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Abstract: Alfalfa (Medicago sativa L.) is an important and widely cultivated forage grass.
The productivity and forage quality of alfalfa are severely affected by salt stress. Melatonin is
a bioactive molecule with versatile physiological functions and plays important roles in response to
various biotic and abiotic stresses. Melatonin has been proven efficient in improving alfalfa drought
and waterlogging tolerance in recent studies. In our reports, we applied melatonin exogenously to
explore the effects of melatonin on alfalfa growth and salt resistance. The results demonstrated that
melatonin application promoted alfalfa seed germination and seedling growth, and reduced oxidative
damage under salt stress. Further application research found that melatonin alleviated salt injury in
alfalfa plants under salt stress. The electrolyte leakage, malondialdehyde (MDA) content and H2O2

content were significantly reduced, and the activities of catalase (CAT), peroxidase (POD), and Cu/Zn
superoxide dismutase (Cu/Zn-SOD) were increased with melatonin pretreatment compared to control
plants under salt stress with the upregulation of genes related to melatonin and antioxidant enzymes
biosynthesis. Melatonin was also involved in reducing Na+ accumulation in alfalfa plants. Our study
indicates that melatonin plays a primary role as an antioxidant in scavenging H2O2 and enhancing
activities of antioxidant enzymes to improve the salt tolerance of alfalfa plants.
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1. Introduction

Alfalfa (Medicago sativa L.) is an excellent perennial leguminous grass and one of the most
important forage crops which is widely cultivated around the world. For its high protein content,
rich nutrition value and high biomass yield, it is known as the “King of Forages”. Approximately
32.2 million hectares of alfalfa is planted worldwide, and with the development of livestock industries
and new policies in China, alfalfa has become the most important and widely used forage grass in
integrated farming systems in China [1]. The planting area of alfalfa is about 3.77 million hectares in
China, the highest among all other artificial grasslands [2,3].

With the autotrophic sessile nature of plants, they are continually challenged by various biotic
and abiotic stresses during their growth and development stages. To defend themselves against
unfavorable environmental conditions, plants have developed various complex regulation strategies,
including enzymatic and non-enzymatic systems [4,5]. The enzymatic system consists of a series
of antioxidant enzymes, such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD),
ascorbate peroxidase (APX), and glutathione reductase (GR), which play major roles in reactive
oxygen species (ROS) scavenging [6]. However, there are approximately 800 million hectares of the
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world’s irrigated land affected by saline or sodic globally [7,8]. Salinity has become one of the most
important environmental stress factors impairing worldwide agricultural productivity. Under salinity
conditions, the seed germination, growth and development processes of alfalfa are inhibited and
they finally impair the herbage yield, as well as the forage quality [9]. Breeding new alfalfa cultivars
with high salt tolerance is always needed. Genetic engineering and conventional breeding have been
proven efficient for improving salt tolerance of various plant species [10–13]. However, they are
time-consuming and complicated. Exogenous application of certain plant growth regulators such as
phytohormone and other small molecules has been proven efficient at overcoming the harmful effects
of salt stress on plants [14–17]. Moreover, plant growth regulators in low concentrations always play a
role in plants, and are cost-effective. Foliar spraying of salicylic acid (SA) on faba bean inhibits Na+

accumulation and lipid peroxidation, improving the antioxidant resistance and finally mitigating the
damage caused by salinity [18]. Exogenously applied poly-γ-glutamic acid on wheat maintains the
Na+ and K+ homeostasis and enhances antioxidant capacity by alleviating salinity damage under
salt stress conditions [19]. Exogenous spermidine application to salt-stressed cucumber improves the
photosynthetic capacity and the activity of key enzymes for CO2 fixation by regulating the expression
of related genes, and tolerance to salinity is thus conferred [20].

Melatonin (N-acetyl-5-methoxytryptamine) is a bioactive molecule that was first identified in the
mammalian pineal gland. It is a derivate from the essential amino acid tryptophan. Melatonin plays
an important role in regulating circadian rhythms, sleep disorders, immunologic enhancement and
antioxidative activity in animals [21,22]. Melatonin was first identified in plants in 1995, and since then
there has been extensive research seeking to reveal the presence of melatonin in the plant kingdom and
the physiological roles melatonin plays in plants [23]. Melatonin has been detected in a considerable
variety of plants consisting of vegetables, cereals, fruits and medicinal herbs [24,25]. Melatonin
levels vary from a few pg to over several hundred µg per fresh weight between species, organs,
and different environment conditions [25]. Melatonin has proven to be a versatile regulator and
participates in plant growth, development and stress responses. It participates in seed germination,
lateral root formation, flowering, circadian rhythms, photosynthesis, senescence and response to
various environmental stresses [26–30]. The biosynthesis of melatonin in plants is catalyzed by four
successive enzymatic steps, including tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase
(T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT)/caffeic
acid O-methyltransferase (COMT) [31]. The upregulation of these genes in melatonin biosynthesis
pathway is beneficial for endogenous melatonin accumulation.

Evidence shows that melatonin is a powerful antioxidant in plant responses to abiotic
stresses [32,33]. Under stress conditions, plants produce reactive oxygen species (ROSs) and excessive
ROSs inevitably lead to oxidative damage [34]. Experimental evidence proves that melatonin is
an efficient free-radical scavenger and antioxidant under stress conditions, can directly scavenge
excessive ROS and reactive nitrogen species (RNS), and can enhance the activity of the antioxidative
enzymatic system, which controls the burst of hydrogen peroxide in plants and protects them from
oxidative stress [35,36]. Melatonin has been used extensively in enhancing multiple stress resistances
in various plant species including rice, wheat, barley, cucumber, soybean, perennial ryegrass and
alfalfa [37–43]. Melatonin participates in stress responses via crosstalk with various phytohormones,
such as auxin (IAA), ethylene (ET), jasmonic acid (JA), salicylic acid (SA) and brassinosteroids (BR) [33].
The crosstalk of melatonin with other phytohormones occurs through regulating the expression of its
upstream and downstream genes. Melatonin modulates the salt tolerance of grapevines by enhancing
ethylene biosynthesis via regulating the transcripts of ACS1 [44]. Melatonin regulates the salt tolerance
of sunflower by accompanying with NO to modulate the expression of Cu/Zn-SOD and Mn-SOD
genes [45]. Exogenous applications of melatonin alleviate oxidative damage induced by salt stress
by enhancing the expression of genes related to ABA and GA biosynthesis [46]. Pretreatment with
melatonin alleviates the growth inhibition and oxidative damage of M. hupehensis by directly scavenging
H2O2 and enhancing the activities of antioxidative enzymes, and by controlling the expression of
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ion-channel genes to maintain homeostasis [47]. Melatonin has been reported to improve the drought
tolerance and waterlogging resistance by exogenous application on alfalfa [43,48]. Based on the existing
reports, we assumed that the exogenous application of melatonin might be effective in improving the
salt tolerance of alfalfa.

To validate the hypothesis, we assessed the effects of various concentrations of melatonin on
the germination and seedling growth of alfalfa under salinity conditions. The results showed that
the exogenous application of melatonin can remarkably enhance salt tolerance and alleviate the salt
injury of alfalfa. Our study confirms that melatonin performs its primary function as an antioxidant,
positively improving the salt tolerance of alfalfa through scavenging reactive oxygen and enhancing
the activities of antioxidant enzymes.

2. Results

2.1. Melatonin Promotes Seed Germination and Seedling Growth under Salt Stress

Melatonin was proved beneficial to plant growth and development, as well as response to various
abiotic stresses. Before salinity treatment, an appropriate salt and melatonin (MT) concentration was
screened. The germination rate of alfalfa seeds under 200 mM and 250 mM NaCl was about 40% and
23%, respectively (Figure 1A,C). The root length of seedlings under salinity conditions was shorter
than that under normal conditions (Figure 1B). Therefore, we chose 200 mM NaCl in the following
salinity treatment. To assess the effectivity of MT on seed germination and seedling growth, alfalfa
seeds pretreated with different concentrations of MT (0, 1, 10, 50, 100 and 500 µM) were germinated
under non-stressed conditions. MT promoted the elongation of seedling roots significantly; the root
length of seedlings with 10 and 50 µM MT pretreatments was at least 9 cm, remarkably longer than
6.5 cm of the control seedlings (Figure 1E,F). However, the germination rate of alfalfa seeds under
normal conditions was almost 95%; pretreatment with MT could not further promote the germination
rate (Figure 1D). Under salinity condition, primed seeds showed a superior germination potential,
and the seed coats broke earlier. The increases in germination potential with 10 and 50 µM MT
pretreatment vary from 13.2% to 19.9%, respectively, after 4 days for seed germination (Figure 1G,H).
After 10 days, the germination rate of seeds with 1 µM MT treatment was 69.8%, rates with 10–100 µM
MT treatments were up to 82%, and the rate with 500µM MT decreased to 75.6% (Figure 2A). In addition,
the seedling roots were also elongated compared to unprimed seedlings (Figure 1I). The root length
of primed seedlings under 200 mM NaCl varied from 2.10 to 2.70 cm with various concentration of
MT pretreatment, on average 1 cm longer than unprimed seedlings (Figure 2B). The fresh weights of
seedlings with various concentrations of MT pretreatment were all higher than those of unprimed
seedlings, and the root/shoot ratio was also increased slightly (Figure 2C,D). The results indicated that
melatonin can alleviate the seedling growth inhibition caused by salt stress.

2.2. Melatonin Reduces Salt Injury of Alfalfa Seedlings under Salt Stress

The application of melatonin promoted the seedling growth under salt stress with 200 mM NaCl.
Salt stress affects the stability of plant cell membranes. Electrolyte leakage (EL) represents the plant
cell permeability, which is an important index of a plant’s salt tolerance [49]. Malondialdehyde (MDA)
is the end product of lipid oxidation, and reflects the degree of membrane lipid peroxidation. These
indicators can indirectly present the damage degree of the membrane system and the stress resistance of
plants [49]. Compared with the unprimed seedlings, primed seedlings integrally exhibited significantly
lower EL, lower MDA content and lower H2O2 content especially with 50 µM MT pretreatment
(Figure 3A–C). Despite that, the activities of antioxidant enzymes CAT and POD were significantly
increased and the activity of Cu/Zn-SOD with 50 µM MT pretreatment was also significantly higher
than the unprimed plants, while the activity of total superoxide dismutase (T-SOD) exhibited no
significant difference between MT pretreatment and control seedlings (Figure 3D–G). To summarize,
pretreatment with MT enhanced the salt tolerance of alfalfa seedlings by reducing the cell permeability
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and membrane lipid peroxidation, and by reducing the H2O2 accumulation, and 50 µM MT exhibited
the optimal effects, so it was chosen for further applications.Plants 2020, 9, 220 4 of 17 
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(0, 100, 150, 200 and 250 mM) for 7 days; (C), Germination rates of alfalfa seeds germinated under 
various concentrations of NaCl (0, 100, 150, 200 and 250 mM) for 7 days; (D), Germination rate of 
alfalfa seeds pretreated with various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) and 
germinated under normal conditions for 7 days; (E), Seedlings germinated under normal conditions 
for 7 days with different concentrations of MT (0, 100, 150, 200 and 250 mM) pretreatment; (F), Root 
length of alfalfa seedlings after being germinated under normal conditions for 7 days with several 
concentrations of MT (0, 10 and 50 µM) pretreated; (G), Alfalfa seeds germinated under salt stress 
(200 mM NaCl) and salt stress with MT pretreatment (50 µM MT + 200 mM NaCl) for 4 days; (H), 
Germination potential of alfalfa seeds with MT (0, 10 and 50 µM) pretreated and germinated under 
salt stress with 200 mM NaCl for 4 days; (I), Seedlings germinated under 200 mM NaCl condition for 
7 days with MT (0, 1, 10, 50, 100 and 500 µM) pretreatment, scale bar, 1 cm. Data are represented as 
means ± SE (n = 3), and bars with different letters indicate the differences between these different 
treatment groups according to ANOVA analysis (p < 0.05). 
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Figure 1. Germination status of alfalfa seeds under various concentrations of salt and melatonin (MT).
(A), Alfalfa seeds germinated under salt stress with various concentrations of NaCl (0, 100, 150, 200
and 250 mM) for 7 days; (B), Seedlings after being germinated under different concentrations of NaCl
(0, 100, 150, 200 and 250 mM) for 7 days; (C), Germination rates of alfalfa seeds germinated under
various concentrations of NaCl (0, 100, 150, 200 and 250 mM) for 7 days; (D), Germination rate of alfalfa
seeds pretreated with various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) and germinated
under normal conditions for 7 days; (E), Seedlings germinated under normal conditions for 7 days with
different concentrations of MT (0, 100, 150, 200 and 250 mM) pretreatment; (F), Root length of alfalfa
seedlings after being germinated under normal conditions for 7 days with several concentrations of MT
(0, 10 and 50 µM) pretreated; (G), Alfalfa seeds germinated under salt stress (200 mM NaCl) and salt
stress with MT pretreatment (50 µM MT + 200 mM NaCl) for 4 days; (H), Germination potential of
alfalfa seeds with MT (0, 10 and 50 µM) pretreated and germinated under salt stress with 200 mM NaCl
for 4 days; (I), Seedlings germinated under 200 mM NaCl condition for 7 days with MT (0, 1, 10, 50, 100
and 500 µM) pretreatment, scale bar, 1 cm. Data are represented as means ± SE (n = 3), and bars with
different letters indicate the differences between these different treatment groups according to ANOVA
analysis (p < 0.05).
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Figure 2. Germination rate (A), root length (B), fresh weight (C) and root/shoot ratio (D) of alfalfa
seedlings pretreated with various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) and germinated
under 200 mM NaCl for 7 days. Data are represented as means ± SE (n = 3), and bars with different
letters indicate the differences between these different treatment groups according to ANOVA analysis
(p < 0.05).
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Figure 3. The mitigated effects of various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) on 
electrolyte leakage (A), malondialdehyde (MDA) content (B), H2O2 content (C) and the enzyme 
activities of peroxidase (POD) (D), catalase (CAT) (E), Cu/Zn superoxide dismutase (Cu/Zn-SOD) (F), 
and T-SOD (G) of alfalfa seedlings under 200 mM NaCl salinity condition. Data are represented as 
means ± SE (n = 3), and bars with different letters indicate the differences between these different 
treatment groups according to ANOVA analysis (p < 0.05). 

2.3. Melatonin Application Improves Salt Tolerance of Alfalfa Plants 

To assess the effects of melatonin on alfalfa plants, we applied 50 µM MT to one-month-old 
plants via foliar spraying for seven days. Half of the MT-pretreated plants and half of the control 
plants were subjected to salinity treatment with 200 mM NaCl. Fifteen days later, melatonin-treated 
plants under normal conditions were robust, which was similar to the control plants. Plants under 

Figure 3. The mitigated effects of various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) on
electrolyte leakage (A), malondialdehyde (MDA) content (B), H2O2 content (C) and the enzyme
activities of peroxidase (POD) (D), catalase (CAT) (E), Cu/Zn superoxide dismutase (Cu/Zn-SOD) (F),
and T-SOD (G) of alfalfa seedlings under 200 mM NaCl salinity condition. Data are represented as
means ± SE (n = 3), and bars with different letters indicate the differences between these different
treatment groups according to ANOVA analysis (p < 0.05).

2.3. Melatonin Application Improves Salt Tolerance of Alfalfa Plants

To assess the effects of melatonin on alfalfa plants, we applied 50 µM MT to one-month-old plants
via foliar spraying for seven days. Half of the MT-pretreated plants and half of the control plants
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were subjected to salinity treatment with 200 mM NaCl. Fifteen days later, melatonin-treated plants
under normal conditions were robust, which was similar to the control plants. Plants under salt
stress showed retarded growth and with visible foliar injury, and a majority of leaves were wilted.
However, melatonin-treated plants exposed to salt stress for 15 days exhibited obvious mitigating
effects (Figure 4A,B).
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Figure 4. Effects of MT (50 µM) pretreatment on one-month-old alfalfa plants exposed to salt stress
(200 mM NaCl) for 15 days. A, B, Plants sprayed with MT (50 µM) or water for 7 days (A) and
subsequently subjected to salt stress with 200 mM NaCl or normal conditions for 15 days (B). Plants
from left to right: plants grown under normal conditions, plants pretreated with MT and grown under
normal conditions, plants subjected to salt stress, and plants pretreated with MT and then subjected to
salt stress; C–E, Effects of MT pretreatment on the MDA content (C), electrolyte leakage (D) and H2O2

content (E) of alfalfa plants before and after salinity treatment or under normal conditions. Data are
represented as means ± SE (n = 3), and bars with different letters indicate the differences between these
four different groups according to ANOVA analysis (p < 0.05).

Before salinity treatment, MT pretreatment had no effect on these physiological indexes and they
all remain at a relative low level without significant differences. Fifteen days later, MDA content in
all these groups were increased, while MDA content in plants pretreated with MT were significantly
lower than that in control plants either under normal conditions or salinity conditions (Figure 4C).
With 200 mM of NaCl treatment for 15 days, the electrolyte leakage of alfalfa plants was significantly
increased; the electrolyte leakage had reached 88.4% with salt stress treatment, and reached 75.3%
in plants with MT pretreatment (Figure 4D). The H2O2 content was also increased in all four group
plants after 15 days, while that in all plants with MT pretreatment was significantly lower than that in
control plants under normal or salinity conditions (Figure 4E). In addition, the activities of several
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antioxidant enzymes were also improved with MT pretreatment. Before salinity treatment, there were
no significant differences in any of these plants, which demonstrated that MT pretreatment had no
significant effects on the activities of these antioxidant enzymes under normal conditions. Under
salt stress treatment with 200 mM NaCl for 15 days, the activities of CAT, POD and Cu/Zn-SOD in
plants with MT pretreatment were significantly higher than that in salt-treated plants (Figure 5A–C).
However, the activity of glutathione peroxidase (GSH-PX) was decreased in all plants after salinity
treatment, and the activity of GSH-PX in plants with MT pretreatment was significantly lower than that
in salt-treated plants (Figure 5D). Meanwhile, salt stress severely affected ion homeostasis, and plants
could accumulate excessive Na+ and lose K+ in cells, causing ion toxicity. To detect the effects of MT
on ion homeostasis, we measured Na+ and K+ content in shoot and root parts in these plants under
normal or salt stress conditions for 15 days. The results showed that the Na+ content in plants with
salt stress treatment was significantly higher than that in non-stressed plants, and MT pretreatment
reduced Na+ accumulation both in shoot and root parts, in both salinity and normal conditions,
especially in the shoot parts of alfalfa plants (Figure 5E). Salt stress treatment reduced K+ uptake in
both shoots and roots, and MT pretreatment improved K+ uptake only in shoot parts under salt stress
conditions (Figure 5F). For the K+/Na+ ratio, plants with MT pretreatment under normal conditions
exhibited a significantly higher K+/Na+ ratio both in shoot and root parts. Under salt stress conditions,
the K+/Na+ ratio was increased in the shoot part of the plants pretreated with 50 µM MT (Figure 5G).
The results showed that MT mitigated salinity damage mainly by protecting membrane stability,
enhancing antioxidative enzyme activities and reducing Na+ accumulation in alfalfa plants.

2.4. Melatonin Application Induces the Expression of Genes Related to Melatonin and Antioxidants
Biosynthesis

To further explore the regulation mechanism of melatonin in alfalfa plants’ responses to salt
stress, we detected the relative expression level of several genes in the melatonin biosynthesis pathway
and of genes related to antioxidants biosynthesis by qRT-PCR. The results showed that exogenous
application of MT promoted the transcript of TDC under normal and salt stress conditions (Figure 6A).
MT application also promoted the transcript of SNAT in alfalfa plants, especially under salt stress
conditions (Figure 6B). The transcript of ASMT was improved in alfalfa under salt stress treatment for
15 days, but increases in the ASMT transcript level under salt stress conditions were not that obvious
compared to normal conditions, nor were they remarkable in plants with MT pretreatment compared
to non-stressed plants (Figure 6C). Melatonin pretreatment increased the activities of antioxidant
enzymes. The transcript levels of these antioxidant enzyme biosynthesis genes were evaluated in
different treatment plants. The transcript levels of Cu/Zn-SOD, CAT and APX genes were increased
significantly by MT pretreatment under salt stress, and MT application also promoted the transcripts
of Cu/Zn-SOD and APX genes under normal conditions (Figure 6D–F). The results demonstrated that
melatonin plays a role as a positive antioxidant in scavenging reactive oxygen and enhancing the
activities of antioxidant enzymes by upregulating the expression of genes related to melatonin and
antioxidants biosynthesis, thus enhancing the salt tolerance of alfalfa plants.
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Figure 5. The activities of antioxidative enzymes and the Na+, K+ contents of alfalfa plants under
normal or salt stress (200 mM NaCl) conditions. A–D, the activities of CAT (A), POD (B), Cu/Zn-SOD
(C) and glutathione peroxidase (GSH-PX) (D) in different groups of plants before and after salt stress
treatment; E–G, Na+ content (E), K+ content (F), and the K+/Na+ ratio (G) in the shoots and roots
of one-month-old alfalfa plants pretreated with MT and exposed to salt stress with 200 mM NaCl
for 15 days. Data are represented as means ± SE (n = 3), and bars with different letters indicate the
differences between these four different groups according to ANOVA analysis (p < 0.05).
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Figure 6. Relative expression level of several selected genes in the melatonin biosynthesis pathway
and genes encoding antioxidative enzymes involved in reactive oxygen species (ROS) metabolism A–C,
relative expression level of tryptophan decarboxylase (TDC) (A), serotonin N-acetyltransferase (SNAT)
(B), and N-acetylserotonin methyltransferase (ASMT) (C) in the melatonin biosynthesis pathway in
different treated plants before and after 200 mM NaCl treatment for 15 days; D–F, relative expression
level of Cu/Zn-SOD (D), CAT (E), and ascorbate peroxidase (APX) (F) in leaves of alfalfa plants before
and after 200 mM NaCl treatment for 15 days. Data are represented as means ± SE (n = 3), and bars
with different letters indicate the differences between these four different groups according to ANOVA
analysis (p < 0.05).

3. Discussion

Salt stress is one of the most commonly encountered abiotic stresses for plants, and soil salinization
is a severe environmental problem affecting crop fields. The current research provides insight into
melatonin applications enhancing salt tolerance in various crop species [50,51]. Alfalfa is one of the
most important forage grasses cultivated worldwide with a high biomass yield and a high protein
content. Salt stress strongly limits the growth, quality and productivity of alfalfa [6]. Melatonin is an
environmentally friendly bioactive molecule, which plays important roles in plant defense against
salt stress [50]. Previous reports have confirmed that exogenous melatonin promoted alfalfa drought
tolerance by modulating nitro-oxidative homeostasis and proline metabolism [43] and promoted
waterlogging tolerance by regulating polyamine and ethylene metabolism [48]. We previously found
that overexpression of AANAT and HIOMT from Ovis aries in switchgrass promoted plant growth and
improved the salt tolerance of transgenic switchgrass [30]. The genetic manipulation of melatonin
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biosynthesis genes is an efficient way to enhance the salt tolerance of transgenic plants, and it is
noteworthy in terms of exogenous applications that melatonin can be brought into practice to improve
the salt tolerance of plants.

The enhancement of salt tolerance through melatonin application mainly depends on directly
scavenging ROS and enhancing the activities of antioxidative enzymes and photosynthetic efficiency,
as well as regulating the transcription of genes related to salt stress [34]. Melatonin plays a function
with dose-dependent effects, and an optimum concentration of melatonin plays a role in resisting
environmental stresses; optimum concentrations are different among different plant species [52]. Before
exogenous application of melatonin, a suitable melatonin concentration must be chosen through
pre-experiment evaluation. Before our research, we designed germination experiments to choose
suitable concentrations of NaCl and melatonin, respectively, and these were crucial to the success of the
experiments. Depending on the germination rate, seedling growth, and antioxidative abilities under
salt stress, we chose 50 µM melatonin for further application research. Melatonin pretreatment has no
influence on plant growth under normal conditions; under salt stress conditions, melatonin plays roles
in scavenging reactive oxygen and in enhancing the activities of antioxidant enzymes, mainly CAT
and POD, protecting plants from stresses. The high activities of antioxidant enzymes in plants under
salt stress are necessary for plants to defend against ROS damage, and the high antioxidant activities
sometimes represent high oxidative tolerance. The antioxidant enzymes in the enzymatic system have
been assigned a specific role in ROS detoxification. For example, SOD converted O−2 into H2O2 in plant
cells, and H2O2 was then detoxified by CAT and POD. CAT catalyzes H2O2 hydrolyzed into H2O and
O2, and POD has a higher affinity to H2O2 than CAT [53,54]. In our study, the higher activities of CAT
and POD in melatonin-pretreated plants corresponded with reduced H2O2 accumulation under salt
stress. The relatively high Cu/Zn-SOD activity and unchanged T-SOD activity in melatonin-pretreated
alfalfa seedlings might indicate that, under salt stress, alfalfa seedlings mainly accumulate H2O2, rather
than O−2. Glutathione peroxidase (GSH-PX) is an important peroxidase that widely exists in plants,
and that belongs to the non-enzymatic system. It catalyzes glutathione (GSH) into glutathione disulfide
(GSSG), causes poisonous peroxide reduction into non-toxic hydroxyl compounds and participates
in H2O2 decomposition [55,56]. The activity of GSH-PX in our results with MT pretreatment was
decreased under salt stress, which might have resulted from a different regulation pathway in alfalfa
plants. An explanation requires further research. The relative expression levels of Cu/Zn-SOD, CAT and
APX genes in plants with MT pretreatment were upregulated under normal and salt stress conditions,
which contributed to H2O2 scavenging to enhance the antioxidative ability of plants. However, the
main function of melatonin on enzymatic or non-enzymatic system-mediated ROS scavenging in
alfalfa plants still requires further study. The positive effects of melatonin on antioxidant enzymes
system under salt stress conditions is also confirmed in tomato seedlings and maize seedlings [57,58].
Exogenous application of melatonin promotes plant growth and stress resistance mainly through
enhancing the plant endogenous melatonin level. The relative expression level of TDC, SNAT and
ASMT genes were all upregulated with MT pretreatment under salt stress, which was dedicated
to the biosynthesis of endogenous melatonin in plants. The relative expression level of ASMT was
not increased significantly, which might have resulted from the alternative function of caffeic acid
O-methyltransferase (COMT) in the last step of melatonin biosynthesis [59].

The current studies were mainly dedicated to the exogenous application of melatonin so as to
enhance various abiotic and biotic stresses. The effects of exogenous melatonin were discrepant with
differences in treatment time, treatment organs, melatonin concentration and plant species. With the
identification of genes in the melatonin biosynthesis pathway, to uncover the regulation mechanisms
of melatonin in plants, the manipulation of genes expression in the melatonin biosynthesis pathway,
mainly SNAT and ASMT, was an efficient way to modulate endogenous melatonin and to further
reveal the melatonin regulation pathway in response to various stress conditions, especially with
the discovery of the first melatonin receptor CAND2/PMTR1 [60]. Based on the positive effects of
melatonin on alfalfa salt tolerance, we supposed that improving endogenous melatonin content might
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have profound effects on alfalfa growth and abiotic stress resistance. We isolated SNAT and ASMT
genes from alfalfa and overexpressed them respectively into the alfalfa genome, and the elevated
melatonin content in transgenic plants promoted transgenic plant growth. In the future, we would like
to evaluate the abiotic stress resistance and explore the molecular mechanism of melatonin regulation
with respect to plant resistance to abiotic stresses.

In summary, we evaluated the effects of exogenous melatonin on alfalfa germination, seedling
growth, and plant resistance to salt stress. The results demonstrate that exogenous application of
melatonin can promote plant growth and alleviate the salt damage of alfalfa plants under salt stress
by upregulating the expression of genes related to melatonin biosynthesis and antioxidative enzyme
activities. The salt tolerance of alfalfa was improved by reducing oxidative damage and enhancing
the activities of antioxidant enzymes, which provides insight into how alfalfa salt tolerance can be
improved with a novel bioactive molecule, melatonin.

4. Materials and Methods

4.1. Plant Materials and Regents

All of the experiments were conducted at China Agricultural University, Beijing (39.9◦ N, 116.3◦ E).
The alfalfa (Medicago sativa L.) cultivar used in this experiment was “Zhongmu No. 2”. All chemicals
used in experiments were of analytical grade. Melatonin (N-acetyl-5-methoxytryptamine) was
purchased from Sigma-Aldrich (M5250, Shanghai, China) and stored at −20 ◦C.

4.2. Germination Tests

To screen the appropriate salinity concentration, the alfalfa seeds were sterilized in a 5% sodium
hypochlorite solution for 15 min, and rinsed with distilled water five times. Fifty sterile seeds were
placed on 12 × 12 cm Petri dishes with three layers of filter paper moistened with 10 mL of NaCl
solution of various concentrations (0, 100, 150, 200 and 250 mM), germinated at 25 ◦C in darkness for
2 days, and then transferred to light conditions at 25/22 ◦C under a light/dark photoperiod of 16/8 h.
One week later, the germination rates and the lengths of the seedling roots were measured. Three
biological replicates were performed.

To assess the melatonin effect upon salt stress, sterile seeds were immersed into melatonin
solutions of various concentrations (0,1, 10, 50, 100 and 500 µM) for 24 h at 4 ◦C in the dark. After
being air-dried, one hundred primed seeds were placed on 12 × 12 cm Petri dishes with three layers
of filter paper moistened with 10 mL of distilled water or a 200 mM NaCl solution, germinated at
25 ◦C in the dark for 2 days, and then transferred to light conditions at 25/22 ◦C under a light/dark
photoperiod of 16/8 h. Three replications of 100 seeds per plate were performed. The germination
potential, germination rate, root length, fresh weight and root/shoot ratio of the plants with various
concentrations of MT pretreatment were also recorded.

4.3. Melatonin Application and Salinity Treatment of Alfalfa Plants

Seedlings germinated on the filter paper with distilled water were transferred to plastic pots
(15 cm in diameter) with a mixture of soil (vermiculite/humus = 1:1) and maintained in a growth room
under a 16/8 h (light/dark) photoperiod with 200 µmol m−2s−2 light intensity at 25 ± 2 ◦C. Seedlings
were watered with 1/2 × Hoagland solution every two days. One month later, when the height of the
seedlings was about 15 cm, seedlings were divided into four groups with two control groups and
two experiment groups. Control Group 2 (CK2) and the Experiment Group 2 (E2) were applied with
50 mL of a 50 µM melatonin solution by foliar spraying every night, while Control Group 1 (CK1)
and Experiment Group 1 (E1) were sprayed with 50 mL of deionized water every night for one week.
Hereafter, CK1 and CK2 were watered with a nutrient solution every other day, and E1 and E2 were
watered with a nutrient solution with 250 mM NaCl every other day for another two weeks. Each
group contained 12 pots with three plants per pot.
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4.4. Measurement of Electrolyte Leakage and Malondialdehyde (MDA) Content

Electrolyte leakage was determined according to our previous reports [61]. The fresh seedlings
or leaves (0.2 g) were washed with deionized water and then immersed into 20 mL of deionized
water and agitated at room temperature for 24 h. After agitation, the conductivity was measured,
the samples were autoclave-sterilized for 30 min and then agitated for another 24 h at room temperature
to measure the conductivity again. The electrical conductivity was measured with a conductometer
(AZ pH/mV/Cond./TDS/Temp. meter 86505).

Malondialdehyde (MDA) content was extracted and measured using the MDA Kits (Suzhou
Comin Biotechnology Co., Ltd., Suzhou, China; Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) according to the manufacturer’s instructions.

4.5. Measurement of Activities of Antioxidant Enzymes

The leaves of plants before and after salt stress treatment were sampled for catalase (CAT),
peroxidase (POD), and superoxide dismutase (SOD) measurement with the corresponding plant kits
(Suzhou Comin Biotechnology Co., Ltd. Suzhou, China) following the manufacturer’s instructions
with a spectrophotometer (Hitachi UH5300, Tokyo, Japan).

4.6. Measurement of Na+ and K+ Content

The Na+ and K+ content was measured according to our previous work [62]. The shoot and root
parts of alfalfa after different treatments were harvested and dried at 65 ◦C for 48 h. Approximately
50 mg of dry powder samples were sampled into 10 mL plastic tubes and 8 mL of deionized water
was added. The mixture was held in a bath of boiling water for about 30 min. The supernatant was
transferred into a 50 mL plastic tube. Deionized water was added to the mixture, and the steps were
repeated 3–4 times. All of the supernatant was then filtered and diluted to 50 mL with deionized water.
After that, a flame spectrophotometer (Sherwood, UK) was used to measure the Na+ and K+ content.
Three biological replicates were performed.

4.7. Extraction of Total RNA and Quantitative Real-Time PCR Analyses

Total RNA was isolated from leaves using an RNA Extraction Kit (Huayueyang Bio, Beijing,
China). The integrity of the RNA was ensured by gel electrophoresis and an absorbance measurement
at 260 and 280 nm with a Nanodrop 2000. The intact RNA was reverse-transcribed with the PrimeScript
RT reagent Kit with gDNA Eraser (Takara, Dalian, China) according to the manufacturer’s instructions.
Synthesized cDNA was subjected to PCR with an actin gene primer from alfalfa to determinate the
quality [60]. The diluted cDNAs derived from the leaves of different group plants were then used
as templates and were subject to real-time quantitative PCR. The primers were designed according
to the gene sequence downloaded from The Alfalfa Gene Index and the Expression Atlas Database
(http://plantgrn.noble.org/AGED/index.jsp). The relative expression levels of target genes were
calculated with the formula 2−∆∆CT method. All of the primers used in qRT-PCR are listed in Table 1.

4.8. Statistical Analysis

Each experiment was repeated three times and with at least three biological replications. All data
were subjected to one-way analysis of variance (ANOVA, SPSS 18.0), and multiple comparisons of the
mean value were made via Duncan’s test.

http://plantgrn.noble.org/AGED/index.jsp
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Table 1. Primers list used in qRT-PCR.

Primer Name Primer Sequences (5′-3′)

TDC-F CTCGCAGGATCTTGTCACGG
TDC-R AGGCACTCCTTCTGCCTCAT
SNAT-F GTCAGAGGGGAATGAACAAAA
SNAT-R TTCCACGACTTTACTATCTGCG
ASMT-F ATTTCTTCACTACCAATCCACCC
ASMT-R CCACACTCATTGGATTGTTCTAAA
Cu/Zn-SOD-F TCCACTGGTCCTCACTTCAATC
Cu/Zn-SOD-R GACAGCCCTTCCGAGTATGG
CAT-F TGAAGACCCCTCCCTACGAA
CAT-R GAACTCAGGTGAAGGATTGCC
APX-F AACGAAACAAAATGGCAGACC
APX-R AATTGAGCGAGGAAACGGA
Actin-F CAAAAGATGGCAGATGCTGAGGAT
Actin-R CATGACACCAGTATGACGAGGTCG

Author Contributions: Conceptualization, H.C. and Y.Z.; Methodology, T.W. and H.L.; Data Analysis, T.W. and
D.T.; Writing—Original Draft Preparation, H.C.; Writing—Review &Editing, H.C., T.W., H.L., D.T. and Y.Z. All
authors have read and agreed to the published version of the manuscript.
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