 0.42
UNG11 176 1 Young 32 149 0.21
UNG11 176 2 Young 48 126 0.38
UNG11 198 1 Young 60 236 0.25
UNG11 198 2 Young 99 311 0.32

Col-0 MTP-A3G 1 Young 17 53 0.32
Col-0 MTP-A3G 2 Young 25 58 0.43
UNG MTP-A3G 1 Young 130 453 0.29
UNG MTP-A3G 2 Young 589 2711 0.22

Col-0 1 Mature 17 47 0.36
Col-0 2 Mature 15 43 0.35

UNG11 163 1 Mature 27 113 0.24
UNG11 163 2 Mature 23 77 0.30
UNG11 176 1 Mature 31 99 0.31
UNG11 176 2 Mature 27 93 0.29
UNG11 198 1 Mature 41 157 0.26
UNG11 198 2 Mature 66 195 0.34

Col-0 MTP-A3G 1 Mature 15 45 0.33
Col-0 MTP-A3G 2 Mature 13 37 0.35
UNG MTP-A3G 1 Mature 106 339 0.32
UNG MTP-A3G 2 Mature 175 684 0.26

2.5. Increased Mitochondrial Genome Abandonment

If most DNA damage in plant mitochondria is repaired by double-strand break repair (DSBR),
supplemented by base excision repair [12], then in the absence of the Uracil-N-glycosylase (UNG)
pathway, we predict an increase in DSBR. To find evidence of this, we used quantitative PCR (qPCR)
to assay crossing over between identical non-tandem repeats because changes in the dynamics
around these repeats is indicative of changes in DNA processing at double-strand breaks [26,27,46].
Different combinations of primers in the unique sequences flanking the repeats allow us to determine
the relative copy numbers of parental-type repeats and low-frequency recombinants (Figure 2a).
The mitochondrial genes cox2 and rrn18 were used to standardize relative amplification between
lines. We and others [24,46] have found that some of the non-tandem repeats are well suited for qPCR
analysis and are sensitive indicators of ectopic recombination, increasing in repair-defective mutants.
We analyzed the three repeats known as repeats B, D, and L [23] in both young leaves and mature
leaves. In young leaves, there is no significant difference in the amounts of parental or recombinant
forms between UNG lines and Col-0 (Figure 2b). In mature leaves, all three repeats show significant
reductions in the parental 2/2 form while repeat B also shows a reduction in the parental 1/1 form
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(unpaired t-test p < 0.05; Figure 2c). There is a difference in genome dynamics around non-tandem
repeats in young leaves compared to old leaves, indicating a difference in the way these genomes
are maintained.

Figure 1. Quantitative RT-PCR assays of enzymes involved in double-strand break repair (DSBR)
in UNG lines relative to wild-type: Fold change in transcript level is shown on the Y-axis. Error bars are
standard deviation of three biological replicates. MSH1 and RECA2 are significantly transcriptionally
upregulated in UNG lines relative to wild-type (5.60-fold increase and 3.19-fold increase, respectively.
Unpaired, 2-tailed student’s t-test, * indicates p < 0.05). OSB1 is nearly significantly upregulated in
UNG lines relative to wild-type (3.07-fold increase. Unpaired t-test p = 0.053).

2.6. Transmission of SNPs Across Generations

To determine if any heteroplasmic SNPs are passed on to the next generation, two progenies of
each of the wild-type, UNG, MTP-A3G, and UNG MTP-A3G plants that were sequenced above were
planted. Leaves were collected from each plant when it was 17 days old (young leaf) and again when
it was 36 days old (mature leaf). Both the young and mature leaves of each plant were sequenced
and analyzed as described above. Only 1 heteroplasmic SNP could be traced from a parent plant
to both progeny, and 7 heteroplasmic SNPs could be traced from a parent plant to one progeny
(Supplementary File 2). Interestingly, 117 heteroplasmic SNPs were detected in both offspring but
not the parent plant. It is possible that heteroplasmic mutations that occur in reproductive tissue
after the parental tissue had been collected could be passed on to the progeny. However, only 3 of
these heteroplasmic SNPs are found in the mature tissue of both progeny, indicating that, even if
a heteroplasmic SNP is passed on to a future generation, it is likely to be removed from the mitochondrial
population before reproduction by genetic drift or gene conversion. In fact, of the 2792 heteroplasmic
SNPs that were detected in young tissue across all samples, only 4 were detected in the mature
tissue of the same plant. The overwhelming majority of heteroplasmic SNPs arose in mitochondria in
non-meristematic differentiated tissue.
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Figure 2. qPCR analysis of intermediate repeat recombination in UNG lines compared to wild-type:
Recombination at intermediate repeats is an indicator of increased double-strand breaks in plant
mitochondrial genomes. (a) Primer scheme for detecting parental and recombinant repeats:
Using different combinations of primers that anneal to the unique sequence flanking the repeats,
either parental type (1/1 and 2/2) or recombinant type (1/2 and 2/1) repeats can be amplified. (b) Fold
change of intermediate repeats in young leaves of UNG lines relative to wild-type: Error bars are
standard deviation of three biological replicates. (c) Fold change of intermediate repeats in mature
leaves of UNG lines relative to wild-type: Error bars are standard deviation of three biological replicates.
B1/1, B2/2, D2/2, and L2/2 show significant reduction in copy number (unpaired, 2-tailed student’s
t-test, * indicates p < 0.05).
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2.7. SNP Accumulation in Young vs. Mature Leaves

To confirm that the effects of the UNG knockout and the expression of APOBEC3G are consistent,
the progenies of the wild-type, UNG, MTP-A3G, and UNG MTP-A3G plants were analyzed and the ratio
of heteroplasmic GC-AT to total heteroplasmic SNPs was compared as described above. In mature
leaves, the results were similar to the previous generation: both the UNG MTP-A3G and Col-0
MTP-A3G samples had increased GC-AT SNPs compared to the UNG and Col-0. Interestingly, in young
leaves, neither the UNG MTP-A3G nor the Col-0 MTP-A3G samples had increased GC-AT SNPs
(See Table 3). This indicates that the processes of mitochondrial genome maintenance are more efficient
at repairing DNA damage in young leaves.

2.8. Quality Control of DNA Library Preparation

A common source of error when calling low-frequency SNPs is oxidative damage during library
preparation [47]. This oxidative damage affects guanines, and the effects of this damage can be
measured by comparing the ratio of G to T mutations between the R1 paired-end read and the R2
paired-end read. A Global Imbalance Value (GIV) above 1.5 indicates DNA damage during library
preparation, while a GIV below 1.5 indicates little damage during library preparation. None of
the samples used in this study had a GIV above 1.5 (see Supplementary File 2), indicating that DNA
damage during library prep is not a significant source of false SNP calls.
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Table 3. Heteroplasmic mitochondrial SNPs in the next generation of Col-0 wild-type, UNG mutant lines, Col-0 MTP-A3G, and UNG MTP-A3G: SNPs were called
using VarDict as described in the Methods section. SNP counts are shown for the entire mitochondrial genome. For the full spectrum of SNP types, including allele
frequencies, see Supplementary File 2.

Sample A-C A-G A-T C-A C-G C-T G-A G-C G-T T-A T-C T-G Total GC-AT/Total Ratio

Col-0 1 Young 0 224 3 0 0 4 6 0 0 3 227 0 467 0.0214
Col-0 2 Young 0 45 1 0 0 2 0 0 0 2 33 1 84 0.0238

UNG11 163 1 Young 0 205 4 0 0 7 7 0 0 4 216 0 443 0.0316
UNG11 163 2 Young 1 27 2 0 0 0 1 0 0 0 47 0 78 0.0128
UNG11 176 1 Young 0 65 0 0 0 0 2 0 0 3 79 0 149 0.0134
UNG11 176 2 Young 0 194 0 0 0 2 5 0 0 7 171 0 379 0.0185
UNG11 198 1 Young 1 62 2 0 0 2 1 0 0 1 59 0 128 0.0234
UNG11 198 2 Young 0 63 2 0 0 0 1 0 0 4 68 0 138 0.00725

Col-0 MTP A3G 1 Young 0 151 5 2 0 11 15 0 1 2 158 0 345 0.0754
Col-0 MTP A3G 2 Young 0 154 2 0 0 7 3 0 1 6 136 0 309 0.0324
UNG MTP A3G 1 Young 0 84 0 0 0 3 4 0 0 2 82 0 175 0.04
UNG MTP A3G 2 Young 0 49 2 0 0 2 1 0 0 1 46 2 103 0.0291

Col-0 1 Mature 0 50 0 0 0 3 3 0 0 1 54 0 111 0.0541
Col-0 2 Mature 0 65 2 1 0 2 1 0 0 4 60 0 135 0.0222

UNG11 163 1 Mature 0 1 0 0 0 0 0 0 0 0 3 0 4 0
UNG11 163 2 Mature 0 2 0 0 0 0 0 0 0 0 6 0 8 0
UNG11 176 1 Mature 0 35 2 0 0 2 1 0 0 2 50 1 93 0.0323
UNG11 176 2 Mature 0 50 0 0 0 1 2 0 0 0 57 0 110 0.0273
UNG11 198 1 Mature 0 42 1 0 0 0 2 0 0 1 42 0 88 0.0227
UNG11 198 2 Mature 0 29 2 0 0 1 0 0 0 0 33 0 65 0.0154

Col-0 MTP A3G 1 Mature 0 4 0 0 0 0 1 0 0 0 3 0 8 0.125
Col-0 MTP A3G 2 Mature 0 14 0 0 0 9 12 0 0 0 10 0 45 0.467
UNG MTP A3G 1 Mature 0 13 0 0 0 33 41 0 0 0 13 0 100 0.74
UNG MTP A3G 2 Mature 0 78 1 0 0 25 36 0 1 0 69 0 210 0.290
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3. Discussion

In mitochondria as well as in the nucleus and chloroplast, cytosine is subject to deamination to
uracil. This could potentially lead to transition mutations and is dealt with by a specialized base excision
repair pathway. The first step in this pathway is hydrolysis of the glycosidic bond by the enzyme
Uracil-N-glycosylase (UNG), leaving behind an abasic site [16]. An AP (apurinic) endonuclease can
then cut the DNA backbone, producing a 3′ OH and a 5′ dRP (5′-deoxyribose-5-phosphate). Both DNA
polymerases found in A. thaliana mitochondria, POL1A and POL1B, exhibit 5′-dRP lyase activity,
allowing them to remove the 5′ dRP and to polymerize a new nucleotide replacing the uracil [48].
In the absence of functional UNG protein, cytosine will still be deaminated in plant mitochondrial
genomes, so efficient removal of uracil must be through a different repair mechanism, most likely
DSBR [14,15]. We have found that, in UNG mutant lines, there is an increase in the expression of
genes known to be involved in DSBR and significant changes in the relative abundance of parental
and recombinant forms of intermediate repeats, consistent with this hypothesis.

We have shown that, when cytosine deamination is increased by the expression of the APOBEC3G
cytidine deaminase in plant mitochondria, UNG lines accumulate more G-C to A-T transitions in
mature leaves than does wild-type. Surprisingly, we have also found that, under normal cellular
conditions, without the added deamination activity of APOBEC3G, UNG lines do not accumulate G-C
to A-T transition mutations at a higher rate than wild-type. This finding is particularly surprising given
the presumed bottlenecking of mitochondrial genomes during female gametogenesis and given
the deliberate bottleneck in the experimental design of single-seed descent for 11 generations.
This finding supports the hypothesis that plant mitochondria have a very efficient alternative damage
surveillance system that can prevent G-C to A-T transitions from becoming fixed in the meristematic
mitochondrial population. The use of the cytidine deaminase allows us to specifically alter the mutation
rate, which helps us disentangle mutation from repair, selection and drift—common complications in
mutation accumulation experiments [49].

The angiosperm MSH1 protein consists of a DNA mismatch-binding domain fused to
a double-stranded DNA endonuclease domain [1,21] Although mainly characterized for its role
in recombination surveillance [36], MSH1 is a good candidate for a protein that may be able to
recognize and bind to various DNA lesions and to make DSBs near the site of the lesion, thus funneling
these types of damage into the DSBR pathway. With many mitochondria and many mitochondrial
genomes in each cell, there are numerous available templates for accurate repair of DSBs through
homologous recombination, making this a plausible mechanism of genome maintenance. Here,
we show that, in UNG lines, MSH1 is transcriptionally upregulated more than 5-fold compared to
wild-type. This is consistent with the hypothesis that MSH1 initiates repair in plant mitochondria by
creating a double-strand break at G-U pairs and possibly other mismatches and damaged bases.

Several other proteins involved in processing plant mitochondrial DSBs have been
characterized. The RECA homologs RECA2 and RECA3 are homology search and strand invasion
proteins [26–28,45,50–52]. The two mitochondrial RECAs share much sequence similarity; however,
RECA2 is dual targeted to both the mitochondria and the plastids, while RECA3 is found only in
the mitochondria [26,27]. RECA3 also lacks a C-terminal motif present on RECA2 and most other
homologs. This motif has been shown to modulate the ability of RECA proteins to displace competing
ssDNA binding proteins in E. coli [53]. Arabidopsis reca2 mutants are seedling lethal, and both reca2
and reca3 lines show increased ectopic recombination at intermediate repeats [26]. Arabidopsis RECA2
has functional properties that RECA3 cannot perform, such as complementing a bacterial recA mutant
during the repair of UV-C-induced DNA lesions [20]. Here, we show that, in UNG lines, RECA2 is
transcriptionally upregulated more than 3-fold compared to the wild-type. However, RECA3 is not
upregulated in UNG lines. Responding to MSH1-initiated DSBs may be one of the functions unique
to RECA2. The increased expression of RECA2 in the absence of a functional UNG protein is further
evidence that uracil arising in DNA may be repaired through the mitochondrial DSBR pathway.
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The ssDNA binding protein OSB1′s transcript is upregulated over 3-fold. At a double-strand
break, OSB1 competitively binds to ssDNA and recruits the RECA proteins to promote the repair of
a double-strand break by a homologous template and to avoid the error-prone microhomology-mediated
end-joining pathway [54].

We also tested the differential expression of other genes known to be involved in processing
mitochondrial DSBs. The single-stranded binding protein genes WHY2 and SSB were not found to be
differentially expressed at the transcript level compared to wild-type. The presence of different ssDNA
binding proteins influences which pathway of DSBR a break is repaired by [54]. Increased amounts of
WHY2 and SSB may not be needed for accurate repair of induced DSBs in the UNG lines.

At intermediate repeats, the maintenance of the mitochondrial genome is different between
wild-type, UNG mutants, and DSBR mutants. In msh1 lines, there is an increase in repeat recombination
likely due to relaxed homology surveillance in the absence of the MSH1 protein [27]. In mutant lines of
ssDNA binding proteins involved in DSBR, such as recA2, recA3, and osb1 [26,55], there is an increase in
repeat recombination due to differences in the way DNA ends are handled in the absence of these ssDNA
binding proteins. In young leaves, there is no significant difference in recombination at intermediate
repeats between UNG lines and wild-type, while in mature leaves, UNG lines show a reduction
in parental type repeats compared to wild-type. In UNG lines, the mitochondrial recombination
machinery is still intact, so any differences in genome dynamics at intermediate repeats are not due to
differences in processing the DSBs; instead, this could indicate that there is an increase in double-strand
breaks and an increase in attempted DSBR by break-induced replication at intermediate repeats or that
this could be an indication of degradation of mtDNA as differentiated tissue ages.

Plant mitochondrial genomes likely replicate by recombination-dependent replication (RDR) [56].
Most organellar genome replication occurs in meristematic tissue, where mitochondria fuse together to
form a large, reticulate mitochondrion [10]. This mitochondrial fusion provides a means to homogenize
mtDNA by gene conversion and to repair lesions through homologous recombination [57]. Accurate
repair of uracil by homologous recombination would not be expected to change repeat dynamics. As cells
differentiate and age, organellar genomes degrade [32]. Organellar genomes in nonreproductive tissue
can be “abandoned” rather than repaired, reducing the metabolic cost of DNA repair [32]. In a mature
cell, an attempt to repair uracil in the mitochondrial genome could lead to degradation of the DNA
and changes in repeat dynamics if a double-strand break is initiated without a homologous template
available. There is a difference in mitochondrial DNA maintenance in mature cells compared to young
cells, due to either a lack of DNA repair in mature mitochondria or a difference in DNA-repair mechanism.

To determine the outcomes of genomic uracil in the absence of a functional UNG protein,
we sequenced the genomes of several UNG lines. No fixed mutations of any kind were found in UNG
lines, even after 11 generations of self-crossing. Low-frequency heteroplasmic SNPs were found in both
wild-type and UNG lines, but UNG lines showed no difference in the ratio of G-C to A-T transitions
to other mutation types when compared to wild-type. When the rate of cytosine deamination was
increased with the expression of the APOBEC3G deaminase, there was an increase in G-C to A-T
transitions but only in mature leaves. This is consistent with the idea of abandonment and is evidence
that, in mitochondrial genomes that have not been abandoned, there is an efficient and accurate system
of nonspecific repair.

Clearly, plant mitochondria can repair uracil in DNA sufficiently to prevent mutation accumulation
in the absence of the UNG protein. Why then has the BER pathway been conserved in plant mitochondria
while NER and MMR have apparently been lost? DSBR may be able to protect the genome efficiently
from mutations being inherited by the next generation (see Table 3). There may still be selection to
maintain mitochondrial BER to reduce the rate of mitochondrial genome abandonment and degradation
in aging tissues. Throughout the evolutionary history of Arabidopsis thaliana and into the present,
wild growing plants are exposed to a range of growth conditions and stresses that experimental
plants in a greenhouse avoid. The rate of spontaneous cytosine deamination increases with increasing
temperature [58,59], so DSBR alone may not be able repair the extent of uracil found in DNA across
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the range of temperatures a wild plant would experience, providing the selective pressure to maintain
a distinct BER pathway in plant mitochondria. If DSBR activity is reduced or lost as leaf tissue ages,
there may also be a selective advantage to the plant of maintaining BER in mature leaves so they can
continue to perform intermediary metabolism even as they age.

Here, we have provided evidence that, in the absence of a dedicated BER pathway, plants growing
in greenhouse growth chamber conditions do not accumulate mitochondrial SNPs at an increased
rate. Instead, DNA damage is accurately repaired by double-strand break repair, which also causes
an increase in ectopic recombination at identical non-tandem repeats. It has recently been shown that
mice lacking a different mitochondrial BER protein, oxoguanine glycosylase, also do not accumulate
mitochondrial SNPs [60]. Here, we show that, in plants, base-excision repair by UNG is similarly
unnecessary to prevent mitochondrial mutations in growth chamber conditions. The presence of
the UNG pathway reduces ectopic recombination slightly and can successfully repair uracil in DNA
even if the rate of cytosine deamination is increased. We have also found that, in mature leaves,
uracil mutations do occur, further confirming the hypothesis that organellar genomes are abandoned
in terminally differentiated tissues [32] and emphasizing the need for considering the tissue age
and type when interpreting experimental results on DNA replication, repair, and recombination.
Double-strand break repair and recombination are important mechanisms in the evolution of plant
mitochondrial genomes, but many key enzymes and steps in the repair pathway are still unknown.
Further identification and characterization of these missing steps is sure to provide additional insight
into the unique evolutionary dynamics of plant mitochondrial genomes.

4. Materials and Methods

4.1. Plant Growth Conditions

Arabidopsis thaliana Columbia-0 (Col-0) seeds were obtained from Lehle Seeds
(Round Rock, TX, USA). UNG (AT3G18630) T-DNA insertion hemizygous lines were obtained
from the Arabidopsis Biological Resource Center, line number CS308282. Hemizygous T-DNA lines
were self-crossed to obtain homozygous lines (Genotyping primers: wild-type 5′-TGTCAAAGTC
CTGCAATTCTTCTCACA-3′ and 5′-TCGTGCCATATCTTGCAGACCACA-3′, and UNG 5′-ATA
ATAACGCTGCGGACATCTACATTTT-3′ and 5′-ACTTGGAGAAGGTAAAGCAATTCA-3′). All plants
were grown in walk-in growth chambers under a 16:8 light:dark schedule at 22 ◦C. Plants grown
on agar were surface sterilized and grown on 1×Murashige and Skoog Basal Medium (MSA) with
Gamborg’s vitamins (Sigma, St. Louis, MO, USA) with 5 µg/mL Nystatin Dihydrate to prevent
fungal contamination.

4.2. Vector Construction

The APOBEC3G gene [61] was synthesized by Life Technologies Gene Strings using
Arabidopsis thaliana-preferred codons and including the 62 amino acid mitochondrial targeting peptide
(MTP) from alternative oxidase on the N-terminus of the translated protein. The MTP-A3G construct
was cloned into the vector pUB-DEST (NCBI:taxid1298537) driven by the ubiquitin (UBQ10) promoter
and transformed into wild-type and UNG Arabidopsis thaliana plants by the Agrobacterium floral dip
method [62]. To ensure proper mitochondrial targeting of the MTP-A3G construct, the construct
was cloned into pK7FWG2 with a C-terminal GFP fusion [63]. Arabidopsis thaliana plants were again
transformed by the Agrobacterium floral dip method, and mitochondrial fluorescence was confirmed
with confocal fluorescence microscopy.

4.3. RT-PCR

RNA was extracted from young leaves of plants grown in parallel on MSA during UNG generation
ten [64]. Reverse transcription using Bio-Rad iScript was performed, and the resulting cDNA was
used as a template for qPCR to measure relative transcript amounts. Quantitative RT-PCR data was
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normalized using UBQ10 and GAPDH as housekeeping gene controls. Reactions were performed in
a Bio-Rad CFX96 thermocycler using 96-well plates and a reaction volume of 20 µL/well. SYBRGreen
mastermix (Bio-Rad, Hercules, CA, USA) was used in all reactions. Three biological replicates from
different UNG MA lines and three technical replicates were used for each amplification. Primers are
listed in Table S1. The MIQE guidelines were followed [65], and primer efficiencies are listed in
Table S2. The thermocycling program for all RT-qPCR was a ten-minute denaturing step at 95◦ followed
by 45 cycles of 10 s at 95◦, 15 s at 60◦, and 13 s at 72◦. Following amplification, melt curve analysis
was done on all reactions to ensure target specificity. The melt curve program for all RT-qPCR was
from 65◦–95◦ at 0.5◦ increments for 5 s each.

4.4. Repeat Recombination qPCR

DNA was collected from young and mature leaves of Columbia-0 and generation ten UNG plants
grown in parallel using the CTAB DNA extraction method [66]. qPCR was performed using primers
from the flanking sequences of the intermediate repeats. Primers are listed in Table S1. Using different
combinations of forward and reverse primers, either the parental or recombinant forms of the repeat can
be selectively amplified (see Figure 2a). The mitochondrially encoded cox2 and rrn18 genes were used
as standards for analysis. Reactions were performed in a Bio-Rad CFX96 thermocycler using 96-well
plates with a reaction volume of 20µL/well. SYBRGreen mastermix (Bio-Rad) was used in all reactions.
Three biological and three technical replicates were used for each reaction. The thermocycling program
for all repeat recombination qPCR was a ten-minute denaturing step at 95◦ followed by 45 cycles of 10
s at 95◦, 15 s at 60◦, and a primer-specific amount of time at 72◦ (extension times for each primer pair
can be found in Table S3). Following amplification, melt curve analysis was done on all reactions to
ensure target specificity. The melt curve program for all qPCR was from 65◦–95◦ at 0.5◦ increments
for 5 s each.

4.5. DNA Sequencing

DNA extraction from frozen mature leaves of Columbia-0, generation 10 and UNG, and MTP-A3G
plants and again from young and mature leaves of the progeny of these plants was done by a modification
of the SPRI (Solid Phase Reversible Immobilization) magnetic beads method of Rowan et al. [67,68].
Genomic libraries for paired-end sequencing were prepared using a modification of the Nextera
protocol [69] and modified for smaller volumes following Baym et al. [70]. Following treatment with
the Nextera Tn5 transpososome, 14 cycles of amplification were done. Libraries were size-selected to
be between 400 and 800 bp in length using SPRI beads [68]. Libraries were sequenced with 150 bp
paired-end reads on an Illumina HiSeq 4000 by the Vincent J. Coates Genomics Sequencing Laboratory
at UC Berkeley. The raw data files are deposited with the Sequence Read Archive at ncbi.nlm.nih.gov
under BioProject number PRJNA492503.

Reads were aligned using BWA-MEM v0.7.12-r1039 [35]. The reference sequence used for alignment
was a file containing the improved Columbia-0 mitochondrial genome (accession BK010421.1) [71]
as well as the TAIR 10 Arabidopsis thaliana nuclear chromosomes and chloroplast genome sequences [72].
A large portion of the mitochondrial genome has been duplicated into chromosome 2 [40]. To prevent
reads from mapping to both locations, this large NuMT region was deleted from chromosome 2.
Using Samtools v1.3.1 [73], bam files were sorted for uniquely mapped reads for downstream analysis.
MarkDuplicates from the Genome Analysis ToolKit (GATK) was used to remove duplicate reads due to
PCR during library prep [74].

Organellar variants were called using VarDict [36]. To minimize the effects of sequencing errors
and to reduce false positives, SNPs called by VarDict were filtered by the stringent quality parameters
of Qmean ≥ 30, MQ ≥ 30, NM ≤ 3, Pmean ≥ 8, Pstd = 1, AltFwdReads ≥ 3, and AltRevReads ≥ 3.
When calling low-frequency SNPs, it is difficult to remove all false positives without also removing
some true positives. By treating all samples to the same sequence analysis pipeline, all samples will
have a similar spectrum of false positives. By analyzing the ratios of different SNP types rather than
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raw SNP numbers, we further isolate biological effects from computational noise. VarDict was chosen
because it is more sensitive to low allele-frequency variants [37].

DNA damage during library preparation was measured by individually analyzing the paired ends
of Illumina paired-end sequencing and by looking for imbalances in mutations between the paired
ends [47]. Mapped bam files were split into separate pairs, and GIV scores were calculated for each
SNP type using the Damage-Estimator with mapping and base quality cutoffs set to 30.

Nuclear variants were called using Samtools mpileup (v. 1.3.1) and Bcftools call (v. 1.2) and were
filtered for SNPgap of 3, Indelgap of 10, RPB > 0.1 and QUAL > 15, at least 3 high quality ALT reads
(DP4(2) + DP4(3) ≥ 3), at least one high quality ALT read per strand (DP4(2) ≥ 1 and DP4(3) ≥ 1),
and a high-quality ALT allele frequency ≥ 0.3. Chromosome 2 was excluded from this analysis
to avoid false positives resulting from the presence of the large NuMT that has been duplicated
and repeated there.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/2/261/s1,
Figure S1: Mitochondrial targeting of a GFP labeled MTP-APOBEC3G construct, Table S1: Primers for RT-PCR,
Table S2: qPCR primer efficiency, Table S3: Primers for ROUS recombination assay, Supplementary File 2: SNP
analysis tables.
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