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Abstract: The interactions between the uptake of selenium (as selenite and selenate) and iodine
(as iodate and iodide) by red chicory (Cichorium intybus L. var. foliosum Hegi) and their effects
on selected morphological and physiological characteristics were investigated. Seedlings were
transplanted to the field, and at the onset of head formation, the plants were foliar-sprayed with the
following solutions: Milli-Q water (control), Se (IV), Se (VI), I (−I), I (V), Se (IV) + I (−I), Se (IV) + I (V),
Se (VI) + I (−I) and Se (VI) + I (V). The different treatments had no significant effects on the yield
(39.8–51.5 t ha−1) and mass (970–1200 g) of the chicory heads. The selenium content in Se-treated
plants was up to 5.5-times greater than the control plants. The iodine content in the chicory leaves
enriched with I was 3.5-times greater than the control plants. Iodide or iodate, applied together
with selenite in the spray solution, increased the uptake of Se by chicory plants, while both forms
of iodine, applied together with selenate, reduced the uptake of Se. Plants treated with I (V) had lower
amounts of chlorophyll a and carotenoids than the control, while respiratory potential was higher
than the control, which indicated the possible presence of stress in I (V)-treated plants. However,
the potential photochemical efficiency of photosystem II was similar and close to the theoretical
maximum (0.83) in the control and treated groups, which indicated that all of the plants were in good
condition. Furthermore, the plant mass and yield were comparable in the control and treated groups.
Molecular studies, like gene expression analysis, would represent a major upgrade of the present
study by defining the mechanisms of Se and I uptake and their interactions and by enhancing the
knowledge of the Se and I transporters.
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1. Introduction

The trace elements iodine (I) and selenium (Se) are essential for the normal function of the thyroid
gland [1]. The simultaneous biofortification of crops with I and Se is suitable in areas where there is a
deficiency of both elements. The main reason for insufficient intake of I and Se in humans is their low
content in vegetables [2,3]. Consequently, their uptake and further transfer along the food chain is low.

Iodine is a micronutrient that is essential for the correct physiological functioning of humans
and animals (mainly mammals) [4]. The World Health Organization has identified I deficiency as one
of the main factors that affect human health [5]. Iodine-deficiency disorders are the consequence of
insufficient secretion of thyroid hormones, the obvious sign of which is goitre, the enlargement of
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the thyroid gland [6]. All age groups are at risk, and severe I deficiency can result in foetal damage,
perinatal and infant mortality, endemic goitre, irreversible mental retardation and brain damage [6].

Plants absorb I in the form of iodide or iodate. Iodine, as the iodide anion, reaches the cells via the
chloride transport pathway [7]. Iodine is not essential for plants, although more and more studies
have shown that it is involved in plant physiological and biochemical processes [8]. It was recently
discovered that, in spinach plants, I uptake is predominantly passive, but I (−I) can be absorbed
actively through the symplast. Spinach leaves can absorb I via foliar fertilization, but its translocation
is strongly limited [9].

Selenium is important for the normal function of a number of Se-dependent antioxidant enzymes,
such as glutathione peroxidase and thioredoxin reductase [10]. Selenium has important biological
functions, which range from protection against cancer to an influence on hormone metabolism [11].
Many epidemiological studies have confirmed that Se deficiency in the diet increases the incidence
of cardiovascular disease, leads to thyroid dysfunction, and impairs the function of the immune and
nervous systems [12]. A lack of Se has been linked to the occurrence of Kaschin-Beck disease, Keshan
disease and chronic diseases associated with oxidative damage [13].

Plants absorb Se in the form of selenate or selenite. Selenate is actively transported by sulphate
transporters [14], while selenite is assimilated via phosphate transporters [15]. Selenium essentiality for
plants is still under discussion. However, there is increasing experimental evidence of a protective role
of Se in plants [16] as an antioxidant and growth-promoting agent. Iodine and Se can stimulate plant
growth at low concentrations, whereas they reduce it at higher concentrations. The threshold value
depends on many factors, such as the plant species, developmental stage of the plant, technique of
element addition, cultivation technique and others [3,11,16].

One of the first studies in which both elements were applied to plants simultaneously was
published in 2004, where hydroponically grown spinach was enriched with Se and I [17]. In recent years,
double enrichment has been performed for lettuce, carrot, pea sprouts and adult plants, Brassica juncea,
buckwheat microgreens and adult plants and kohlrabi [3,18–24].

Chicory (Cichorium intybus L. var. foliosum Hegi) is a perennial herb that is used as forage
for livestock, as a ‘folklore’ remedy and as a vegetable addition to the human diet [25]. It is a typical
Mediterranean plant that is indigenous to Europe, Western Asia and North America, and shows
great resistance to low temperatures [26]. In 2012, the production of chicory heads in Slovenia was
2562 tons, making it the third most produced leafy vegetable [27]. Annual chicory production in
Slovenia in recent years has been estimated at 3002 tons [27,28]. Red chicory is known as a vegetable
with high antioxidant activity. The presence of water-soluble flavonoids and other antioxidants has
many positive effects on human health, such as protection against cancer, cardiovascular diseases
and aging, among others [26,29].

The aim of the present study was to evaluate: (a) The accumulation by red chicory plants of
I and Se; (b) the effects of I on Se contents in chicory leaves and vice versa; and (c) the effects of I
and Se foliar application on selected morphological, biochemical and physiological parameters of red
chicory plants.

2. Results and Discussion

2.1. Yield of Red Chicory

In the field experiments, chicory was sprayed with the following solutions: Sodium selenite
(Na2SeO3)—Se (IV); sodium selenate (Na2SeO4)—Se (VI); potassium iodide (KI)—I (−I); potassium
iodate (KIO3)—I (V); sodium selenite and potassium iodide—Se (IV) + I (−I); sodium selenite and
potassium iodate—Se (IV) + I (V); sodium selenate and potassium iodide—Se (VI) + I (−I); or sodium
selenate and potassium iodate—Se (VI) + I (V).

The foliar application with Se and I had no significant effects on the yield of chicory heads.
These data showed that treatment with Se (VI) + I (−I) (43.9 t ha−1) and Se (VI) + I (V) (39.8 t ha−1)
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tended to reduce the chicory head the yield compared to the control (48.4 t ha−1). In addition,
the treatments with I (−I) (40.1 t ha−1) and I (V) (43.5 t ha−1) also tended to reduce the yield compared
to the control. The number of leaves that were removed to obtain the marketable mass of chicory heads,
the marketable mass of chicory and the mass of the above ground plant parts were not different
between the control and treated plants (Table 1). These data are generally in accordance with the
findings of Zhu et al. [17], who studied the uptake of Se and I by spinach. They showed that there were
no significant effects on plant shoot biomass with Se addition, while the addition of I in the substrate
tended to reduce plants shoot biomass. On the other hand, Blasco et al. [30] reported that addition
of I (−I) decreased the biomass of lettuce shoots, while the addition of I (V) increased the biomass of
the edible parts of lettuce. For buckwheat, kohlrabi and pumpkins, it has been reported that foliar
treatments with Se (IV), Se (VI), I (−I), I (V) and their combinations had no effects on their yield or
biomass [23,24,31].

Table 1. Effects of different treatments on morphological characteristics of chicory heads.

Treatment Yield of Chicory (t/ha) Mass of Above-Ground
Plant Parts (g)

Number of
Removed Leaves

Marketable Mass of
Chicory Heads (g)

Control 48.4 ± 4.0 a 1148 ± 102 a 17 ± 2 a 726 ± 59 a

I (−I) 40.1 ± 2.0 a 1009 ± 49 a 20 ± 2 a 602 ± 30 a

I (V) 43.5 ± 4.1 a 1043 ± 86 a 19 ± 1 a 653 ± 62 a

Se (IV) 51.5 ± 1.4 a 1199 ± 37 a 19 ± 1 a 766 ± 22 a

Se (VI) 46.9 ± 4.3 a 1079 ± 68 a 17 ± 1 a 704 ± 64 a

Se (IV) + I (−I) 50.1 ± 4.0 a 1176 ± 87 a 18 ± 2 a 752 ± 60 a

Se (IV) + I (V) 50.5 ± 3.8 a 1174 ± 87 a 17 ± 1 a 758 ± 57 a

Se (VI) + I (−I) 43.9 ± 1.9 a 1097 ± 69 a 19 ± 1 a 659 ± 29 a

Se (VI) + I (V) 39.8 ± 5.7 a 970 ± 125 a 16 ± 2 a 597 ± 85 a

Legend: Se (IV), sodium selenite (Na2SeO3); Se (VI), sodium selenate (Na2SeO4); I (−I), potassium iodide (KI); I (V),
potassium iodate (KIO3). Data are the mean ± SE. Means followed by different superscript letters are significantly
different at p < 0.05 (n = 5).

2.2. Selenium Content

Foliar application of Se (IV) or Se (VI) significantly increased the Se content in the chicory leaves
compared to the control. Chicory leaves treated with Se (VI) had a higher Se content than those treated
with Se (IV). Higher accumulation of Se after selenate spraying compared to selenite spraying has been
reported for a number of crops, such as basil, spinach and buckwheat [23,32,33]. These differences in
plant Se uptake and accumulation might be the consequence of different selenite and selenate uptake
mechanisms [34] and might also be due to genetic differences [32]. It is known that selenite uptake in
roots is through phosphorous transporters, while selenate uptake is through sulphur transporters [15].
However, there appear to be no data on the uptake mechanisms for Se through leaves.

On the other hand, I showed variable impacts on Se accumulation in these Se-treated and I-treated
chicory plants. Both forms of I increased Se levels in chicory heads when Se was added in the form of
Se (IV), while both forms of I decreased Se levels when Se was added in the form of Se (VI) (Figure 1).
A similar result was reported for common buckwheat seeds when exposed to the same treatments
and the same concentrations as in the present study [23]. Selenium content in buckwheat seeds was
lower when Se (VI) was applied together with I(V) or I(−I) compared to treatment with Se (VI) only,
while I (V) significantly increased Se content in seeds when applied together with Se (IV) compared to
treatment with Se(IV) only. In pumpkins, both forms of I increased Se accumulation in seeds when Se
was added in the form of Se (VI) only [31]. On the other hand, I did not affect Se content in kohlrabi
leaves and tubers [24]. The results regarding the effects of I to Se accumulation in different plant species
are inconsistent, even when the same technique (i.e., foliar spraying) and the same concentrations of
these elements are used for fertilization [3,23,24,31]. The observations are even more discrepant when
different growth techniques and fertilization practises are compared. For example, positive effects of I
on Se uptake have been shown for lettuce grown in an Nutrient Film Technique (NFT) hydroponic
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system [20], and negative effects of I on Se uptake have been reported for lettuce after soil fertilization
with these two elements [35]. Negative effects of I on Se uptake have also been reported for carrot
grown in soil fertilized with I and Se simultaneously [19].
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Means followed by different superscript letters are significantly different at p < 0.05 (n = 5).

2.3. Iodine Content

Foliar application of I(−I) or I(V) significantly increased I content in chicory leaves compared to
the control (Figure 2). There were no significant differences between the I content of chicory leaves
between the treatments with I(−I) and I(V). However, higher uptake of I (V) compared to I (−I) was
reported for kohlrabi plants [24] and buckwheat microgreens [23]. Conversely, higher uptake of I(−I)
compared to I (V) was reported for peas [3]. This is at least partly due to the different preferences of
individual plant species regarding the uptake of iodide or iodate ions.

Selenite had no effects on I content in Se (IV) + I (−I)- and Se (IV) + I (V)-treated chicory, while Se
(VI) reduced I content in Se (VI) + I (−I)- and Se (VI) + I (V)-treated chicory compared to the plants
treated with I only (Figure 2). These data are consistent with those from a study by Smoleń et al. [20]
for lettuce, in which lower uptake of I (V) in the presence of Se (VI) was reported.

Both forms of I lowered Se content when Se was added in the form of Se (VI), and the same form of
Se lowered the amount of I when added simultaneously (Figures 1 and 2). It appears that selenate and
I ions competed for Se and I uptake in plant tissues. On the other hand, I ions stimulated the uptake or
accumulation of selenite in chicory. These findings must be taken into account when fertilizing with Se
and I at the same time to achieve the optimum content of both of these elements in chicory for human
and animal nutrition.

For better understanding of the mechanisms for Se and I uptake and the interaction between Se
and I in uptake through the leaves, measurements of molecular parameters, such as gene expression
analysis, are needed.



Plants 2020, 9, 1766 5 of 10
Plants 2020, 9, x FOR PEER REVIEW 5 of 11 

 

Figure 2. Iodine content in chicory leaves following the indicated foliar spraying. Data are means ±SE. 
Means followed by different superscript letters are significantly different at p <0.05 (n = 5). 

Both forms of I lowered Se content when Se was added in the form of Se (VI), and the same form 
of Se lowered the amount of I when added simultaneously (Figures 1 and 2). It appears that selenate 
and I ions competed for Se and I uptake in plant tissues. On the other hand, I ions stimulated the 
uptake or accumulation of selenite in chicory. These findings must be taken into account when 
fertilizing with Se and I at the same time to achieve the optimum content of both of these elements in 
chicory for human and animal nutrition. 

For better understanding of the mechanisms for Se and I uptake and the interaction between Se 
and I in uptake through the leaves, measurements of molecular parameters, such as gene expression 
analysis, are needed. 

2.4. Biochemical and Physiological Plant Parameters 

Selected biochemical and physiological parameters of the chicory plants under the different 
treatments are presented in Table 2. 

Table 2. Effects of different treatments on the selected biochemical and physiological parameters. 

Treatment Chlorophyll a 
(mg g-1 DW) 

Chlorophyll b 
(mg g-1 DW) 

Carotenoids (mg 
g-1 DW) 

ETS Activity 
(μL O2 mg-1 DW 

h) 
Fv/Fm 

Control 16.6 ± 1.3ab 13.1 ± 1.1ab 4.4 ± 0.3ab 16.4 ± 0.9de 0.74 ± 
0.02 a 

I (–I) 15.1 ± 2.2abc 9.32 ± 1.4cde 4.1 ± 0.6abc 16.5 ± 0.4de 0.74 ± 
0.01 a 

I (V) 12.7 ± 1.2c 6.90 ± 0.8e 3.3 ± 0.2c 18.7 ± 0.7abc 0.75 ± 
0.01 a 

Se (IV) 14.1 ± 1.5bc 11.1 ± 1.3bcd 3.5 ± 0.3bc 16.9 ± 0.8cde 0.76 ± 
0.01 a 

Se (VI) 18.9 ± 0.8a 14.4 ± 0.9a 5.0 ± 0.2a 20.2 ± 0.7ab 0.77 ± 
0.02 a 

Se (IV) + I (–I) 15.0 ± 2.3abc 9.04 ± 1,4cde 4.1 ± 0.5abc 19.4 ± 1.5ab 0.77 ± 
0.01 a 

Se (IV) + I (V) 16.4 ± 0.5abc 10.1 ± 1,2bcd 4.2 ± 0.2abc 20.7 ± 0.6a 0.75 ± 
0.01 a 

Figure 2. Iodine content in chicory leaves following the indicated foliar spraying. Data are means ± SE.
Means followed by different superscript letters are significantly different at p < 0.05 (n = 5).

2.4. Biochemical and Physiological Plant Parameters

Selected biochemical and physiological parameters of the chicory plants under the different
treatments are presented in Table 2.

Table 2. Effects of different treatments on the selected biochemical and physiological parameters.

Treatment Chlorophyll a
(mg g−1 DW)

Chlorophyll b
(mg g−1 DW)

Carotenoids
(mg g−1 DW)

ETS Activity
(µL O2 mg−1 DW h)

Fv/Fm

Control 16.6 ± 1.3 ab 13.1 ± 1.1 ab 4.4 ± 0.3 ab 16.4 ± 0.9 de 0.74 ± 0.02 a

I (−I) 15.1 ± 2.2 abc 9.32 ± 1.4 cde 4.1 ± 0.6 abc 16.5 ± 0.4 de 0.74 ± 0.01 a

I (V) 12.7 ± 1.2 c 6.90 ± 0.8 e 3.3 ± 0.2 c 18.7 ± 0.7 abc 0.75 ± 0.01 a

Se (IV) 14.1 ± 1.5 bc 11.1 ± 1.3 bcd 3.5 ± 0.3 bc 16.9 ± 0.8 cde 0.76 ± 0.01 a

Se (VI) 18.9 ± 0.8 a 14.4 ± 0.9 a 5.0 ± 0.2 a 20.2 ± 0.7 ab 0.77 ± 0.02 a

Se (IV) + I (−I) 15.0 ± 2.3 abc 9.04 ± 1.4 cde 4.1 ± 0.5 abc 19.4 ± 1.5 ab 0.77 ± 0.01 a

Se (IV) + I (V) 16.4 ± 0.5 abc 10.1 ± 1.2 bcd 4.2 ± 0.2 abc 20.7 ± 0.6 a 0.75 ± 0.01 a

Se (VI) + I (−I) 13.3 ± 0.8 bc 8.14 ± 0.5 de 3.3 ± 0.2 c 16.1 ± 0.8 e 0.76 ± 0.02 a

Se (VI) + I (V) 16.4 ± 0.5 abc 11.2 ± 0.3 bc 4.3 ± 0.1 ab 18.3 ± 0.3 bcd 0.74 ± 0.01 a

Legend: ETS, electron transport system; Se (IV), sodium selenite (Na2SeO3); Se (VI), sodium selenate (Na2SeO4);
I(−I), potassium iodide (KI); I(V), potassium iodate (KIO3). Data are the means ±SE. Means followed by different
superscript letters are significantly different at p < 0.05 (n = 5).

Plants treated with I(V) had slightly lower amounts of chlorophyll a and carotenoids than
the control. On the other hand, the respiratory potential of these plants was higher than the control,
which indicated increased metabolic activity of chicory plants treated with I (V). I (V)-treated plants also
had higher ETS activity than the control in pea sprouts and adult pea plants [3,21], and in buckwheat
seeds [23] treated with the same concentration of I (V), as in the present study. It is possible that,
with increased metabolic activity, plants treated with I (V) protected themselves from the slight stress
induced by this treatment. When organisms are under stress, they require more energy. Therefore,
ATP production and O2 consumption in the mitochondria increase [36–38]. This is probably the reason
why the treatment with I (V) did not affect the potential photochemical efficiency of photosystem II.
On the other hand, Smoleń et al. [20] reported that, regardless of the cultivation type, such as field,
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soilless, or hydroponic, the iodide form I (-I) was more rapidly taken up by roots and that, at the
same time, it was more toxic to the plants than the iodate form I (V) [39]. The potential photochemical
efficiency of photosystem II was similar in the control and treated groups and was close to the theoretical
maximum (0.83) [40]. This indicates that the plants were in good condition, which was also confirmed
by the high yields here compared to those in other studies, i.e., 30 t ha−1 [41,42]. As there were no
significant differences between the combinations in terms of the dry matter, yield, and photochemical
efficiency of photosystem II, this shows that the application of I, Se and their combination did not
have any negative impacts on these chicory plants. Our findings can be used to develop agronomic
regulations regarding the simultaneous addition of I and Se to vegetables.

3. Materials and Methods

3.1. Plant Samples

The experiment was performed in the laboratory field of the Biotechnical Faculty, University
of Ljubljana, in the central part of Slovenia (298 m above sea level, 46◦35′ N, 14◦55′ E). Seeds of red
chicory cv. Leonardo (Austrosaat, Austria) were sown in June in polystyrene plug trays with 84 cells
(cell volume: 35 mL) filled with peat substrate (Klassmann Neuhaus N3). The soil of the experimental
site was classified as gleyic fluvisol and endogenic fluvisol and contained 26 g kg−1 soil organic matter
in the 0–0.3 m soil layer. The average initial soil nitrate content was 6.8 mg kg−1 for the same depth,
and the soil assimilable P and K were 24 mg kg−1 and 26 mg kg−1, respectively, on the basis of which
the application rates of macronutrients were calculated according to the Regulations on Integrated
Production of Vegetables [43]. One day before transplanting, granulated mineral fertilizers were
incorporated into the plots at a rate of 70 kg N ha−1, 30 kg p ha−1 and 130 kg K ha−1 and 20 kg Ca ha−1,

as calcium ammonium-nitrate, super phosphate and potassium sulphate, respectively. The remaining
N (70 kg ha−1) was applied 6 weeks after the plants were transplanted.

In July, seedlings with 4 fully developed leaves were transplanted to the bed at a planting density
of 0.35 m× 0.35 m (planting density of 66,667 plants ha−1). The experiment was laid out in 5 randomized
replicates for each treatment and 4 plants were used per replication. The plants were foliar-sprayed
with the following solutions: Milli-Q water (control), 10 mg L−1 Se (selenite and selenate), 1000 mg
L−1 I (iodide, iodate) and the combinations of these at the onset of head formation (42 days after
transplantation). The weather conditions during the experiment are presented in the supplementary
materials (Table S1). Chicory heads were sampled 98 days after transplantation when the plants formed
firm ball-shaped heads. The aboveground plant parts and trimmed plants (marketable mass of chicory
plants) were weighed and the number of leaves removed was counted. Yield was determined by
weighing the fresh marketable heads, multiplied by the number of plants per square meter, calculated
based on the inter- and intra-row spaces. Yield was expressed in tons per hectare. Also, 20% of the
total yield was deducted to take into account the tractor wheel paths where plants would not have
been planted under normal field production technology.

Biochemical and physiological analyses for the potential photochemical efficiency of PSII and
chloroplast pigments were performed on fresh plant material. For analysis of the Se and I content,
the samples were dry-frozen (1–16 LSC, Christ Gamma), homogenized, milled (Pulverisette 7, FRITISCH,
Idar-Oberstein, Germany) and stored at −20 ◦C until analysis.

3.2. Determination of Selenium and Iodine Contents

For the determination of Se content, 0.25 g lyophilized and milled chicory plants was placed
into a microwave oven (Ultrawave, Milestone, VA, USA) in 4 mL HNO3 (s.p., Merck). Digestions
were performed with the following program: 20 min ramp to 220 ◦C, and 15 min hold at 220 ◦C.
Solutions were cooled to room temperature, diluted, and the Se content was measured in parallel
using inductively coupled plasma–tandem mass spectrometry (ICP-QQQ, Agilent Technologies,
Tokyo, Japan). The detailed procedure has been described elsewhere [21]. Standard reference material
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NIST 1570a (spinach leaves) was used to check the accuracy and precision of the measurements.
Good agreement between the determined (121 ± 17) ng Se g−1 and certified (117 ± 8) ng Se g−1 values
was obtained.

To determine I content, approximately 0.15 g lyophilized and milled chicory plants was weighed
into glass vessels. For extraction, 10 mL Milli-Q water and 2 mL 25% tetramethylammonium
hydroxide were added. Extracted samples were filtered and diluted to an appropriate concentration of
tetramethylammonium hydroxide for analysis with ICP-QQQ. Again, a detailed description of the
procedure can be found elsewhere [21]. The accuracy and precision of the results were checked with
reference material BCR 129 (hay powder) and NIST 1573a (tomato leaves). The values obtained of
0.156 ± 0.006 µg g−1 and 0.81 ± 0.02 µg g−1, respectively, were in good agreement with the certified
values for I in BCR 129, 0.167 ± 0.024 µg g−1, and with the informative value for I in NIST 1573a,
0.85 µg g−1.

3.3. Determination of Biochemical and Physiological Parameters

The chloroplast pigments (carotenoids, chlorophyll a, chlorophyll b) were determined according
to the literature [44,45]. A weighed piece of fresh leaf was homogenized in a mortar and extracted in
10 mL acetone (100%). Absorbances of extracts were measured at 662 nm, 645 nm and 470 nm with
a UV-VIS spectrometer (Lambda 12; PerkinElmer, Norwalk, CT, USA). The pigments content was
calculated according to the method described by the authors of [44,45] and was expressed per gram
dry weight. For this reason, we separately measured the fresh weight of 10 similar pieces of leaves for
each treatment and then dried these in an oven at 105 ◦C to constant weight. We then calculated the dry
weight to fresh weight ratio. The potential photochemical efficiency of photosystem (PSII), expressed as
Fv/Fm, was measured using a portable fluorometer (PAM 2500 Portable Chlorophyll Fluorometer,
WALZ). The fluorescence was excited with a saturation beam of “white light” (PPFD = 8000 µ2s,
0.8 s). In addition to the potential photochemical efficiency, the effective quantum yield of PSII was
measured using a standard 60◦ angle clip and a saturation pulse of “white light” (PPFD = 9000 µ2s,
0.8 s). The activity of the terminal electron transport system (ETS) of the mitochondria was determined
to estimate the respiratory potential [46,47]. The ETS activity was calculated as the reduction rate of
the artificial electron acceptor INT, measured according to the absorbance of the reaction mixture at
490 nm against the blank within 10 min of termination of the reaction. The detailed procedure for this
method has been described elsewhere [21].

3.4. Statistical Analysis

The Statgraphics Centurion XVI program (Statgraphics, Herdon, VA, USA) was used for the
statistical analysis of the results. One-way analysis of variance (ANOVA) was performed to determine
the significance of the effects of treatments on the morphological, biochemical and physiological
parameters of the chicory plants. The differences between the treatments were estimated using Tukey’s
post-hoc tests (HSD), with significance accepted at p = 0.05.

4. Conclusions

The following conclusion can be drawn from the present study:

• Selenium content increased in the Se and Se plus I foliar-treated plants.
• Iodine content increased in chicory plants treated with I and I plus Se, except for the of selenate

and iodide combination.
• Treatment with Se and I is promising way to increase their concentrations in crops, and consequently

in humans, without reducing yields. Both forms of I lowered Se content when Se was added
together with I in the form of Se (VI), and the same form of Se lowered the amount of I when both
were added simultaneously.

• The potential photochemical efficiency of PSII showed the good vitality of the plants.
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• Different I and Se treatments did not have any significant effects on the yield and mass of the
chicory heads.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/12/1766/s1,
Table S1: Weather conditions during the field experiment.
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Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant Sci.
2016, 7, 730. [CrossRef]
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Zelenjave in Krompirja v letu 2020. 2020. Available online: https://www.kgzs.si/uploads/slike/bilanca_
proizvodnje_in_potrosnje_zelenjave_2_clanek_splet.pdf (accessed on 4 November 2020).

29. Germ, M.; Stibilj, V.; Osvald, J.; Kreft, I. Effect of selenium foliar application on chicory (Cichorium intybus L).
J. Agric. Food Chem. 2007, 55, 795–798. [CrossRef]

30. Blasco, B.; Rios, J.J.; Leyva, R.; Melgarejo, R.; Constan-Aguilar, C.; Sanchez-Rodriguez, E.;
Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M. Photosynthesis and metabolism of sugars from lettuce
plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regul. 2011,
65, 137–143. [CrossRef]
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