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Abstract: The CO2 and water vapor exchange between leaf and atmosphere are relevant for plant
physiology. This process is done through the stomata. These structures are fundamental in the
study of plants since their properties are linked to the evolutionary process of the plant, as well as
its environmental and phytohormonal conditions. Stomatal detection is a complex task due to the
noise and morphology of the microscopic images. Although in recent years segmentation algorithms
have been developed that automate this process, they all use techniques that explore chromatic
characteristics. This research explores a unique feature in plants, which corresponds to the stomatal
spatial distribution within the leaf structure. Unlike segmentation techniques based on deep learning
tools, we emphasize the search for an optimal threshold level, so that a high percentage of stomata can
be detected, independent of the size and shape of the stomata. This last feature has not been reported
in the literature, except for those results of geometric structure formation in the salt formation and
other biological formations.
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1. Introduction

Stomata are the gates through which gas exchange through the leaf takes place, involving
carbon dioxide intake and water vapor loss (reviewed in Reference [1–3]). The carbon dioxide
intake drives plant growth and productivity [4], while the water vapor loss through a process
known as transpiration regulates leaf temperature, nutrient uptake, and root-to-shoot signaling [5,6].
The remaining of the epidermis is covered by an impervious cuticle, with restricted gas exchange
properties [7,8]. Gas-exchange capacity depends on stomatal density (i.e., stomata number per unit
area), size, and patterning (spacing) [9–11]. Methods for automatic segmentation of stomatal density
and size have been earlier presented [12,13], whereas patterning (spacing) is currently performed
manually [14].

From a computational point of view, stomatal analysis has been explored mainly on pixel or object
analysis. Although localization and processing tools exists, these are limited to search for stomatal
position through techniques based on chromatic and morphological combinatorial operations [15–17],
texture analysis [16], fractal analysis [18], segmentation using object-oriented method in multiple
resolutions [19], and, more recently, by Deep Convolutional Neural Networks [12,13,20–22]. Today, no
technique allows full spectrum analysis of different stomatal types since they have a great variation
according to species, shape, position, and, in general, noise and technique present in the microscopy
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image [23–26]. At large, both the location and the analysis of the stomata require demanding work on
the part of the biologists. This task is not simple, since there are great differences in the same species
by the microscopy technique used [27]. This research proposes a new segmentation algorithm based
on the spatial stomatal statistical distribution. We define a geometric model, revisited in recent years,
implying a mechanism present in nature and allowing an ideal distribution for gas transfer [5,14,28].

The study and analysis of stomata is the first step towards phenotypic plasticity and the relationship
with climate change, soil use, resource, drought, CO2 concentration, and light level [4,8,29–33].
Consequently, segmentation process automation and stomatal morphology analysis is a relevant task,
especially in high volume analysis of images needed as input for other studies [20]. The latter might
not be viable by hand because of analysis complexity. Although we use a specific microscopy database,
both for the design and for the analysis of the computational algorithm, our findings have potential
use for any kind of stomatal images since it uses as key information stomata’s geometric configuration
between analyzed species. We generate a manual segmentation in different species of monocot and
dicot families to test our hypothesis. The results section presents the main findings of our algorithm
through a fully automatic system for the Jatoba Hymenaea Courbari species. Subsequently, we manually
analyze the algorithm proposed in other species in order to understand the existence of an underlying
pattern between them. The Materials and Methods’ section presents a description of the steps of the
algorithm and, finally, the general conclusions of the method.

2. Results

Delaunay-Rayleigh Threshold Binarization (DRTB) algorithm has been evaluated over a set of
31 optic microscopy images from Jatoba Hymenaea Courbaril tree localized in Caribbean, Central and
South American zones. The images were taken with an Olympus E-330 camera with optic microscope
with 3136 × 2352 resolution pixels, at the Biosciences Institute at University of São Paulo, Brazil (USP).
The images’ set has 3087 regions hand-classified as stomata (see Supplementary Materials section) with
its coordinates (x,y).

The abaxial surfaces of the epidermis were obtained from three or four leaves (one per individual)
of each species. From each collected leaf, a sample of approximately 1 cm2 was removed from the leaf’s
middle region, between the margin and midrib. Dissociation of the leaf epidermis was performed
using a 1:1 solution of glacial acetic acid and hydrogen peroxide at 60 ◦C for 12 h, or the time required
to completely decouple the epidermis [34].

The algorithm’s performance was evaluated by two statistical indicators: precision (also known
as positive predictive value, PPV) and recall (or true positive rate, TPR). The procedure consists of
manually identifying stoma’s center (x,y) coordinates. Then, the segmentation-algorithm identifies
this position and proceeds with a comparison. If the distance between the manual coordinate is less
than a threshold with respect to the coordinate of the segmented region, we consider that it has been
classified correctly. This case is considered as True Positive (TP). In case the algorithm does not find
the stoma, even when it is present in the image, we consider this case as False Negative (FN). Finally,
when the algorithm classifies a region where there is no stoma, we consider this coordinate as False
Positive (FP) (see Figure 1). Therefore, the evaluation metrics are:

PPV =
TP

FP + TP
, (1)

TPR =
TP

TP + FN
. (2)
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Figure 1. Illustration of precision and recall concepts. True positive (TP) occurs when the distance 

between manual-coordinate (yellow cross) is less than a threshold with respect to the coordinate of 

the segmented-region (ellipses). False negative (FN) occurs when the algorithm does not find the 

stoma, even when it is present in the image. Finally, when the algorithm classifies a region where 

there is no stoma, we consider this coordinate as False Positive (FP). The ratio TP/(FP + TP) is known 

as precision (positive predictive value (PPV)), and the ratio (TP/TP + FN) is called recall (true positive 

rate (TPR)). 

From this set, the proposed algorithm is capable of 2752 detections (recall) of 89.14 ± 8%. On the 

other hand, the number of false positive regions (precision) is 72.8 ± 10%. As shown on Figure 2, the 

performance is variable with each sample, given structural conditions; however, a high classification 

rate is achieved as a result of multilevel threshold traveling design (see examples in Figures 3 and 4). 

In contrast, lower results occur at lower image quality where the stomata are located because they 

are out of focus. The combined performance of both measures reflects this fact, and it is shown in 

Figure 3 (specimen). 

 

Figure 2. Performance of the proposed algorithm applied to 31 specimens of Hymenaea Courbaril 

(Jatoba Database). Overall recall and precision are 89.14% and 72.8%, respectively. Maximum recall 

performance is achieved at specimens #8, #9, and #10 with 100% and maximum precision performance 

is reached at 98% by specimen #3. Worst recall and precision performance is 70% and 58%, 

respectively, both at specimen #30. 

Figure 1. Illustration of precision and recall concepts. True positive (TP) occurs when the distance
between manual-coordinate (yellow cross) is less than a threshold with respect to the coordinate of the
segmented-region (ellipses). False negative (FN) occurs when the algorithm does not find the stoma,
even when it is present in the image. Finally, when the algorithm classifies a region where there is no
stoma, we consider this coordinate as False Positive (FP). The ratio TP/(FP + TP) is known as precision
(positive predictive value (PPV)), and the ratio (TP/TP + FN) is called recall (true positive rate (TPR)).

From this set, the proposed algorithm is capable of 2752 detections (recall) of 89.14 ± 8%. On the
other hand, the number of false positive regions (precision) is 72.8 ± 10%. As shown on Figure 2,
the performance is variable with each sample, given structural conditions; however, a high classification
rate is achieved as a result of multilevel threshold traveling design (see examples in Figures 3 and 4).
In contrast, lower results occur at lower image quality where the stomata are located because they
are out of focus. The combined performance of both measures reflects this fact, and it is shown in
Figure 3 (specimen).
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Figure 2. Performance of the proposed algorithm applied to 31 specimens of Hymenaea Courbaril
(Jatoba Database). Overall recall and precision are 89.14% and 72.8%, respectively. Maximum recall
performance is achieved at specimens #8, #9, and #10 with 100% and maximum precision performance
is reached at 98% by specimen #3. Worst recall and precision performance is 70% and 58%, respectively,
both at specimen #30.
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of the diagram with high recall and precision. Worst performance is achieved at the lower-left area. 

Orange cross indicates mean (recall/performance 83%/72%) and standard deviation (8%/10%). (Right) 

Specimen #1 represents an average performance (85%/72%) with clear regions but high diffusion. 

Specimen #3 has 98%/89% detection performance, and stomata shows sharp borders with clear 

regions leading to good detection metrics. Specimen #12 shows 94%/58% with high recall and lower 

precision, explained by diffuse borders and poor region definition. Specimen #30 has the poorest 

performance with 70%/58% with very diffuse borders and poor regions with high false positive rate. 

 

Figure 4. Example of segmentation output. Our algorithm is able to detect stomatal centroids (blue 

dots) and segmented areas (red ellipses). With the geometric information from centroid coordinates, 

statistics and tessellations are built. 

Figure 3. Analysis of selected specimens. (Left) Best performance is achieved at the upper-right
area of the diagram with high recall and precision. Worst performance is achieved at the lower-left
area. Orange cross indicates mean (recall/performance 83%/72%) and standard deviation (8%/10%).
(Right) Specimen #1 represents an average performance (85%/72%) with clear regions but high diffusion.
Specimen #3 has 98%/89% detection performance, and stomata shows sharp borders with clear regions
leading to good detection metrics. Specimen #12 shows 94%/58% with high recall and lower precision,
explained by diffuse borders and poor region definition. Specimen #30 has the poorest performance
with 70%/58% with very diffuse borders and poor regions with high false positive rate.
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Figure 4. Example of segmentation output. Our algorithm is able to detect stomatal centroids (blue dots)
and segmented areas (red ellipses). With the geometric information from centroid coordinates, statistics
and tessellations are built.
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3. Discussion

Previous results reveal a high precision rate in the detection of Hymenaea Courbaril stomata.
However, is this distribution similar on other species? To answer this question, we analyzed seven
species with different microscopy techniques. Experimental results show that not only Hymenaea
Courbaril has a stable distribution, we applied a manual segmentation to 2842 stomata with 12 different
configurations shown in Figure 5 and described in Table 1. Despite morphological and chromatic
differences, the spatial distributions are similar, as it is shown in Figure 4. These results are consistent
with the findings found by Croxdale [9], where the relationship between area and number is analyzed
in the first instance. This result is relevant since it provides statistical evidence that would allow us to
design an optimal algorithm for the relative distance between stomata, which is consistent with Peat
& Fitter [35] developments. The only requirement is a preprocess with efficient acceptance/rejection
range for stomatal segmentation. This last task could be performed by any segmentation algorithm,
such as those mentioned above. It is known that environmental conditions during growth may also
affect stomatal dispersion pattern among species [36,37]. Based on this background, stomatal spacing
may be employed as a marker for studying plant adaptation to growth environment [38]. Next, we
present a brief discussion of manual segmentation in different types of plants of the Monocot family,
compared to the automatic evaluation of the Dicot family.Plants 2020, 9, x FOR PEER REVIEW 6 of 17 
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morphological and chromatically differences, the spatial distributions are similar to the example shown
in Figure 4 (Hymenaea Courbaril).
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Table 1. Stability of Rayleigh parameter for various species. From 2842 regions analyzed, a stability
range 3 < σ < 8 might be proposed. Maximum Rayleigh parameter is 11.1 (Tradescantia Pallida)
minimum value is 3.3 (Tradescantia Zebrina). Family name: C: Commelinaceae, M: Marantaceae, F: Fabaceae.

# Species Analyzed Stomata’s
Number RMSD Rayleigh

Parameter Group Family

1 Tradescantia Zebrina 753 0.00832 3.3 Monocot C
2 Tradescantia Pallida—under 24 h of light 394 0.00983 3.6 Monocot C
3 Tradescantia Pallida—in natural condition 245 0.03327 7.1 Monocot C
4 Callisia reppens 65 0.05358 8.8 Monocot C
5 Callisia reppens 29 0.12969 9.7 Monocot C
6 Callisia reppens 104 0.02037 4.3 Monocot C
7 Tradescantia Zebrina 69 0.05905 8.3 Monocot C
8 Tradescantia Pallid 25 0.13832 11.1 Monocot C
9 Ctenanthe Oppenheimiana 138 0.02531 7.1 Monocot M
10 Calisia reppens—using stereoscope 15× 586 0.01578 3.3 Monocot C
11 Tradescantia Pallida using stereoscope 15× 295 0.01902 5.4 Monocot C
12 Hymenaea Courbaril 139 0.02420 6.1 Dicot F

Total Regions 2842 µ = 0.04473

3.1. Manual Segmentation

The automatic algorithm evaluation gives TPR = 89.14± 8% and PPV = 72.8± 10%. Those results
are relevant given image type. Our results are statistically valid, considering the total number of
stomata studied. To assess if this relation is relevant for other species, we evaluate 12 different
configurations on 7 different plant species. Despite interspecies variations, a relevant result is the
Root-Mean-Square Deviation (RMSD) falling with segmented region number. In terms of distribution
parameters, they are stable in the range 3 < σ < 8 as long as region number is lower than 100. As future
work, it remains to design an optimal search algorithm based on a distribution parameter in the
appropriate range, depending on the type of species, the analysis of second (autocovariance) and
higher order moments of geometric characteristics, and the cross covariances with other relevant
properties captured by microscopes, like color.

According to the analyzed data, the segmented region number affects the algorithm performance.
In general, the higher the segmented region number the lower RMSD between Rayleigh distribution
and frequency histogram; which confirms the true nature of the spatial distribution of stomata
(see Figure 6). Moreover, Rayleigh distribution ideal parameters (that minimize RMSD) have a narrow
range between 3 < σ < 8; see Figure 7. For each species, this parameter is different; however, results
tend to cluster as the segmented region number reaches 100.
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Figure 6. Root-Mean-Square Deviation (RMSD) versus segmented stomata number and Rayleigh
parameter. (a), the RMSD decreases as a power law with number of segmented stomata. (b), RMSD
increases exponentially with Rayleigh parameter. High RMSD species (red labels) tend to have lower
number of segmented regions and higher Rayleigh parameter.
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Figure 7. Relationship between segmented region and Rayleigh distribution histogram. First column
(stomata) shows different species analyzed. Second column (Delaunay center-of-mass) shows mass
centers and corresponding tessellations. Third column (Zoom Region-of-Interest, ROI) shows region of
interest. Fourth column (Distance distribution) shows sensibility of histogram to spatial distribution
(more at https://github.com/mlacarrasco/drtb/tree/main/stomatasDB/output).
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3.2. Defocus Stomata in Automatic Mode

In the automatic segmentation mode, we observe relevant differences in the maximum and
minimum performance of the proposed algorithm. When analyzing these differences in detail,
we observe that they are due to the lack of focus of the stomata in some samples of the study (Figure 8).
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Figure 8. Comparison between high and low focused stomata. In specimen #10, stomata are clearly
visible with sharp edges with very low RMSD (see Figure 7). Specimen #29 has diffused edges.

3.3. Main Advantages and Disadvantages

As a first advantage, we highlight that our method is based on the stomatal geometric properties,
easily verifiable, such as centroids spatial distribution; which does not depend on the shape and size of
the stomata. Second, the image-preprocessing method is a well-established procedure in the field of
imaging, and it is inspired by the property of diffusion, which is one of the fundamental mechanisms
of stomatal physiology. Third, stomatal geometry is described by a Delaunay tessellation, which is a
technic known to captures diffusive-processes, such as those occurring at the cellular level. Fourth,
the use of the median as the main statistic decreases outliers-weight, which increases robustness.
Regarding the disadvantages, our proposal might be classified as standard as it was not implemented
through a deep-learning scheme (although it would be possible to do so). Despite our efforts to capture
a large number of samples, we recognize that the number of species is limited, although high variability
between samples can be observed. Regarding the distribution’s discrimination method, it is known that
RMDS has some bias, which could be avoided with an Akaike scheme or similar. The preprocessing
phase of our proposal is designed for Hymenaea Courbaril, as future work, and this process might be
automated in such a way that it is possible to accept segmentation in other types of stomata.

4. Materials and Methods

The natural way to deal with structural complexity found in stomata images is noise analysis.
The latter is associated, by large, to simplification and information-reduction processes, like anisotropic
diffusion, wavelet transform techniques, and nonlinear, statistical, or adaptive filters [39–41]. Even when
image segmentation is possible, for example, by morphological processing, the use of geometric
properties is desirable. Therefore, we propose a novel segmentation method that seeks an optimal
binarization threshold through Rayleigh-distribution distance-minimization. This idea was inspired
by Staff et al. [42], where they analyzed stomatal pore center coordinates, but, in this case, only areas of
the inner triangles and their angles were reported. In Reference [43], a statistical mechanics explanation
of this phenomenon is given through particle interaction, in this case, the distance between stomata,
as a means of regulation and state of the tissue in general. An algorithm summary is shown in Figure 9.
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Figure 9. General process implemented in detection algorithm. (Left) Input RGB image from
microscope. (Center) Sequence of processing: First, Preprocessing stage: Perona-Malik filtering
followed by Meanshift clustering. Second, segmentation algorithm proposed (DRTB): binarization,
labeling, tessellation, distance analysis, and segmentation stage plus optimal leveling. (Right) Final
output image with segmented region and centroid based tessellation.

4.1. Preprocessing

Standard noise-reduction and boundary-preservation techniques are used given the common
noise properties present in most stomata images. We propose a two-step methodology based on
Perona-Malik (PM) diffusion and Meanshift-Hadamard intensity-reduction.

Step I. Perona-Malik: The first step is PM iterative filter application [44]. This algorithm reduces
noise level preserving and, at the same time, boundary structure through diffusion adaptation [45],
meaning a lower diffusion constant near boundaries, and higher otherwise. Being an interactive
filter, level simplification of image structures is possible, which is a leading characteristic in stomata
search. Filter design criteria defined by Perona and Malik [46] are causality, immediate localization,
and piecewise smoothing. The last three properties are relevant in our problem given that stomata
have well defined structures hard to segment, mainly by their surrounding structures. As for causality,
PM filters all regions classified as noise. Immediate localization allows sharp boundaries, despite scale
changes, and the most useful property here is piecewise smoothing since it allows smaller structures to
collapse into larger ones sharing a visual similarity criterion.

Let P be an image defined over the space M3
n,m(N) of arrays with n rows and m columns with pixels

in the natural numbers. Depending on the color-space, {Red, Green, Blue} (RGB) or {Hue, Saturation,
Value} (HSV)superscripts are used to refer the components. The PM filter ∂t defined from Mn,m(N)
into itself is a solution of the heat-equation parameterized by t representing the number of times the
filter is applied (time in the original partial differential equation context) and a diffusion parameter
controlling the noise level (see Reference [46] for more details) (see Figure 10). As a result of PM filter
application over RGB space, the red channel increases separation levels with respect to background,
and this result is relevant as the application of PM filter improves stomata profile detection, as it is
exemplified in Figure 11.
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Figure 10. Image preprocessing with Perona-Malik (PM) filtering. PM has three main parameters:
∆, which represents the diffusion level; κ, which represents an advance-step (time in the original PDE
framework); and the iteration number (advance-step times iteration number is the total time in the
PDE framework). Four examples are shown to exemplify diffusion action over an image; higher ∆
parameter means more diffuse image.
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Figure 11. Image preprocessing with Perona-Malik (PM) filtering. After the PM usage (see Figure 10)
the image is decomposed into red, green, and blue channels (RGB decomposition) with a standard
routine (see shared code at GitHub). The red channel PR is used later in the next process.

Step II. Meanshift-Hadamard: The second step is the application of Meanshift M operator over
the red channel to obtain an image with a reduced intensity level but with sharp defined boundaries,
which eases the segmentation process. This step uses an unsupervised clustering algorithm over
the intensity-space through a minimization process between each energy cluster [47]. With the aim
at improving signal-background splitting, a Hadamard division [48] operator between saturation
(HSV space) and red (RGB space) channels is applied. This operation enhances signal splitting, as
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it can be seen in Figure 12. The final operator is the consecutive application of PM, Meanshift and
Hadamard division (3):

F = Ps
�M

(
∂tPR

)
, (3)

where F is the resultant preprocessed image.Plants 2020, 9, x FOR PEER REVIEW 11 of 17 

 

 

Figure 12. Image preprocessing with Meanshift-Hadamard division. After the PM usage (see Figure 

10), the filtered red-channel 𝜕𝑡𝑃𝑅 is used as input for Meanshift; the output 𝑀(𝜕𝑡𝑃𝑅) is combined 

with the saturation channel of the original image 𝑃𝑆 through the Hadamard division, and this later 

image is subject to clustering. 

This two-step algorithm might be modified based upon stomata-image type. However, the 

proposed technique is useful as segmentation method as it helps with the post-labeling process, 

which is a main focus of the research. 

4.2. Delaunay-Rayleigh Threshold Binarization (DRTB Algorithm) 

Our main algorithm uses stomata spatial localization as a method to find an optimal binarization 

threshold. As input, it uses the grey-scale image 𝐹 and outputs an optimal umbralization level such 

that error in Delaunay-distance frequencies be minimum with respect to an ideal Rayleigh 

distribution [28] (Figure 13). Next, we present detailed description of DRTB algorithm phases. 

 

Figure 13. Binary segmentation and Delaunay tessellation. (Left) Grey-scale image (see Figure 12) is 

subject to the process of binarization at the 𝑙-level. (Right) Different binarization threshold results in 

Figure 12. Image preprocessing with Meanshift-Hadamard division. After the PM usage (see Figure 10),
the filtered red-channel ∂tPR is used as input for Meanshift; the output M

(
∂tPR

)
is combined with the

saturation channel of the original image PS through the Hadamard division, and this later image is
subject to clustering.

This two-step algorithm might be modified based upon stomata-image type. However, the
proposed technique is useful as segmentation method as it helps with the post-labeling process, which
is a main focus of the research.

4.2. Delaunay-Rayleigh Threshold Binarization (DRTB Algorithm)

Our main algorithm uses stomata spatial localization as a method to find an optimal binarization
threshold. As input, it uses the grey-scale image F and outputs an optimal umbralization level such that
error in Delaunay-distance frequencies be minimum with respect to an ideal Rayleigh distribution [28]
(Figure 13). Next, we present detailed description of DRTB algorithm phases.

Step III. Threshold level binarization: First, phase is binary-image building given a threshold.
Literature gives various binarization techniques; however, most of them use as input information the
relationship between intensity levels of the image. Instead, our algorithm explores a geometric-analysis
of image embedded structures as optimal binarization-level search method. Initially, all binarization
level-space values are traversed by normalization of intensity-levels in [0, 1] domain and then we
explore such space. Binarization operatorHl(F) at level l is defined as:

Hl(F) =
{

0, F ≤ l,
1, F > l

(4)

which has the same size of F but with values in [0, 1]. All pixels with values higher that l are given the
value 1 and the rest 0. From the imageHl(F), we can obtain a series of nR regions with areas given by
r = [r1, r2, r3, . . . , rnR ].

Step IV. Binary labeling and filtering: Valid regions are those whose area be not an outlier.
We propose [49] methodology for outlier detection. First, median absolute deviation (MAD) is
determined as:

MAD = b MEDIAN(r−MEDIAN(r)), (5)
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measured in pixels with value 1, and b = 1.4826 is a normality constant. Area outlier detection criterion
is defined as: ∣∣∣∣∣∣ ri − MEDIAN(r)

MAD

∣∣∣∣∣∣ < 3, i = 1, . . . nR. (6)

This means that all regions not fulfilling the criterion will be discarded in the following analysis.
Step V. Delaunay tessellation: This phase consists in the generation of a triangular tessellation for

all regions defined as segmented inliers. Mass centers for each i-th region are determined through
central moment estimation [50].
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Figure 13. Binary segmentation and Delaunay tessellation. (Left) Grey-scale image (see Figure 12) is
subject to the process of binarization at the l-level. (Right) Different binarization threshold results in
different tessellations. The best tessellation is found through an optimization procedure applied over
the RMSD, with respect to an ideal Rayleigh distribution and the empirical histogram.

Let mi the mass center corresponding to i-th region (see Figure 14). A Delaunay algorithm uses
an iterative process to generate a triangular tessellation considering a given region. The output is
a set of 3 vertices for each triangle in terms of its coordinates

[
m1

i , m2
i , m3

i

]
; given a two-dimensional

set of points, it is easy to build a tessellation joining the points (vertices) with lines (edges) in a
triangulation. For each triangle, a circumcircle might be drawn. A Delaunay tessellation is such
a triangulation that no vertex from the tessellation is found inside the circles. Figure 14 shows a
triangulation composed by 17 vertices. For each triangle, its circumcircle is drawn. A circle meets three
vertices, and no vertex is inside. Delaunay tessellations tend to maximize the smallest inner angle
possible. Diffusion operators complies with a maximum principle, which are relevant in existence and
uniqueness of solutions under this operation; it is possible to extend these properties to numerical
solution calculations obtained over Delaunay tessellations, mainly because of the geometric regularity
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imposed over the angle distribution [51]. This kind of tessellation are used in partial differential
equation analysis and morphogenesis studies, and we expect it might play a role given the importance
of gas-diffusion in stomatal physiology.Plants 2020, 9, x FOR PEER REVIEW 13 of 17 
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Figure 14. Delaunay tessellation over ROI (red square). (Left) Meanshift image and binarized image.
(Center) Zoom over the ROI shows the segmented regions and its centroids (yellow dots). A Delaunay
tessellation is built from centroids; note that centroid positions are dependent on the binarization level l.
(Right) After the centroids are fixed and the tessellation is built, the set di of all found distances are
used to calculate a histogram, which is used for RMSD analysis.

Step VI. Distance analysis: As result of the last process, a set of triangles in obtained (Figure 14),
each vertex an inlier-region. We analyze the set of all distances:

di =
[
δ
(
m1

i , m2
i

)
, δ

(
m2

i , m3
i

)
, δ

(
m1

i , m3
i

) ]
, i = 1, 2, 3, . . . n, (7)

where δ(·, ·) is the Euclidian distance between vertices, and n is the number of tessellated triangles.
Let d = [d1, d2, · · · , di, · · · , d3n], a vector composed of all edges, and let ni the number of occurrences of
distance di; then:

p(di|l) =
ni∑3n

i=1 ni
(8)

is the occurrence probability of di in the vector d for a given threshold l obtained from the
binarization process.

Step VII. Error estimation: Consider the Rayleigh distribution of parameter σ:

R(di|σ) =
di

σ2 e
−

d2
i

2σ2 ; (9)

our experimental results point at its presence in all analyzed images (manual or automatic process);
see Reference [28] for other applications of this probability in natural formations. Initial calibration
points at σ = 2 and t > 0. By root mean-square (RMS) deviation (RMSD) minimization, we assess the
proximity of p(di|l) to R(di|σ) as a function of threshold l and σ-parameter:

RMSD(σ, l) =

√∑3n
i=1(R(di|σ) − p(di|l))

2

3n
. (10)
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See the Discussion for comments on the significance of the parameter σ.
Step VIII. Optimal level selection: The ideal stomata distribution is associated with the minimum

RMSD. The optimal parameter l̂ happens when such distance is minimum:

l̂ =
argmin

0 < l < 100

(
RMSDσ,l

)
. (11)

Once the best level is found, the image is finally binarized. An example is shown in Figure 15.
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Figure 15. Sensibility analysis of binarization level and RMSD optimization procedure. (Left) Different
histograms corresponding to different binarization levels. (Upper right) RMSD sensibility with respect
to binarization level. The level of binarization minimizing the RMSD error is used for the final
tessellation. (Lower right) Final output of the proposed algorithm with the positions of stomata fixed at
tessellation nodes.

5. Conclusions

We showed an optimal segmentation algorithm based on stomata-position frequency-analysis
through Delaunay tessellation and Rayleigh distribution. We tested the algorithm with Hymenaea
Courbaril before a preprocess technique aimed at noise reduction. Our proposal is centered around
a Delaunay-Rayleigh Threshold Binarization (DRTB algorithm) that allows an optimal binarization
threshold with a posterior segmentation. The automatic segmentation shows the presence of a stable
Rayleigh distribution, despite image differences. This result is relevant given that DRTB algorithm
might be applied to other species, as was shown in the manual experimental phase with seven
different species.



Plants 2020, 9, 1613 15 of 17

Supplementary Materials: Our solution can be accessed online at https://github.com/mlacarrasco/drtb, and images
database are available online at https://github.com/mlacarrasco/drtb/tree/main/database.
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analysis; P.A.T. analyzed the data; M.C., P.A.T., and R.V. wrote, edited the manuscript; O.M.B. performed
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