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Abstract: The role of the root in water supply and plant viability is especially important if plants
are subjected to stress at the juvenile stage. This article describes the study of morphophysiological
and cytological responses, as well as elements of the anatomical structure of primary roots of three
wheat species, Triticum monococcum L., Triticum dicoccum Shuebl., and Triticum aestivum L., to osmotic
stress. It was shown that the degree of plasticity of root morphology in water deficit affected the
growth and development of aboveground organs. It was found that in conditions of osmotic stress,
the anatomical root modulations were species-specific. In control conditions the increase in absolute
values of root diameter was reduced with the increase in the ploidy of wheat species. Species-specific
cytological responses to water deficit of apical meristem cells were also shown. The development
of plasmolysis, interpreted as a symptom of reduced viability apical meristem cells, was revealed.
A significant increase in enzymatic activity of superoxide dismutase under osmotic stress was found
to be one of the mechanisms that could facilitate root elongation in adverse conditions. The tetraploid
species T. dicoccum Shuebl. were confirmed as a source of traits of drought tolerant primary root
system for crosses with wheat cultivars.

Keywords: wheat species; primary roots; osmotic stress; root elongation; root anatomy; cytological
reactions; superoxide dismutase

1. Introduction

Global climate change has led to irreversible phenomena that have significantly affected agriculture
of many countries of the world [1,2], especially developing countries. Water scarcity has become a
key and constantly increasing stressor in almost all climatic regions of the world. Understanding the
mechanisms that regulate the response of plants to water scarcity is extremely important for improving
the efficiency of agricultural crops and agroecosystems in the context of global climate change [3,4].

The role of root structure and architecture in water supply and plant viability cannot be
underestimated and it is especially important if plants are subjected to stress at the juvenile stage [5].
Since roots grow underground, they are the first to perceive changes in external conditions such
as water and nutrient content in soil, pH, temperature, etc., and adjust their genetic program for
post-embryonic development to withstand the resulting stress [6]. These changes are integrated into
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the development program and cause various structural modulations and realignments of the root
system architecture (RSA). With poorly understood mechanisms of genetic control of the processes,
it is noted that the RSA of different species shows different levels of plasticity and reacts differently
to adverse conditions [7]. The degree of interaction of the root with the environment is determined
by different levels of response: molecular, cellular, histological, and organismal [8,9]. In the process
of acclimation, the structure of the root system can be reconfigured by activating or declining the
water potential, metabolism level, and enzymatic activity [10]. These changes can be both adaptively
expedient and an expression of stress-related pathologies.

Cell growth, cell multiplication, and cell differentiation are inextricably linked, as already remarked
by Torrey in 1956 [11], thus, only when the analysis of root growth is considered in terms of various
components of cellular processes, is a detailed understanding of its mechanisms possible. However,
there is still no consensus on the role of elemental growth processes, cell division, and expansion
in the regulation both at root and plant level stress-responses [12]. Both the biophysical (hydraulic)
and biochemical mechanisms of signaling systems that regulate linear root growth and structural
modulations of RSA in conditions of insufficient water supply are still not fully defined [13]. It is
possible that in-depth research of root system will contribute to a new “green revolution”, a significant
increase in food security [14].

In this article, using the example of three different wheat species with different ploidy,
we summarized some results obtained in the study of root architecture modulations and root
elongation under water deficit. The aim of this article was to provide an analysis of how water
deficit modulated post-embryonic primary roots of different wheat species development, how the
individual morphological and anatomical elements of RSA of primary root were changed, and how
the primary root apical meristem cells of different wheat species responded to osmotic stress. We also
showed how the activity of important stress enzyme superoxide dismutase (SOD) was changed in
primary roots of different wheat species under osmotic-stress conditions.

2. Results

2.1. Morphophysiological Reactions of Primary Roots of Different Wheat Types to Osmotic Stress

The morphophysiological parameters per species varied significantly under stressful conditions.
The least effect of water deficit was noted in T. dicoccum, significant in T. aestivum, and the greatest in
T. monococcum.

From the data in Figure 1, it can be seen that the induced water deficit had a negative impact
on the morphophysiological parameters of the studied wheat species, but in T. dicoccum species the
damaging effect of osmotic stress on the studied parameters was minimal. Although its value of
relative water content (RWC) decreased slightly, the root length in stressful conditions significantly
increased in comparison with the control plants. The species T. monococcum was characterized by
maximum decrease in RWC and biomass indicators during water deficit. We also noted the rise of
root/shoot length ratio in T. monococcum and T. aestivum species under stress. At the same time we
noted the absence of significant differences in the number of roots under stress and control conditions
in all the studied plant species.

2.2. Changes in the Elements of the Anatomical Structure of Different Wheat Species’ Primary Roots during
Osmotic Stress

Upon cross-section, anatomical structures such as the epiblem, primary cortex, and central cylinder
were clearly visible (Supplementary Figure S1A). The cell layers’ number was invariable in all species
along the entire root length. Staining by Sudan III made it possible to identify areas of probable
suberization, which were stained orange (Supplementary Figure S1B,C).
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Figure 1. Morphophysiological parameters of primary roots of wheat species under induced water 
deficit. (A) root/shoot (length). (B) root relative water content. (C) root biomass. (D) root length. (E) 
number of roots. 
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Figure 1. Morphophysiological parameters of primary roots of wheat species under induced water
deficit. (A) root/shoot (length). (B) root relative water content. (C) root biomass. (D) root length.
(E) number of roots.
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As follows from the data presented in Table 1, the increase in root diameter along with the increase
in ploidy of the wheat species were noted under control conditions. Nevertheless, under conditions of
induced water deficit, the thickness of the roots of all studied species increased in equal proportions,
totaling 110% of the control for each species. Meanwhile, the increase in the root diameter in different
species was due to different components.

Table 1. Influence of water deficit on the anatomical parameters of the roots of different wheat species.

Condi-tions Parameters

Thickness of
the Epiblem,

µm

Thickness of
the Exoderm,

µm

Thickness of the
Cortical Parenchyma,

µm

Thickness of
the Endoderm,

µm

Diameter of the
Central Cylinder

(Stele), µm

Diameter of
the Root,

µm

T. monococcum

control 14.8 ± 0.7 13.9 ± 0.4 74.9 ± 1.7 18.6 ± 0.6 191.4 ± 2.2 435.8 ± 7.1

sucrose, 17.6% 14.1 ± 0.7 27.7 ± 0.2 * 85.1 ± 1.9 * 18.6 ± 0.5 187.6 ± 1.4 478.5 ± 2.2 *

% to control 95 199 113 100 98 110

T. dicoccum

control 19.4 ± 0.2 16.7 ± 0.8 67.3 ± 0.4 12.8 ± 0.6 217.5 ± 3.5 449.9 ± 5.2

sucrose, 17.6% 13.7 ± 0.1 * 30.4 ± 0.6 * 80.0 ± 0.7 * 26.4 ± 0.8 * 192.9 ± 1.1 * 493.9 ± 0.6 *

% to control 71 182 119 206 89 110

T. aestivum

control 16.6 ± 0.8 28.5 ± 0.9 70.1 ± 1.2 19.7 ± 0.5 205.8 ± 3.6 475.5 ± 9.2

sucrose, 17.6% 18.5 ± 0.1 * 25.6 ± 0.8 * 75.9 ± 0.5 * 24.5 ± 0.3 * 234.0 ± 8.9 * 523.0 ± 9.8 *

% to control 112 90 108 124 114 110

Note: * indicate significant differences at p ≤ 0.05, n = 5 plants in each of 3 replicates for all treatments.

In T. monococcum, this was facilitated by the thickening of the exoderm. In T. dicoccum, a thickening
of the exoderm also occurred, but thickness of the epiblem was significantly reduced, as well as the
thickening of cortical parenchyma and endoderm. Moreover, in T. aestivum, the root diameter was
enlarged under stress due to the significant thickening of the endoderm and the increase in the diameter
of central cylinder.

The data shown in Figure 2 clearly demonstrate that only in species T. aestivum, under conditions
of induced water deficit, the ratio of radial cross-section area of the stele to the radial cross-section area
of the root was stable. In the other two studied species, this ratio was increased significantly.Plants 2020, 9, x FOR PEER REVIEW 5 of 15 
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Figure 2. The changes of the stele’s radial section area/root radial section’s area ratio of wheat species
under induced water deficit (sucrose, 17.6%, 72 h). Values presented are means (±SD). Different letters
above the bars represent significant differences at p ≤ 0.05, n = 5 plants in each of 3 replicates for
all treatments.
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2.3. Cytological Reactions of Primary Roots of Different Types of Wheat to Osmotic Stress

The study of cytological reactions of primary roots shows pronounced plasmolysis of root apical
meristem (RAM) cells of T. monococcum species under stressful conditions (Figure 3).
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Figure 3. The effect of induced water deficit on root apical meristem (RAM) cells T. monococcum:
(a), control, (b), stress (sucrose, 17.6%, 72 h), scale bar = 10µm.

The meristem cells of the primary roots of T. dicoccum retaining turgor under the conditions of
osmotic stress (Figure 4).
Plants 2020, 9, x FOR PEER REVIEW 6 of 15 

 

  

(a) (b) 

Figure 4. The effect of induced water deficit on RAM cells T. dicoccum: (a), control, (b), stress (sucrose, 
17.6%, 72 h), scale bar = 10 µm. 

In T. aestivum both in RAM cells (Figure 5) and in the cells of root hairs (Figure 6), the 
development of the process of plasmolysis was noted.  

  

(a) (b) 

Figure 5. The effect of induced water deficit on RAM cells T. aestivum: (a), control, (b), stress (sucrose, 
17.6%, 72 h), scale bar = 10 µm. 

 
Figure 6. The effect of induced water deficit on root hairs cells T. aestivum (sucrose, 17.6%, 72 h), scale 
bar = 10 µm. 

  

Figure 4. The effect of induced water deficit on RAM cells T. dicoccum: (a), control, (b), stress (sucrose,
17.6%, 72 h), scale bar = 10µm.

In T. aestivum both in RAM cells (Figure 5) and in the cells of root hairs (Figure 6), the development
of the process of plasmolysis was noted.

2.4. Changes in Superoxide Dismutase Activity in Primary Roots of Different Wheat Species during
Osmotic Stress

The data presented in Figure 7 show that the activity of superoxide dismutase (SOD) in the roots
of T. monococcum and T. aestivum differed significantly, but there was a slight difference from T. dicoccum
under control conditions. However, induced water deficit revealed significant differences in the activity
of this antioxidant enzyme. In T. monococcum and T. aestivum species, there were reductions in SOD
activity to varying degrees: in T. monococcum the decrease was significant, and in T. dicoccum the level
of antioxidant activity of SOD increased significantly.
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3. Discussion

Maintaining root growth in conditions of water scarcity at the early stages of ontogenesis is
important for plant survival, since longer roots in drying soil have additional advantage—they make
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water and mobile nutrients more accessible [15,16]. Quite often, in stressful conditions, monitoring
water uptake by the root is more important for overcoming the traumatic effects of osmotic stress than
regulating leaf transpiration [13]. However, in long-term breeding practice, the selection of plants is
based mainly on indicators of bio-productivity of organs, which has led to the decrease in biomass of
roots of modern varieties compared to drought-resistant wild species [17]. This is confirmed by the
results obtained: the studied species were ranked as follows: T. aestivum < T. monococcum < T. dicoccum
by the value of root length index in the conditions of induced water deficit compared to the control.

The degree of plasticity of the root morphology affects the growth and development of aboveground
organs [18,19]. This was evidenced, in particular, by the data on changes in the root/shoot ratio under
stressful conditions, shown in Figure 1, on T. dicoccum; the value of this indicator remained almost at
the level of the control value during water deficit. Whereas the rise of root/shoot index in T. monococcum
and T. aestivum species in conditions of induced water deficit indicated the negative effect of this stress
on the growth parameters of the first leaves of these species. Ranking by this attribute (% to control) is
as follows: T. dicoccum < T. monococcum < T. aestivum.

What mechanisms can cause changes in root response to osmotic stress?
Although the influence of osmotic stress on the development of root system has been studied for a

long time, very few studies are devoted to mechanisms that affect the change in the rate of root growth
during water deficit. Osmotic stress certainly leads to dehydration of plant tissues. Yang et al. [20]
showed that the growth of root cells depended primarily on their osmotic potential and turgor. A slight
loss of water in the root could increase tensile strength, while a significant loss of water can lead to a
decrease in the root’s ability to elongate.

All studied species showed a tendency towards the decrease in the RWC of the root under
conditions of induced water deficit relatively to the control. They can be arranged as follows:
T. monococcum < T. aestivum < T. dicoccum. The tetraploid species T. dicoccum was characterized by
maximum water content of the primary roots in relation to the control compared with the other
studied species. Therefore, the root’s ability to retain water under osmotic stress is an important factor
determining its growth.

A similar ranking of studied species was obtained while analyzing the accumulation of biomass
by primary roots in water deficit conditions relative to the control. It is logical to say that osmotolerant
species have larger, stronger, and deeper roots in contrast to sensitive ones [21].

The literature shows that roots use various morphophysiological developmental strategies.
For example, they can change the growth rate, diameter, and density of tissue, adapting to various
stressors [22–24]. At the same time, the range of changes in the root diameter within the root system
of a specific species can also vary [25]. However, a too small root diameter restricts root penetration
through soil and does not contribute to the development of internal structures that transport water
and nutrients [26,27]. However, there is evidence that these signs also affect the ability of the root to
stretch [20]. In particular, as shown by Genet et al. [28], negative correlations of the root diameter with
tensile strength and positive correlations with its tensile resistance were found. Qian Wu et al. [29]
state that the basal diameter of the root determines its potential length. As a rule, the longest roots are
those that maintain (and sometimes increase) their diameters during elongation.

In our experiment, no such correlation was found. It was noted that a rise in the absolute values
of root diameter increased with the rise in the ploidy of wheat species. However, relative values under
induced water deficit were the same for all the studied species and amounted to 110% compared to
the control.

Changes in anatomical characteristics in stress conditions suggest maintaining some balance that
is supposed to be between the diameter and adaptive capacity of roots. According to the literature
and our own research [9,30], different abiotic stresses have a range of effects on RSA. In the case that
salt stress caused a significant reduction in root diameter of various wheat species [30], water deficit
triggered a significant enlargement in the diameter of primary root of all the studied species. At the
same time, we witnessed a significant increase in the thickness of exoderm in the osmotic stress
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conditions in species T. monococcum and T. dicoccum. A thickening of the endoderm was observed in
the species T. dicoccum and T. aestivum. This can be explained largely by the ongoing suberization
of roots, i.e., the formation of suberized barriers in certain layers of cell walls, such as endo- and
exoderm [31]. As shown by numerous literature data, the vital activity of the root under stressful
conditions largely depends on such heteropolymers as suberins, which are deposited in cell walls to
separate living plant tissue from the negative impact of environment and optimize the function of
resource absorption [24,32–34]. For example, Baxter et al. [35] found in Arabidopsis Esb1 mutants that
were characterized by increased root suberization, reduced daily transpiration rate, and increased
water use efficiency during the vegetative growth period. The decrease in thickness of epiblem in
T. dicoccum may have been due to mechanisms of compensating this cell layer by exoderm.

One of the indicators of the adaptation process is the ratio of thickness of exoderm to endoderm [36,37].
Taking into account the data in Table 1, in our experiment the value of this ratio in induced water deficit
conditions rose in the drought-sensitive species T. monococcum (0.8–1.5), practically did not change in
drought-tolerant T. dicoccum (1.3–1.2) and declined in T. aestivum (1.5–1). Moreover, this allows us to
recognize different types of strategies for stress response of the root.

Cortical parenchyma cells are highly vacuolated. This creates turgor pressure and allows the
root to retain the necessary amount of water and nutrients. On the one hand, increasing the thickness
of cortical parenchyma under stress implies the longer radial distance for transporting water at the
root. On the other hand, the thickening of this layer may indicate the adaptive strategy for water
conservation, as we observed in the drought-tolerant T. dicoccum.

Tolerance to osmotic stress can also be provided by a thicker root stele, and, respectively,
by thicker xylem vessels and greater water conductivity. Stele diameter enlargement, and consequently,
the cross-sectional area of stele during water stress contributes to decline in radial path for water flow
and higher axial conductivity [38,39]. A clear illustration of this is the ratio of area of radial section of
stele to the area of radial section of root [39]. In the present study, this pathway of root adjustment to
water deficit was only observed in T. aestivum. However, an incidence of runaway embolism might also
increase in thicker vessels in response to drought, which will lead to a higher rate of plant damage and
mortality [40]. Thus, anatomical modulations of the root, including possible suberization, which under
stressful conditions play an important role in water absorption and contribute to prevention of water
loss (backflow) from root to source of drought [41], are species-specific.

The growth rate of primary root largely determines the growth of aboveground organs and plant
productivity [42,43]. The viability of the RAM, which provides differences in the size and mass of the
plant, and the very possibility of its normal functioning in a changing environment is of particular
importance in stressful conditions [44]. Root elongation is the result of both cell enlargement and
mitotic activity of apical meristem cells, which are constantly formed due to their division. Attempting
to link root elongation to cellular processes, Shimazaki et al. [45] concluded that an insufficient water
supply in apical meristem zone could lead to significant reduction in root growth. Stress affects the
organization of root apical meristem [46]. It is shown that under strong osmotic stress, programmed
death from autophagy is possible in the cells of RAM [47]. Duan et al. [48] suggested that under
conditions of insufficient water supply, plants could activate root apical meristem cell death program,
thus eliminating apical dominance and rearranging RSA to better adapt to a stressful environment.

Our study in 2019 revealed significant species-specific differences in the cytological responses
of RAM cells of various wheat species to salt stress. Moreover, the negative effect of salt stress was
observed not only on water content in root cells, but also on their chromosomal apparatus of sensitive
wheat forms [30]. The results of induced water deficit did not show such a destructive effect on the
studied wheat species, but in meristematic cells of primary roots of T. monococcum and T. aestivum we
observed the development of strong plasmolysis under osmotic stress conditions. In T. aestivum, strong
plasmolysis was also observed in root hair cells, whose purpose in RSA is to significantly enlarge the
root surface area, increasing absorption of water and soil solutions into the root [49,50]. Thus, the result
of cytological observations may indicate an early symptom of viability loss due to water deficit in
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T. monococcum and T. aestivum. In drought-tolerant species T. dicoccum, RAM cells showed sufficient
turgor under conditions of induced water deficit.

There are references in the literature that various abiotic stressors can induce the intense production
of reactive oxygen species (ROS) in plants. To some extent, ROS always presents in plant tissues,
since it is necessary for regulating signaling and growth [51]. Various stressors show that abiotic factors
induce the presence of ROS in plant tissues, which leads to change in root morphology, first of all due
to reduced growth of the primary root, but mechanisms of such redox generation are still not well
understood [52–54]. Nevertheless, it is the degree of ROS accumulation that can be the indicator of
adaptation or damage degree in plant tissues [55,56].

ROS fluctuations in time and space are often interpreted as stress signals to regulate cell growth,
development, or death [57,58]. Miller et al. [53] suggested that the production of ROS is a necessary
element of reaction for the adequate acclimatization of plants to stress processes. This effect results
from the expression of several genes encoding antioxidant enzymes, such as superoxide dismutase
(SOD), which can convert superoxide radicals into hydrogen peroxide, water, and oxygen.

Osmotic stress can affect accumulation of ROS in plant roots because it results in lipid peroxidation
in the plasma membrane. The research by Libik-Konieczny et al. [59] on rhizogenesis showed the
importance of redox balance system for this process, which could be mediated by preventing the
negative effects of possible oxidative stress. Isoforms of superoxide dismutase (SOD) and peroxidase
(POD) can play a significant role in regulating the content of hydrogen peroxide in the formation of
root primordia, as well as in the process of root growth and development [59,60]. The accumulation
of ROS in meristematic cells of root tips subjected to stress serves as a signal for autophagy [61].
ROS quenching inhibits root growth [62] and an increased peroxidase expression contributes to root
elongation [63]. Considering experimental data of the present study, we can state that the increased
activity of SOD in primary roots of T. dicoccum under induced water deficit conditions indicates the
greater tolerance of this species to osmotic stress at the early stages of ontogenesis and is one of the
mechanisms that can provide root elongation in unfavorable conditions.

4. Materials and Methods

Three winter wheat species with different ploidy were used in the study: Triticum monococcum
L. (AuB), Triticum dicoccum Schuebl. var. araratum (Host) Koern (AuAuBB), and Triticum aestivum L.
(AuAuBBDD)—Mironovskaya 808. All originated from the Institute of Plant Biology and Biotechnology
collection (Almaty, Kazakhstan). The tetraploid species T. dicoccum was previously characterized one
having a number of physiological parameters of salt and drought tolerance in in addition to being a
carrier of Dreb-B1 drought tolerance gene [30,64].

4.1. Analysis of Physiological Parameters of Drought Tolerance

During the seedling stage, all wheat species were subjected to simulated drought. First, the studied
wheat species and lines were germinated in a growth chamber in the dark at 25 ◦C for 3 days. Then,
some of seedlings (25 plants in each from 3 biological replicates) were grown in vessels with distilled
water under circadian illumination (using commercial fluorescent white light tubes): 16 h light/8 h
darkness regime [200 µmol m−2 s−1 PAR, light metre LI-205 (Li-Cor, Lincoln, NE, USA)], and 26 ± 2 ◦C
temperature. Some of the seedlings (25 plants in each from 3 biological replicates) were transferred
to 17.6% sucrose solution (w/v) with osmotic potential (ψ) = 1450 kPa for 72 h. The roots were not
exposed to light; they were protected from light by a plastic screen with holes for shoots [65].

The elongation of primary root, first leaf (сm), and their ratio (%) was measured after 72 h both in
control and stress-treated replicates. The wet and dry biomass of primary roots was measured.

The relative water content (RWC) of the roots was calculated by the formula:
RWC = ((a − b):a) × 100%, where a—the initial wet mass of roots (mg); b—dry mass (mg) of roots

after drying; samples (a roots clipped) was dried in a forced air oven at 105 ◦C, 5 h [65].
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All experiments were done in three replicates. The processing of data and graphing was performed
using Microsoft Excel (Microsoft Corp., Redmond, Washington, DC, USA). Atypical values were
excluded from the data based on t-tests, the standard error of the average sample was calculated.
Differences were considered significant at p < 0.05.

4.2. Anatomical Analysis of Primary Roots

The fixation of roots was performed in 70% ethanol, рreservative fluid was a Strasburger-
Flemming’s mixture: 96% ethanol: glycerol: water in ratio of 1:1:1 [66]. Anatomical specimens were
prepared with a microtome MZP-01 (“Technom”, Ekaterinburg, Russia) having a freezing unit OL-ZSO
30 (“Inmedprom”, Yaroslavl, Russia). The thickness of anatomical sections varied between 10 to
15 microns. Sudan III –stained sections were placed on a glass slide in a drop of pure glycerin and
covered with a cover slip to obtain a temporary preparation. Micrographs of anatomic sections were
made on a microscope with MC 300 (Wien, Austria) CAM V400/1.3M camera “Vision” (Wien, Austria).
All anatomical data were obtained in 3–5 replicates (5 plants in each) with a 40× objective.

4.3. Cytological Analysis of Primary Roots

Cytological analysis was carried out with a squashed preparation (root tips 1–1.5 cm long from
the primary roots) stained with Acetocarmine by the method of Pausheva [67]. The material was fixed
in the morning hours in freshly prepared Clark’s reagent (3 parts of 96% ethanol: 1 part of glacial acetic
acid) for 12–24 h. After fixation and storage in a refrigerator, the primary roots were warmed at room
temperature for several hours, transferred into a dye, and heated in a boiling water bath for 6 min.
The roots were left in a test tube with acetocarmine at room temperature for 30 min for better staining
of the meristem. The root tips were placed on a defatted (ethanol-treated) glass slide in a drop of 45%
acetic acid and squashed for short-term slides. All cytological examination was conducted by a Micros
microscope (Graz, Austria), photographed with a YONGXIN OPTICS CAM V200 (Ningbo, China)
video camera and YONGXIN OPTICS ScopePhoto version 2.4 computer program with an increase in
lens × 40. All data were obtained in three replicates. All slides were analyzed in at least five fields
of view.

4.4. Analysis of Superoxide Dismutase (SOD) Activity

Fresh whole roots 0.5 g were homogenized with a mortar and pestle in 4.5 mL ice-cold 30 mm
K/Na -phosphate buffer pH 7.4 containing 0.1 mm EDTA and 2% polyvinylpyrrolidone (PVP mol.
mass of 25,000) for 3 min. After filtration through kapron the homogenate was centrifuged at 11,000× g
for 20 min, and the supernatant diluted 20 times by K/Na -phosphate buffer (without EDTA and PVP)
was used as the source of enzymes. All the steps were carried out at 0–4 ◦C.

The activity of SOD was determined by photoreduction of nitroblue tetrazolium chloride (NBT)
dye (Sigma-Aldrich, St. Louis, MO, USA) in the presence of riboflavin and methionine generating
superoxide anion radicals (O2−). The blue formazane produced by NBT photoreduction was measured
as the increase in absorbance at 560 nm. The reaction mixture (3 mL) contained 1.3 µM riboflavin,
63 µM methionine in 50 mM K/Na phosphate buffer with 0.1 mM EDTA, pH 7.4 and 0.1 mL enzymatic
extract (all reagents Sigma-Aldrich, MO, USA). The reaction took place in a chamber under illumination
of a 30 W fluorescent lamp at 25 ◦C. The reaction was initiated by turning the fluorescent lamp on and
stopped 6 min later by turning it off [68]. The measurements were made on a spectrophotometer LEKI
SS2107UV (MEDIORA OY, Helsinki, Finland). As a unit of SOD activity, the volume of enzymatic
extract was taken, which caused 50% inhibition of photoconverted NBT. One SOD unit was defined as
the amount of enzyme required to inhibit 50% of the NBT photoreduction in comparison with tubes
lacking the plant extract [69]. The determination of SOD activity (in relative units per milligram of
protein) was carried out three times using the following formula:
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SOD activity (unit·g−1 fresh weight) = lg(Dc/Do)/(lg2 × Cp), where Dc—optical density of the light
control sample; Do—optical density of the experimental sample; Cp—protein content in the sample,
mg/mL.

The soluble protein content in the supernatant was determined by Lowry [70].
All data were obtained in three replicates (25 plants in each replicates). The significance of

differences based on t-tests, the standard error of the average sample, were calculated. Differences
were considered significant at p < 0.05.

5. Conclusions

The results of this study demonstrated that under osmotic stress conditions, morphophysiological
and cytological responses as well as elements of anatomical structure of primary roots changed at
various degrees in different wheat species, which reflected species-specific features and could be used
to assess their ecological adaptability.

Significant increase in enzymatic activity of SOD under osmotic stress can be considered as one of
the mechanisms that can facilitate root elongation in adverse conditions.

The tetraploid species T. dicoccum Shuebl is recommended as a source of such traits of
drought-tolerant root system as ability to optimize anatomical structures, preservation of the turgor of
RAM cells, and high SOD activity under water stress at the juvenile stage of development, for crosses
with wheat cultivars.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1545/s1,
Figure S1: Anatomical structure of wheat roots under induced water deficit (sucrose, 17.6%, 72h). (A) Epiblem.
(B) Exoderm. (C) Cortical parenchyma. (D) Endoderm. (E) Central cylinder (stele). (S) Suberization. Scale bar = 20 µm.
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