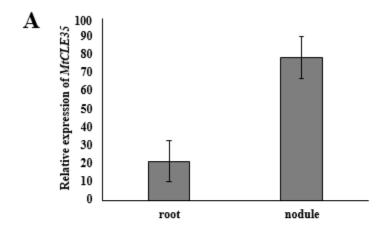
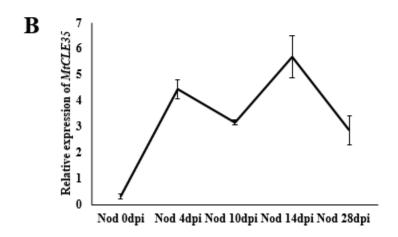
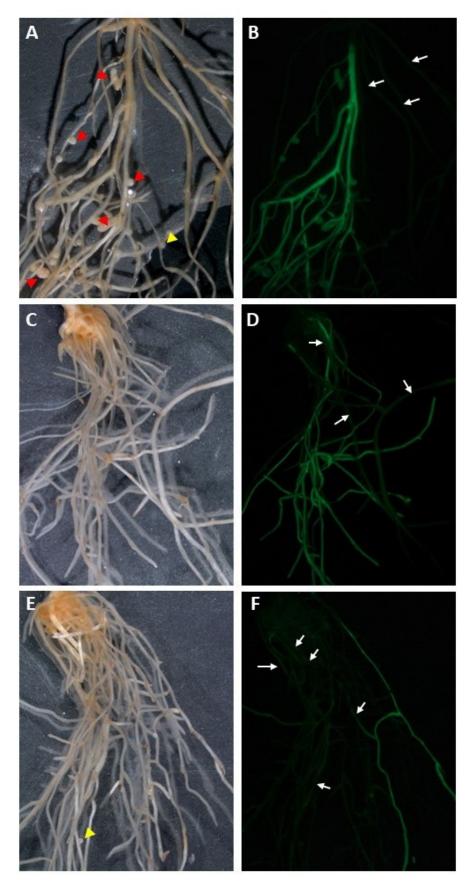

**Table S1.** Primer used for the expression analysis.

| gene     | Gene ID       | Forward primer                       | Reverse primer                    |
|----------|---------------|--------------------------------------|-----------------------------------|
| MtCLE 35 | Medtr2g091125 | 5'- GCAAGCTCGTACTCTCCAAC C-3'        | 5'-<br>TGTTGATTTGCATCCTCGTG-3'    |
| MtCLE12  | Medtr4g079630 | 5'- CAACGTCTCTTGCATGAGTTA<br>ATGG-3' | 5'- ACCTGGTGAAAGCCTATCTCCT G-3'   |
| MtCLE13* | Medtr4g079610 | 5'- CCGAAGCCTTCTACAGAAAC<br>ACG-3'   | 5'- TCTTGGTGGTGATCTTCCATTAT GC-3' |

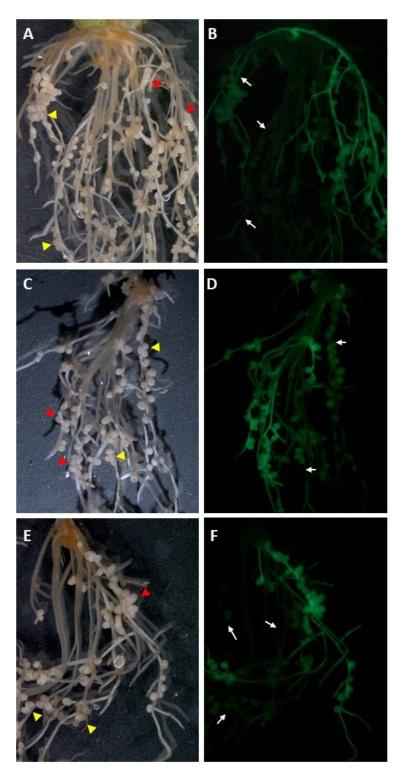

<sup>\*</sup>primer sequences for MtCLE13 forward and reverse primer were used according to [12].




**Figure S1.** Phylogenetic tree based on the protein sequences of *CLE* genes of *Medicago truncatula, Lotus japonicus,* and *Glycine max*. The tree was generated using a maximum likelihood algorithm with 1000 bootstrap replicates.




**Figure S2.** The expression levels of the MtCLE35 gene at different days post inoculation (dpi) in comparison to the non-inoculated (NI) roots. Results are mean  $\pm$  SEM of three technical repeats of one biological repeat, representative for three independent experiments.






**Figure S3.** The expression levels of the *MtCLE35* gene in nodules in comparison with the root according to transcriptomic data obtained by LCM (Laser Capture Microdissection)-RNA-seq for *M. truncatula* (https://iant.toulouse.inra.fr/symbimics,[27]) (**A**), *MtCLE35* expression at 0, 4, 10, 14 and 28 dpi according to Small Secreted Peptide Gene Expression Atlas (SSP-GEA) available in The *Medicago truncatula* Small Secreted Peptide Database (https://mtsspdb.noble.org/, [28] (**B**).



**Figure S4.** Examples of nodulation phenotypes of composite wild-type plants containing both transgenic GFP-positive control (*GUS* ( $\beta$ -*glucuronidase*)-overexpressing) (**A** and **B**) and *MtCLE35*- overexpressing (**C–F**) roots and non-transgenic GFP-negative roots. White arrows indicate non-transgenic GFP-negative roots exhibiting faint autofluorescence. Red arrows point at nodules on GFP-positive transgenic roots, yellow arrows point at nodules on GFP-negative non-transgenic roots.



**Figure S5.** Examples of nodulation phenotypes of composite *sunn-4* mutant plants containing both transgenic GFP-positive control (*GUS*-overexpressing) (**A** and **B**) and *MtCLE35*-overexpressing (**C–F**) roots and non-transgenic GFP-negative roots. White arrows indicate non-transgenic GFP-negative roots exhibiting faint autofluorescence. Red arrows point at nodules on GFP-positive transgenic roots, yellow arrows point at nodules on GFP-negative non-transgenic roots.