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Abstract: Euphorbia cuneata (EC; Euphorbiaceae), which widely grows in Saudi Arabia and Yemen,
is used traditionally to treat pain and inflammation. This study aimed to evaluate the protective
anti-inflammatory effect of a standardized extract of EC against lipopolysaccharide (LPS)-induced
acute lung injury (ALI) in mice and the possible underlying mechanism(s) of this pharmacologic
activity. ALI was induced in male Balb/c mice using intraperitoneal injection of LPS. A standardized
total methanol extract of EC or dexamethasone was administered 5 days prior to LPS challenge.
Bronchoalveolar fluid (BALF) and lung samples were collected for analysis. The results demonstrated
the protective anti-inflammatory effect of EC against LPS-induced ALI in mice. Standardized
EC contained 2R-naringenin-7-O-β-glucoside (1), kaempferol-7-O-β-glucoside (2), cuneatannin (3),
quercetin (4), and 2R-naringenin (5) in concentrations of 6.16, 4.80, 51.05, 13.20, and 50.00 mg/g
of extract, respectively. EC showed a protective effect against LPS-induced pulmonary damage.
EC reduced lung wet/dry weight (W/D) ratio and total protein content in BALF, indicating attenuation
of the pulmonary edema. Total and differential cell counts were decreased in EC-treated animals.
Histopathological examination confirmed the protective effect of EC, as indicated by an amelioration
of LPS-induced lesions in lung tissue. EC also showed a potent anti-oxidative property as it decreased
lipid peroxidation and increased the antioxidants in lung tissue. Finally, the anti-inflammatory
activity of EC was obvious through its ability to suppress the activation of nuclear factor-κB (NF-κB),
and hence its reduction of the levels of downstream inflammatory mediators. In conclusion,
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these results demonstrate the protective effects of EC against LPS-induced lung injury in mice,
which may be due to its antioxidative and anti-inflammatory activities.
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1. Introduction

Acute lung injury (ALI) associated with sepsis is a common clinical problem with a high morbidity
rate [1,2]. The pathogenesis of ALI involves disruption of epithelial integrity with massive infiltration
of inflammatory cells into the lung tissue, leading to pulmonary edema and severe inflammation [3,4].
Infiltered inflammatory cells, mainly neutrophils and macrophages, release inflammatory mediators
such as interleukins (ILs), tumor necrosis factor (TNF)-α, and nitric oxide (NO) [5,6]. Nuclear factor-κB
(NF-κB) is a pro-inflammatory transcription factor that regulates and controls inflammatory response
during ALI. NF-κB is present in the cytosol in inactive state due to linkage to its inhibitory protein (IκB).
Upon stimulation, IκB rapidly degrades to liberate NF-κB, which then migrates into the nucleus where
it potentiates gene expression of inflammatory mediators, hence inducing inflammatory responses [7,8].

Lipopolysaccharide (LPS) is bio-active component of the Gram-negative bacterial cell wall [9],
and has been used to establish a mouse model of ALI [5]. LPS activates reactive oxygen species
(ROS) generation and the release of proteases. Furthermore, LPS induces the activation of NF-κB
signaling pathway and cytokine release [10,11]. Inflammatory mediators activate overproduction of
ROS, leading to more oxidative damage. Therefore, suppression of oxidative stress and/or inflammation
is a potential strategy to improve ALI.

Many people rely on traditional medicine for their primary healthcare, and it is increasingly
becoming popular throughout the world. Medicinal plants have also attracted much attention
by researchers that are looking for new leads for developing drugs to treat various ailments [12].
Euphorbiaceae is a large plant family comprising about 320 genera with 7950 species, which are
distributed mainly in temperate and tropical regions. Some species of this family are of medicinal and
economic importance [13]. Euphorbia is one of the largest genera of this family, containing approximately
2160 plant species, which are characterized by milky irritant latex [13,14]. Several plants of this genus
are used to treat diarrhea, dysentery, gonorrhea, gastric disorders, edema, warts, whooping cough,
asthma, and migraine [14–16]. Some of these plants have also been shown to have spasmolytic,
diuretic, anti-inflammatory, analgesic, antileukemic, wound healing, hemostatic, and anti-hemorrhoid
activities [13,15–17]. This genus is known to possess several phytochemicals, e.g., tannins, phenolic
compounds, terpenoids, and flavonoids. Euphorbia cuneata Vahl. (EC), one of the plant species in this
genus, has various traditional uses in Saudi Arabia and Yemen [15,18,19]. The stem juice when mixed
with water or milk is used to treat obesity, food poisoning, and constipation [18]. Moreover, in parts
of northern Yemen, the stem juice is used on wound and injuries to reduce external bleeding. It is
also used to treat postpartum hemorrhage, and also reported to have analgesic and anti-inflammatory
activities [15,18,19]. E. cuneata was recently characterized as containing several phytochemicals,
including triterpenes and flavonoids [20]. The hemostatic activity of the plant juice is attributed to its
flavonoid constituents [15,18]. Unlike several members of the Euphorbiaceae family, E. cuneata does
not contain the usual toxic diterpenes [21]. On the basis of the traditional anti-inflammatory activity of
EC, this study aimed to investigate the possible protective effect of EC against LPS-induced ALI in
mice and the possible underlying mechanisms.
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2. Materials and Methods

2.1. Chemicals

Acetonitrile, methanol, and formic acid (LC-MS-grade) were obtained from J. T.
Baker (Avantor Performance Materials, Radnor, PA, USA). Milli-Q water (Merck Millipore Corporation,
Billerica, MA, USA) was used for liquid chromatography analysis. 2R-Naringenin, quercetin,
cuneatannin, 2R-naringenin-7-O-β-glucoside, and kaempferol-7-O-β-glucoside were isolated previously
from E. cuneata [20]. Lipopolysaccharide (LPS; Escherichia coli serotype O111:B4) was bought from
Sigma-Aldrich (St. Louis, MO, USA) and freshly prepared in normal saline on the challenge
day. Ketamine was obtained as ampoules (Tekam, Hikma Pharmaceuticals, Amman, Jordan).
Dexamethasone was obtained as ampoules (4 mg/mL, EIPICO, Cairo, Egypt). Other chemicals
and reagents were of highest purity. Pierce bicinchoninic acid (BCA) Protein Assay Kit was purchased
from Thermofisher Scientific (Waltham, MA, USA). Lactate dehydrogenase (LDH) activity kit was
purchased from Human (Wiesbaden, Germany). Malondialdehyde (MDA), catalase, superoxide
dismutase (SOD), reduced glutathione (GSH), and total antioxidant capacity (TAC) kits were purchased
from Bio-diagnostic Co. (Giza, Egypt). The 4-hydroxynonenal (4-HNE) kit was purchased from My
BioSource (San Diego, CA, USA). ELISA kits for NF-κB (ab176648) were purchased form Abcam
(Cambridge, MA, USA), while tumor necrosis factor-α (TNF-α, MTA00B), interleukin-1β (IL-1β,
MLB00C), and IL-6 (M6000B) were purchased from R&D Systems (Minneapolis, MN, USA).

2.2. Plant Material

E. cuneata aerial parts were collected in March 2016 from Al-Taif City, Saudi Arabia. The plant was
kindly identified by a taxonomist at the Department of Natural products and Alternative Medicine,
King Abdulaziz University, Saudi Arabia, in addition to its morphological features and the library
database [22]. It was confirmed by Dr. Emad Al-Sharif, Associate Professor of Plant Ecology,
Department of Biology, Faculty of Science and Arts, Khulais, King Abdulaziz University, Saudi Arabia.
A voucher specimen (EC-1036) was archived at the Department of Natural Products and Alternative
Medicine herbarium, King Abdulaziz University, Saudi Arabia.

2.3. Extraction Procedures for Pharmacological Study

The air-dried powdered aerial parts of EC (100 g) were extracted with methanol (2 × 500 mL)
using an IKA Ultra-Turrax T 25 digital instrument (IKA Labortechnik, Staufen, Germany). The solvent
was removed under reduced pressure and the dried total methanolic extract (TEC) (10.9 g) was kept at
4 ◦C until use in biological tests.

2.4. Extraction Procedures of Plant Material for High Performance Liquid Chromatography
Diode-Array Detection

The air-dried powdered aerial parts of EC (1 g) were extracted with methanol (10 mL) as described
above. The extract was then vortexed vigorously and centrifuged to remove plant debris. Supernatant
was evaporated, and 20 mg of the dry residue (100 mg) was placed on a C18 cartridge preconditioned
with methanol and water. The sample was eluted using 3 mL MeOH (100%) and the eluate evaporated.
The dry residue was re-suspended in 500 µL methanol, and 3 microliters of the supernatant were used
for HPLC analysis.

2.5. HPLC Photodiode Array Determination of Flavonoid Content in TEC

The HPLC system consists of an Agilent 1260 system, solvent delivery module, quaternary
pump, autosampler, column compartment, and diode array detector (Agilent Technologies, Germany).
The control of the HPLC system and data processing were performed using ChemStation (Rev. B.01.03
SR2 (204)). The separation was performed on Kromasil 100 C18, 5 µm, 250 × 4.6 mm column
(Teknokroma, S. Coop. C. Ltd., Barcelona, Spain), maintained at 25 ± 2 ◦C. The LC system was
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programmed to deliver the mobile system as follows: Diode array detector (DAD): 284, 330, and 360 nm;
mobile A: 0.2% formic acid in water; mobile B: acetonitrile; gradient elution program: 0–10 min, 5% B;
10–60 min, 5%–38% B; 60–61 min, 38%–100% B; 61–65 min, 100% B; 65–66 min, 5% B; run time, 72 min;
flow rate, 0.9 mL/min.

2.6. Calibration Curve of the Isolated Compounds

A weight of 10 mg of each isolated phenolic compound was transferred to a volumetric flask and
dissolved in 10 mL methanol. Serial dilutions were prepared in methanol to achieve concentrations of
25, 50, 100, 150, 200, and 250 ng/µL. Each calibration level was analyzed in triplicate. Each compound
was injected separately by applying scan mode DAD from 190–500 nm. The UV-VIS scan of each
compound was saved and matched with the detected compounds in each sample.

2.7. Biological Study

2.7.1. Animals and Experimental Model

Male Balb/c albino mice (20–25 g) were held in standard conditions in the Animal Facility,
College of Pharmacy, King Abdulaziz University, and provided with standard laboratory food and
water. All study procedures were approved by the Research Ethical Committee of King Abdulaziz
University, Saudi Arabia (reference number PH-116-40), which follows the National Institutes of Health
(NIH) guidelines. Mice were divided into 5 groups (n = 8/each group) and were treated as follows:
control group: mice were given the vehicle once daily for 5 days; LPS group: to induce acute lung
injury, we injected LPS (10 mg/kg) intraperitoneally, as previously described [4]; EC + LPS groups:
2 animal groups that were orally administered EC at 2 different dose levels (25 and 50 mg/kg) for 5 days
prior to LPS injection; dexamethasone (DEX) + LPS group: a positive control group where mice were
administered dexamethasone (5 mg/kg) for 5 days prior to LPS injection. The dose of dexamethasone
was selected on the basis of previous studies [23,24]

Twenty-four hours after LPS injection, mice were humanely killed under anesthesia using ketamine
(50 mg/kg). Right lung was lavaged using 0.9% saline while the left lung was clamped. Bronchoalveolar
lavage fluid (BALF) was obtained and centrifuged. Cell pellet was used for the estimation of the cell
counts. The supernatants of BALF were stored at −80 ◦C until further analysis. A small piece of the
left lung was weighed, homogenized in phosphate buffer, and centrifuged. The supernatants were
stored at −80 ◦C for further analysis. Another part of the left lung was washed with ice-cold saline and
then immersed for 24 h in buffered formalin 10%.

2.7.2. Lung Wet/Dry Weight (W/D) Ratio

W/D ratio is used to estimate the degree of pulmonary edema. It is calculated as the weight of wet
piece of the left lung/its weight after drying in an oven (80 ◦C) for 24 h [4].

2.7.3. Protein Content

Samples of BALF were used for estimation of total protein content according to the manufacturer’s
kit protocol.

2.7.4. LDH Activity

The LDH activity was determined in BALF samples on the basis of the protocol of the manufacturer
kit. In brief, the reaction mixture consisted of nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) (0.8 mmol/L), and sodium pyruvate (1.5 mmol/L) and Tris buffer (50 mmol/L, pH 7.4) was
added to the sample. The changes in absorbance were recorded at 340 nm and enzyme activity was
calculated and expressed in U/L.
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2.7.5. Total and Differential Cell Counts

Cell pellets were resuspended in 0.1 mL sterile saline and then centrifuged onto slides and stained
with Wright-Giemsa for 8 min. Total cell counts were determined using a hemocytometer. Differential
cell counts were quantified by counting a total of 200 cells per slide at 40 ×magnification. Number of
each cell type was calculated as the percentage of cell type multiplied by the total number of cells in
the BALF.

2.7.6. Lung Histology

Paraffin blocks of lung tissue were obtained from lung samples immersed in formalin,
then sectioned (5 µm). Specimens were stained with hematoxylin-eosin (H&E) and examined
in random order. Lesions were semi-quantitatively graded as described previously [4].

2.7.7. Immunohistopathology

Immunohistochemistry (IHC) staining was automatically managed using Ventana Benchmark XT
system (Ventana Medical Systems, Tucson, AZ, USA). The lung sections were immuno-stained using
primary antibodies—rabbit polyclonal antibody to NF-κBp65 following previous procedures [1,25].

2.7.8. Oxidative Stress and Antioxidants

In the supernatants of lung homogenates, lipid peroxidative markers (MDA and 4-HNE)
and antioxidants (catalase, SOD, GSH, and TAC) were determined according to instruction of the
manufacturer’s kits.

Briefly, MDA was quantified by the reaction with thiobarbituric acid in acidic medium at a
temperature of 95 ◦C for 30 min to form thiobarbituric acid-reactive product whose absorption
was measured spectrophotometrically at 534 nm. Catalase was determined by its reaction with a
known quantity of hydrogen peroxide (H2O2). Catalase inhibitor stopped the reaction after 1 min,
and then the remaining H2O2 reacted with 3,5-dichloro-2-hydroxybenzene sulfonic acid (DHBS) and
4-aminophenazone (AAP) to form a chromophore that was measured at 510 nm. The color intensity was
inversely proportional to the amount of catalase in the original sample. Assay of SOD depends on the
ability of SOD to inhibit the phenazine methosulphate-mediated reduction of nitroblue tetrazolium dye.
The increase in absorbance at 560 nm for 5 min was measured. GSH determination relies on the reaction
of GSH with 5,5-dithiobis-2-nitrobenzoic acid. The product was measured spectrophotometrically at
412 nm. The measurement of TAC was performed by the reaction of antioxidants in the sample with a
defined amount of H2O2. The antioxidants in the supernatant interacted with a specific amount of
H2O2. The residual H2O2 was determined colorimetrically by the conversion of 3,5,dichloro-2-hydroxy
benzensulphonate to a colored product that was measured at 510 nm.

2.7.9. NF-κB and Inflammatory Cytokines

Levels of NF-κB, TNF-α, IL-1β, and IL-6 were measured in the supernatants of lung homogenates
using ELISA kits.

2.7.10. Statistical Analysis

Presented results are means± SD (n = 8). Statistical analysis was performed using one-way analysis
of variance (ANOVA) followed by Tukey’s Kramer multiple comparisons test. For non-parametric
comparison, Kruskal-Wallis test followed by Dunn’s test were used, and a p-value < 0.05 was
considered significant.

3. Results

The total methanolic extract (TEC) was standardized for its major phenolic constitutes that
were previously isolated [20]. The results showed the presence of 2R-naringenin-7-O-β-glucoside (1),
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kaempferol-7-O-β-glucoside (2), cuneatannin (3), quercetin (4), and 2R-naringenin (5) in concentrations
of 6.16, 4.8, 51.05, 13.2, and 50 mg/g of extract, respectively (Figure 1).Plants 2020, 9, x FOR PEER REVIEW 6 of 14 
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Figure 1. HPLC chromatogram of methanol extract of Euphorbia cuneata.

3.1. Effect of EC on LPS-Induced Lung Edema

LPS injection to mice resulted in elevation of lung W/D ratio and total protein content of BALF
compared to normal mice, indicating development of pulmonary edema (Figure 2). Additionally,
LDH activity was remarkably increased in LPS-treated animals compared to the control group. On the
contrary, EC pretreatment as well as dexamethasone significantly attenuated W/D ratio, total protein,
and LDH activity in comparison with the untreated LPS group. Interestingly, the effect of EC at a
high dose was nearly equivalent to the effect of dexamethasone, as there was no significant difference
between EC 50 + LPS group compared to the dexamethasone-treated group (Figure 2).
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Figure 2. Euphorbia cuneata (EC) attenuated lipopolysaccharide (LPS)-induced lung injury. (A) Lung
wet/dry weight (W/D) ratio, (B) protein content, and (C) lactate dehydrogenase (LDH) activity in
bronchoalveolar lavage fluid (BALF). Mice were administered two different doses of EC (25 and
50 mg/kg) or dexamethasone (5 mg/kg) once daily for 5 days prior to intraperitoneal injection of LPS
(10 mg/kg). Samples were collected 24 h after LPS injection. Data are the mean ± SD. (n = 8). * p < 0.05,
** p < 0.01, *** p < 0.001 vs. control group; ### p < 0.001 vs. LPS group; && p < 0.01 vs. dexamethasone
(DEX) + LPS group (one-way ANOVA).

3.2. Effect of EC on LPS-Induced Increase in the Total and Differential Inflammatory Cell Counts in BALF

As shown in Figure 3, LPS significantly increased the total and differential cell counts,
mainly neutrophils, in the BALF compared to the control group. EC or dexamethasone pretreatment
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significantly suppressed LPS-induced rise in the total and differential cell counts. The effect of EC at a
high dose was not significant compared to that of dexamethasone.
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Figure 3. Euphorbia cuneata (EC) suppressed lipopolysaccharide (LPS)-induced elevation in total and
differential cell counts in bronchoalveolar lavage fluid (BALF). (A) Total cell count, (B) neutrophil count,
(C) macrophage count, (D) lymphocyte count in lung tissue. Mice were treated with two different doses
of EC (25 and 50 mg/kg) or dexamethasone (5 mg/kg) once daily for 5 days prior to intraperitoneal
injection of LPS (10 mg/kg). Samples were collected 24 h after LPS injection. Data are the mean ± SD.
(n = 8). ** p < 0.01, *** p < 0.001 vs. control group; # p < 0.05, ### p < 0.001 vs. LPS group; & p < 0.05,
&&& p < 0.001 vs. DEX + LPS group (one-way ANOVA).

3.3. Effect of EC on LPS-Induced Lung Damage

Lung tissue of the control group showed normal histology. There was no sign of lesions in
the pulmonary tissue. LPS induced deleterious lung damage in the form of hypertrophied lining
epithelium of the pulmonary bronchiole with extravasation of red blood cells (RBCs) and inflammatory
cell infiltration in the interalveolar tissue spaces. The thickened inter-alveolar septae were observed
with RBC extravasation and excess inflammatory cell infiltration in the interstitial tissue. On the
other hand, animals pretreated with EC or dexamethasone exhibited remarkable improvement of the
pulmonary lesions compared to the LPS-treated group. Semi-quantitative analysis of LPS-induced lung
lesions with regards to the severity and distribution of the lesions indicated significant amelioration of
LPS-induced lesions (Figure 4).
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Figure 4. Euphorbia cuneata (EC) ameliorated lipopolysaccharide (LPS)-induced histopathological
damage of the lung. I. Lung specimen of different group stained with hematoxylin-eosin
(H&E). (A–C) Control group where lung specimen displayed normal alveolar bronchioles lined
by pseudo-stratified ciliated columnar epithelium (arrow), pulmonary blood vessels, interalveolar
septae (between arrow heads), alveolar capillaries, and interstitial tissue. (D–F) LPS group showing
hypertrophied lining epithelium of the pulmonary bronchiole (arrow) with extravasation of red blood
cells (RBCs) and inflammatory cell infiltration in the interalveolar tissue spaces, thickened intralveolar
septae (arrow heads) with RBCs extravasation, and extensive neutrophil and macrophage infiltration
in the interstitial tissue (tailed arrows). (G–I) EC 25 + LPS group, where the alveolar bronchioles
had near normal epithelial lining with interalveolar mucous accumulation (arrow), and lamellae of
collagen bundles (curved arrow) is seen close to the bronchiole, with less marked thickened intralveolar
septae (arrow heads) with RBC extravasation and scarce neutrophil infiltration in the interstitial tissue
(tailed arrow). (J–L) EC 50 + LPS group, where the alveolar bronchioles had near normal epithelial
lining without interalveolar mucous (arrow), and lamellae of collagen bundles (curved arrows) are
still seen close to the bronchiole, with no RBCs extravasation nor inflammatory cell infiltration in the
interstitial tissue and near normal intralveolar septae (arrow heads) with scarce neutrophil infiltration
in the interstitial tissue (tailed arrow). (M–O) DEX + LPS group, with near normal intralveolar septae
(arrow heads) without neutrophil infiltration nor collagen bundle deposition in the interstitial tissue.
II. Semi-quantitative analysis of LPS-induced lung lesions with regards to the severity and distribution
of the lesions. Mice were administered two different doses of EC (25 and 50 mg/kg) or dexamethasone
(5 mg/kg) once daily for 5 days prior to intraperitoneal injection of LPS (10 mg/kg). Samples were
collected 24 h after LPS injection. Data are the mean ± SD. (n = 8). * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
control group; # p < 0.05, ### p < 0.001 vs. LPS group (Kruskal-Wallis).

3.4. Effect of EC on LPS-Induced Lipid Peroxidation and Antioxidants in Lung

LPS injection induced increase in the lipid peroxidative markers, MDA and 4-HNE, in lung in
comparison with normal animals (Figure 5A,B). Simultaneously, LPS hindered the antioxidant capacity
of the lung due to significant decrease in the endogenous antioxidants such as catalase, SOD, and GSH
levels as well as TAC in comparison with the control group (Figure 5C–F). On the other hand, EC or
dexamethasone pretreatment significantly augmented the antioxidant activities and diminished the
lipid peroxidative parameters in the lung. EC significantly enhanced catalase, SOD, and GSH and
significantly decreased MDA and 4-HNE compared to the LPS-treated group. EC at a higher dose
exerted a remarkable antioxidant activity compared to dexamethasone.
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Figure 5. Euphorbia cuneata (EC) ameliorated lipopolysaccharide (LPS)-induced lipid peroxidation and
increased antioxidant parameters in the lung. (A) Malondialdehyde (MDA), (B) 4-hydroxynonenal
(4-HNE), (C) catalase, (D) superoxide dismutase (SOD), (E) reduced glutathione (GSH), (F) total
antioxidant capacity (TAC). Mice were treated with two different doses of EC (25 and 50 mg/kg) or
dexamethasone (5 mg/kg) once daily for 5 days prior to intraperitoneal injection of LPS (10 mg/kg).
Samples were collected 24 h after LPS injection. Parameters were estimated in the supernatants of
the lung homogenates. Data are the mean ± SD. (n = 8). ** p < 0.01, *** p < 0.001 vs. control group;
# p < 0.05, ## p < 0.01, ### p < 0.001 vs. LPS group; && p < 0.01, &&& p < 0.001 vs. DEX + LPS group
(one-way ANOVA).
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3.5. Effect of EC on LPS-Induced Inflammatory Response in Lung

LPS challenge significantly increased the immuno-expression and the level of NF-κB in the lung in
comparison with the control group (Figure 6). In addition, LPS elevated the levels of the inflammatory
cytokines TNF-α, IL-1β, and IL-6 (Figure 5II) in the lung compared to the control group. However, EC or
dexamethasone reduced immuno-expression and the level of NF-κB simultaneously, with significant
reduction in the levels of inflammatory parameters TNF-α, IL-1β, and IL-6 in comparison with the LPS
group. Notably, the effect of high dose of EC was not significant from the effect of dexamethasone.
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Figure 6. Euphorbia cuneata (EC) inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB)
activation and cytokine release in lung. I. Expression of NF-kB cells in lung tissue determined by
immunohistochemistry. (A) Control group, the positive NF-kB cells were not observed; (B) LPS
group, increased expression of NF-kB-positive cells; (C) EC 25 + LPS group, there was low staining
of NF-kB-positive cells; (D) EC 50 + LPS group, very limited expression in the perivascular region,
and interstitial lung tissue; (E) DEX + LPS group, minor positive NF-kB cells. II. Levels of (A) NF-κB,
(B) tumor necrosis factor-α (TNF-α), (C) interleukin-1β (IL-1β), (D) interleukin-6 (IL-6) in the
supernatants of lung homogenates. Mice were treated with two different doses of EC (25 and
50 mg/kg) or dexamethasone (5 mg/kg) once daily for 5 days prior to intraperitoneal injection of LPS
(10 mg/kg). Samples were collected 24 h after LPS injection. Data are the mean ± SD. (n = 8). * p < 0.05,
** p < 0.01, *** p < 0.001 vs. control group; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. LPS group; && p < 0.01,
&&& p < 0.001 vs. DEX + LPS group (one-way ANOVA).

4. Discussion

ALI is a serious respiratory condition that is characterized by neutrophilia and acute lung
inflammation. LPS is an endotoxin derived from Gram-negative bacteria that has been extensively
used to establish a model of ALI in rodents. It induces marked pulmonary inflammation after 2–4 h and
maximizes at 24–48 h [5]. Thus, in this study, BALF and tissue samples were collected 24 h after LPS
exposure. Results of the current study demonstrated the protective antioxidant and anti-inflammatory
effects of EC against LPS-induced ALI in mice, which could be related to its ability to modulate the
ROS/NF-kB/inflammatory cytokine pathway. The anti-inflammatory efficacy of EC, specifically at the
higher dose, was nearly equivalent to that of dexamethasone.

LPS administration results in multiple pathogenic events including massive polymorphonuclear
leukocytes (PMN) infiltration in pulmonary tissue, diffuse intravascular coagulation, and profound
pulmonary injury [6]. Accumulation of infiltered inflammatory cell in pulmonary tissue exacerbates
ALI through the release of multiple toxic mediators including ROS, proteases, and proinflammatory
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cytokines [4]. Furthermore, recruitment of inflammatory cells contributes to increase of the
alveolar-capillary barrier permeability and lung edema. Results of this study were in line with
previous research [2,10,26], as LPS induced marked pulmonary edema presented by increased lung
W/D ratio. The total protein content in the BALF, as another index of epithelial permeability and
pulmonary edema [2], was highly increased in the BALF of mice exposed to LPS. However, EC decreased
the lung W/D ratio and the total protein in the BALF, indicating that EC could prohibit the leakage of
serous fluid into the lung tissue and attenuate the development of pulmonary edema. Additionally,
LDH, as a marker of tissue injury, was increased in BALF upon LPS administration compared with the
control group, which was inhibited by EC pretreatment. Inflammatory cell infiltration in the lungs,
mainly neutrophil, was noted through increased total and differential cell counts. These biochemical
observations were supported by the histopathological examination of the lung, which revealed excessive
inflammatory changes such as pulmonary edema, alveolar distortion, and inflammatory cell infiltration
lung of LPS-challenged mice. On the other hand, EC attenuated pulmonary edema and inhibited the
infiltration of inflammatory cells, as well as restraining the alveolar structural damage. The remarkable
attenuation of the biochemical parameters of ALI was parallel to the observed improvement of the
histology of the lung in EC-pretreated animals. These findings demonstrated the protective effect of EC
on ALI induced by LPS and the ability of EC to prohibit inflammatory cell sequestration and migration
into the lung tissue.

Multiple molecular mechanisms mediate the pathogenic events of LPS-induced ALI [27].
Interaction between oxidative stress and inflammation plays a major role in mediating LPS-induced
ALI [28]. During the inflammatory response, neutrophils undergo a respiratory burst and produce
superoxide. ROS overproduction is extremely toxic to host tissues, and their interactions with various
cellular macromolecules result in severe pathophysiological consequences. Excessive LPS-induced
ROS release is accompanied by production of lipid peroxides, inactivation of proteins, and DNA
mutation [5]. Moreover, LPS-induced oxidative stress is associated with depressed antioxidant activity
of the lung, which may aggravate LPS toxicity. Catalase is one of the most important antioxidant
enzymes that antagonizes oxidative stress by destroying cellular hydrogen peroxide to produce water
and oxygen. GSH acts as a major cellular antioxidant defense system by scavenging free radicals
and other ROS. SOD is the only antioxidant enzyme that can scavenge superoxide. Catalase, GSH,
and SOD are greatly depressed by LPS [1,2,5]. Our results are consistent with previous studies, as LPS
caused marked lipid peroxidation. LPS increased MDA and 4-HNE, which are stable end-products of
lipid peroxidation and are frequently used as biomarkers of oxidative stress. Moreover, LPS repressed
the activities of the antioxidants (catalase, SOD, GSH, TAC) in lung tissue. Significantly, EC reversed
LPS-induced oxidative changes as EC enhanced antioxidant activities and subsequently depressed
lipid peroxidation, clearly demonstrating the potent antioxidant activity of EC.

LPS binds and stimulates toll-like receptor 4 (TLR4), which causes activation of NF-κB and
subsequent release of inflammatory cytokines (TNFα, IL-1β, and IL-6) [29,30]. Hence, blockade
of NF-κB signaling pathways can inhibit the development of ALI induced by LPS. Our study
revealed the activation of NF-κB and increased inflammatory cytokines in LPS-challenged mice,
consistent with previous studies [4]. Expectedly, pretreatment with EC hindered the activation of
this inflammatory pathway, resulting in suppression of inflammatory mediator release. It is worth
mentioning that jolkinolides, diterpenoids reported from Euphorbia species, have shown a protective
effect of LPS-induced ALI via attenuating histological alterations, inflammatory cell infiltration,
and lung edema, as well as inhibiting the production of inflammatory mediators, e.g., TNF-α [31,32].
It has also been reported that Euphorbia factor L2 improved the survival rate of ALI mice and effectively
reduced the pathological changes in the lung by suppression of pro-inflammatory mediators regulated
by the NF-κB pathway [33]. As noted above, EC contains several phytochemicals, including quercetin,
kaempferol glycoside, and naringenin. Quercetin is known for its antioxidant and anti-inflammatory
activity through inhibition of TNF-α, IL-8, IL-4, cyclooxygenase (COX), and lipoxygenase (LOX) [34].
Naringenin has been shown to exhibit anti-inflammatory activity in lung injury in vivo through
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downregulation of NF-κB, inducing NO synthase, TNF-α, and caspase-3 [35]. Kaempferol glycoside,
which is biosynthesized from naringenin, is known for its antioxidant potential, in addition to its
anti-inflammatory effect through inhibition of NF-κB, TNF-α, COX, LOX, and expression of IL-1β and
IL-8 [36]. Thus, the protective activity of EC against LPS-induced ALI in mice may be attributed to its
antioxidant activity due to the presences of the different phenolic constituents.

5. Conclusions

Collectively, this study revealed the potent protective effect of EC against LPS-induced ALI,
which may be linked to its antioxidant and anti-inflammatory activities. However, further studies are
recommended for better elucidation of the underlying molecular mechanisms of EC.
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