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Abstract: The identification of plant disease is an imperative part of crop monitoring systems.
Computer vision and deep learning (DL) techniques have been proven to be state-of-the-art to
address various agricultural problems. This research performed the complex tasks of localization and
classification of the disease in plant leaves. In this regard, three DL meta-architectures including the
Single Shot MultiBox Detector (SSD), Faster Region-based Convolutional Neural Network (RCNN),
and Region-based Fully Convolutional Networks (RFCN) were applied by using the TensorFlow object
detection framework. All the DL models were trained/tested on a controlled environment dataset to
recognize the disease in plant species. Moreover, an improvement in the mean average precision
of the best-obtained deep learning architecture was attempted through different state-of-the-art
deep learning optimizers. The SSD model trained with an Adam optimizer exhibited the highest
mean average precision (mAP) of 73.07%. The successful identification of 26 different types of
defected and 12 types of healthy leaves in a single framework proved the novelty of the work. In the
future, the proposed detection methodology can also be adopted for other agricultural applications.
Moreover, the generated weights can be reused for future real-time detection of plant disease in a
controlled/uncontrolled environment.

Keywords: deep learning; plant disease detection; transfer learning; optimization algorithms; mean
average precision

1. Introduction

In agricultural crops, leaves play a vital role to provide information about the amount and nature
of horticultural yield. Several factors affect food production such as climate change, presence of
weed, and soil infertility. Apart from that, plant or leaf disease is a global threat to the growth
of several agricultural products and a source of economic losses [1]. The failure to diagnose
infections/bacteria/virus in plants leads subsequently to insufficient pesticide/fungicide use. Therefore,
plant diseases have been largely considered in the scientific community, with a focus on the biological
features of diseases. Precision farming uses the most advanced technology for the optimization of
decision-making. The visual inspections by experts and biological review are usually carried out
through plant diagnosis when required. This method, however, is typically time-consuming and
cost ineffective. To address these issues, it is necessary to detect plant diseases by advanced and
intelligent techniques.
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To perform the agricultural operations, conventional machine learning (ML) algorithms have
been applied in many studies [2,3]. However, recently, deep learning (DL) as a sub-set of ML, has been
strikingly effective for real-life object detection, recognition, and classification purposes [4–6]. Therefore,
agricultural research has been moving towards the DL-based solutions. The DL techniques have
been accomplished state-of-the-art results to perform the agricultural operations including crop/weed
discrimination [7,8], fruit harvesting [9,10], and plant recognition [11–14]. Similarly, recent studies
have also focused on another important agricultural issue of plant disease identification [6].

Several state-of-the-art DL models have been applied to perform plant disease classification by
using well-known DL architectures. Moreover, some researchers introduced modified versions of DL
algorithms to improve the performance of the classification of disease in several plant species. A few
of the prominent/recent studies are highlighted in this section. For example, a recent article presented
a comparative analysis of various Convolutional Neural Networks (CNN) and DL optimizers to
attain better results of plant disease classification [15]. A study proposed a CNN model to classify
disease in tea leaves [16]. Another study was conducted to propose two revised versions of MobileNet
models for the classification of several plant diseases [17]. A recent article presented two deep learning
architectures based on residual learning and attention methods to classify tomato leaf diseases and
achieved a higher overall accuracy [18]. Another CNN-based architecture was proposed to classify
disease in the PlantVillage dataset, and it performed better than the well-known DL models including
AlexNet, VGG-16, Inception-v3, and ResNet [19]. A recent article proposed a CNN-based model for
the classification of groundnut disease [20]. Similarly, few studies focused on the advanced training
techniques; for example, [21] evaluated the performance of AlexNet and GoogLeNet trained from
scratch and transfer learning approaches. A comparative study was conducted to show the significance
of the fine-tuning technique by comparing state-of-the-art DL architectures for the classification of
plant disease [22]. More recent developments regarding the specific task of plant disease classification
are comprehensively presented in [6,15].

To address the task of object identification, the classification and localization of objects are
performed in a single platform by using deep learning meta-architectures. In this regard, few DL
algorithms have been developed. The Region-based Convolution Neural Network (RCNN) was
among the first modern techniques towards image detection tasks through CNN [23]. Afterward,
the successful implementation of regional proposal methods proved significant developments in object
identification. In the context of plant disease recognition, very few studies have been conducted
to perform this complex agricultural operation by DL techniques. For example, in [24], the deep
learning models were implemented to perform plant disease localization and diagnosis. The authors
used their own annotated images of tomato leaf and successfully obtained a higher mean average
precision. In [25], two different approaches were developed and compared to perform automated pest
detection based on ML/DL learning strategies. This work focused on the detection of the harmful
pest in greenhouse tomato and pepper crops. Their findings showed that the deep learning methods
provided a better result as compared to the machine learning algorithms due to its capability to perform
detection and classification tasks in one step. A recent article presented the DL approach to diagnose
disease in Cassava leaves by using the Single Shot MultiBox Detector (SSD) and achieved satisfactory
results [26]. Another recent research considered the plant disease recognition task by CNN to estimate
the severity of defects in the plant leaves [27].

From the literature, it can be concluded that most of the recent researches have been focused on
the task of plant disease classification (only classify the type of disease among several plant species).
However, the complex task of plant disease identification (both localization and classification of the
disease in the plant) has been given very little attention. Moreover, none of the previous approaches has
performed a comprehensive study regarding the detection/identification of 38 classes of plant disease by
advanced DL meta-architectures. Therefore, in this research, an evaluation of three successful DL-based
object detection techniques including the Single Feed-forward Neural Network, Region Proposal
Network, and Region-based Fully Convolutional Network has been carried out using a transfer
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learning technique that focused on an important agricultural problem of plant disease identification.
The transfer learning technique is applied due to its successful performance for many object recognition
tasks. From the practical point of view, reuse or transfer of information from previously learned tasks
for learning new tasks increases the accuracy of the DL architectures. In this research, we have shown
the final ConvNet checkpoints of the detection tools. Moreover, recently, the research community is
focusing on better optimization of weight parameters of neural networks [15]. Thereby, in this work, the
performance of three state-of-the-art deep learning optimizers was also analysed, which significantly
improved the prediction ability (true positive detection rate) of top selected DL meta-architectures.

The main contributions of this research are summarized as follows:

1. A comprehensive study of deep learning meta-architectures has been conducted for the
identification of disease in several plant species infected by fungi, infection, virus, and bacteria.

2. An attempt has been made towards the improvement in the performance of DL meta-architectures
specifically for plant disease recognition/identification tasks by using three different state-of-the-art
DL optimization methods including Stochastic Gradient Descent (SGD) with Momentum,
Adaptative Moment Estimation (Adam), and Root Mean Square Propagation (RMSProp).

3. The weights obtained after the training of the DL models could also be used for the other datasets
related to plant disease.

The rest of the article is presented as follows: Section 2 explains the overall methodology, applied
framework, selection of datasets, annotation of dataset images, DL meta-architecture, DL optimizers,
experimental setup, and performance metric. Section 3 presents the performance of all the DL methods
along with the improvement in their performance by optimization algorithms, and Section 4 provides
the conclusion with some future works.

2. Materials and Methods

This article addresses the plant disease identification task by state-of-the-art three deep learning
meta-architectures prominently Faster Region-based Convolutional Neural Network (RCNN), Single
Shot MultiBox Detector (SSD), and Region-based Fully Convolutional Networks (RFCN). The overall
methodology for this research is presented in Figure 1. The first step was the selection of two datasets:
a large dataset to obtain the pre-trained weights for transfer learning, and the second dataset was
related to the different classes of disease on plant leaves. The next step was the annotation of the
training dataset by an online available tool called LabelImg. This led to constructing and training
the DL architectures. Then, the recognition of all the classes of plant disease was checked to tune the
hyperparameters of the SGD optimizer. Next, the performance of the learned neural networks was
evaluated on the images of the testing (unseen) dataset. Here, the actual outputs were compared with
the expected outputs to identify errors. Furthermore, the mean average precision (mAP) of all the
neural networks was measured to obtain the best suited DL model. The further improvement in the
mAP was proposed by using various DL optimizers. Finally, the proposed method was successful to
classify and localize the healthy/diseased leaves of various plant species.
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Figure 1. The flow diagram of this research.

2.1. Generalized Framework

The generalized framework of training and testing the DL models is presented in Figure 2 which
consists of dataset images having their corresponding XML files. The XML data were converted
into CSV format. Then, TF records from the CSV files were generated, as TensorFlow accepts the TF
format of the data to feed into the network while training the DL architectures. The DL detectors
were constructed by taking training images with bounding box coordinates and then evaluated their
performance on the testing dataset.
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Figure 2. Generalize framework to train and test the deep learning (DL) meta-architectures for plant
disease identification.

2.2. Dataset Selection

Few datasets have been developed and used for various real-life operations consisting of a huge
number of classes. For example, in object classification/detection research, the dataset of ImageNet [28],
which includes unprecedented numbers of images, has recently made breakthroughs. Similarly, the MS
COCO dataset [29] consists of 91 common object classes with 82 of these having more than 5k labelled
instances. A total of 2500k data instances are labelled in 328k pictures. The MS COCO dataset contains
substantially more object instances per picture (7.7) as compared to the ImageNet (3.0) and PASCAL
(2.3) datasets. Therefore, we used the training weights of the MS COCO dataset for the transfer learning
purpose. Next, the PlantVillage dataset [30] was selected, as it contains images that are relevant to
the area of interest. This dataset consists of images of 14 plant varieties. The dataset shows 17 fungal
infections, 4 bacterial diseases, 2 fungal illnesses, 2 infectious diseases, and 1 mite-induced disease [30].
Twelve plant species also show images of healthy leaves that have no obvious illness.

2.3. Annotation of the Training Dataset

The PlantVillage dataset was divided into three sub-datasets: 70% (38017 images) for training, 20%
(10858 images) for validation, and 10% (5431 images) for testing [15,17]. Then, the annotation of training
dataset images was the first step towards the plant disease identification task by DL meta-architectures.
In this study, the training images were annotated by LabelImg, which is an open-source graphic image
annotation application. As a result, the bounding box coordinates (Xmin, Ymin, Xmax, and Ymax) were
created. These bounding boxes are the ground truth boxes that evaluate as the intersection of the union
(IoU) with the prediction bounding box. To save annotations as XML files, the Pascal VOC format
was used. An example of an annotated dataset image is given in Figure 3. Table 1 shows the details
regarding the classes of the PlantVillage dataset.
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Table 1. List of classes of PlantVillage dataset along with the cause of disease, annotation labels, number
of training, validation, and testing images.

Classes of PlantVillage Dataset Disease
Cause

Annotation
Label

Training
Images

Validation
Images

Testing
Images

Apple Scab Fungi A_Scab 441 126 63
Apple Black Rot Fungi A_Blk_Rot 435 124 62

Apple Cedar Rust Fungi A_C_Rust 192 55 28
Apple Healthy - A_Healthy 1151 329 165

Blueberry Healthy - B_Healthy 1051 300 151
Cherry Healthy - Ch_Healthy 598 171 85

Cherry Powdery Mildew Fungi Ch_Mildew 736 210 106
Corn (maize) Common rust Fungi Corn_Rust 835 238 119

Corn (maize) Healthy - Corn_Healthy 813 233 116
Corn (maize) Northern Leaf Blight Fungi Corn_Blight 690 197 98

Corn (maize) Gray leaf spot Fungi Corn_Spot 360 102 52
Grape Black Rot Fungi G_Blk_Rot 826 236 118

Grape (Black Measles) Fungi G_Blk_Measles 968 277 138
Grape Healthy - Grp_Healthy 296 85 42

Grape Leaf Blight (Isariopsis Leaf Spot) Fungi Grp_Blight 753 215 108
Orange Huanglongbing (Citrus greening) Bacteria O_HLBing 3855 1101 551

Peach Bacterial Spot Bacteria Pec_Bact_Spot 1608 459 230
Peach Healthy - Pec_Healthy 252 72 36

Pepper Bell Bacterial Spot Bacteria Pep_Bact_Spot 698 199 100
Pepper Bell Healthy - Pep_Healthy 1034 297 147
Potato Early Blight Fungi Po_E_Blight 700 200 100

Potato Healthy - Po_Healthy 107 30 15
Potato Late Blight Infection Po_L_Blight 700 200 100
Raspberry Healthy - Ras_Healthy 260 74 37
Soybean Healthy - Soy_Healthy 3563 1018 509

Squash Powdery Mildew Fungi Sq_Powdery 1285 367 183
Strawberry Healthy - Straw_Healthy 319 91 46

Strawberry Leaf Scorch Fungi Straw_Scorch 776 222 111
Tomato Bacterial Spot Bacteria Tom_Bact_Spot 1488 426 213
Tomato Early Blight Fungi Tom_E_Blight 700 200 100

Tomato Healthy - Tom_Healthy 1114 318 159
Tomato Late Blight Infection Tom_L_Blight 1336 382 191
Tomato Leaf Mold Fungi Tom_L_Mold 667 190 95

Tomato Septoria leaf Spot Fungi Tom_Sept 1240 354 177
Tomato Spider Mites Mite Tom_Sp_Mite 1174 335 167
Tomato Target Spot Fungi Tom_Target 984 280 140

Tomato Mosaic Virus Virus Tom_Mosaic 262 74 37
Tomato Yellow Leaf Curl Virus Virus Tom_Curl 3750 1071 536
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2.4. Deep Learning Meta-Architectures

In this research, three successful DL meta-architectures were considered for the detection of plant
disease. These models consist of a base network and a feature extractor. The following sub-sections
provide an insight of these DL architectures to elaborate their functionality for performing an image
recognition/identification task along with the overall loss function of the respective models.

2.4.1. Single Shot MultiBox Detector (SSD)

The SSD model is simple due to the elimination of the region proposal and subsequent pixel or
resampling of features. This DL model includes all computations in one network, which is why it is
known as a single-shot detector [31]. Experimental findings on the MS COCO, ILSVRC, and PASCAL
VOC datasets revealed that the SSD achieved comparatively better precision than the other DL models
such as Faster RCNN, and much faster computation time while providing a unified training and
inference framework [31]. The key feature of SSD is the use of small convolution filters, such as 4x4 and
8x8; feature maps for category score; and box offset prediction for the collection of default bounding
boxes. The conceptual diagram of the SSD model is presented in Figure 4. The overall loss for SSD
architecture is evaluated by Equation (1) [31]:

L(x, c, l, g) =
1
N
[Lcon f (x, c) + αLloc(x, l, g)] (1)

where, N, Lconf, α, and Llos represent the number of matched default boxes, confidence loss, weight
term, and localization loss, respectively.

Figure 4. The basic architecture of the Single Shot MultiBox Detector (SSD) [32].

2.4.2. Faster Region-based Convolutional Neural Network (Faster-RCNN)

In Faster RCNN architecture, the object detection task performs at two different stages as compared
to SSD. At the region proposal network (RPN) stage, the images are processed to generate region
proposals directly through feature extractors (Inception and ResNet) instead of an external algorithm
such as Edge Boxes. These features are used to forecast class-specific proposals for each intermediate
convolutional layer. Then, the generated anchor boxes are used at the second step of detecting the



Plants 2020, 9, 1451 8 of 23

characteristics of the same immediate layer of an image. Figure 5 presents the basic concept of the
Faster RCNN model, and the overall loss is evaluated by Equation (2) [33]:

L[{pi}, {ti}] =
1

Ncls

∑
i

Lcls(pi, pi
∗) + λ

1
Nreg

∑
i

pi
∗Lreg(ti, ti

∗) (2)

where i indicates the index of anchor (responsible for obtaining bounding boxes of various sizes/ratios
and used as a reference while predicting object locations); pi, pi

*, ti, Ncls, λ, Lcls, Lreg, and Nreg present
the output score from classification branch for anchor i, ground truth label (0/1), output prediction
of the regressor layer (which consists of 4 variables (tx, ty, tw, th)), number of anchors in mini-batch,
balancing parameter, classification loss, the regressor loss (it actuates only if anchor contains an object
that is ground truth (pi

*) is 1), and number of anchors in mini-batch, respectively. Here, ti
* is the ground

truth box with a positive anchor.

Figure 5. The basic architecture of the Faster Region-based Convolutional Neural Network (RCNN) [32].

2.4.3. Region-based Fully Convolutional Networks (RFCN)

This network is much like the Faster-RCNN, except for the removal of fully convolutional layers
after the region of interest (ROI) pooling. After ROI pooling, the region proposals generate the same set
of score maps for average voting. Moreover, this DL architecture has a lesser complexity level because
there is no learnable layer after ROI which significantly reduces its computation time as compared to
the models such as Faster RCNN. Figure 6 presents the basic concept of RFCN architecture with its
corresponding proposal generator and feature extractor. The overall loss expression can be seen in
Equations (3) and (4) [34]:

L(s, tx,y,w,h) = Lcls(sc
∗) + λ[c∗ > 0]Lreg(t, t∗) (3)

where Lcls (sc
*) is a cross-entropy loss for classification and calculates by:

Lcls = −log(sc
∗) (4)

In Equation (3), λ is the balance weight, which is set to 1; [c* > 0] is an indicator, which is equal to 1 if
the argument is true and 0 otherwise. Lreg(t,t*) is the bounding box regression loss and evaluated by
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smoothL1 function, c* indicates the ground-truth label of the region of interest (ROI), and t* presents
ROI’s ground truth box.

Figure 6. The basic architecture of the Region-based Fully Convolutional Network (RFCN) [32].

2.5. Deep Learning Optimizers

This article also attempted an improvement in the performance of DL meta-architectures by using
various deep learning optimizers. The basic concept of these optimizing functions along with the
mathematical details are presented in the following sub-sections.

2.5.1. Stochastic Gradient Descent (SGD) with Momentum

The gradient descent is the most widely used optimization algorithm for neural networks [35].
Its momentum version has faster convergence ability than the standard algorithm. The basic idea
is to calculate the exponentially weighted average of the gradients and use the gradients to update
the weights. To optimize the cost function, gradient descent slowly oscillates the loss towards the
minimum, this slows down gradient descent and avoids by a large learning rate. However, if a
larger learning rate is used, then it might end up with problems such as overshooting and diverging
output. In contrast with the SGD optimizer, which used dw (calculated gradient of the weights) and db
(calculated gradient of the biases) independently, the exponentially weighted averages of dw and db
are taken for the momentum algorithm by the following equations (Equations (5) and (6)):

Vdw = β ∗Vdw + (1− β) ∗ dw (5)

Vdb = β ∗Vdb + (1− β) ∗ db (6)

where, β indicates the momentum that should be higher to smooth the update, and its default value is
0.9. Vdw and Vdb are weighted averages of optimization parameters weights and biases, respectively.
After obtaining the exponentially weighted averages, weights and biases are updated by (Equations (7)
and (8)):

W = W − lr ∗Vdw (7)

b = b− lr ∗Vdb (8)

where lr, W and b are learning rate, weight, and bias, respectively.
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2.5.2. Root Mean Square Propagation (RMSProp)

The RMSProp optimization algorithm [36] limits the oscillations that generate during the loss
optimization in the direction of bias, which helps to consider a larger learning rate without having an
overshooting problem in training of the model. The difference between momentum and RMSProp lies
in the calculation of their gradients, and weight/bias updates as shown below (Equations (9)–(12)):

Vdw = β ∗Vdw + (1− β) ∗ dw2 (9)

Vdb = β ∗Vdb + (1− β) ∗ db2 (10)

W = W − lr ∗
dw

√
vdw + ξ

(11)

b = b− lr ∗
db

√
vdb + ξ

(12)

The Vdw of the RMSProp optimizer could be relatively small (even 0); therefore, epsilon (ξ) adds
in the denominator for numerical stability. When Vdw is relatively small, it increases weights (W),
and then the updates in the direction of weights become fast. However, Vdb is relatively large, which
decreases bias (b) to slow down the updates in its direction.

2.5.3. Adaptive Moment Estimation (Adam)

The idea behind the Adam optimization algorithm is taking momentum and RMSProp and putting
them together [37]. It means that the Adam optimizer retains an exponentially decaying average
gradient of the previous gradients as well as previously squared gradients. First, the initialization
of Vdw, Vdb, Sdw (element-wise squaring of Vdw), and Sdb (element-wise squaring of Vdb) is set to
zero. Then, for a certain number of iterations, this algorithm computes the dw and db using current
mini-batch and performs exponentially weighted average by using Equations (5), (6), (9), and (10):

Then, the calculations for the corrected Vdw, Vdb, Sdw, and Sdb are performed for bias correction
by the following equations (Equations (13)–(16)):

Vdwcorrected = Vdw/(1− β1t) (13)

Vdbcorrected = Vdb/(1− β1t) (14)

Sdwcorrected = Sdw/(1− β2t) (15)

Sdbcorrected = Sdb/(1− β2t) (16)

where, β1 and β2 indicate exponential decay rate for the first moment and second moment, respectively.
Weight (W) and bias (b) are updated by (Equations (17) and (18)):

W = W − lr
Vdwcorrected

√

Sdwcorrected + ξ
(17)

b = b− lr
Vdbcorrected

√

Sdbcorrected + ξ
(18)

2.6. Experimental Setup

The experiments are based on three popular DL meta-architectures: SSD, Faster-RCNN, and
R-FCN, which were previously trained on 1.5 million images (80 categories) of the Common Objects in
Context (COCO) dataset. The transfer learning technique was used to obtain better detection results.
First, the trained layers were frozen to reuse some fundamental features such as corners, borders,
and edges; then, a few new and workable layers were added that learned the specific features of the new
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dataset (PlantVillage). The backbone architectures named Inception-v2 [38], Inception ResNet-v2 [39],
and versions of ResNet including ResNet-50 and ResNet-101 [40] were used with the base networks
to classify and localize the plant disease. Table 2 presents the base networks with feature extraction
methods along with their performance measured in mAP on the COCO dataset.

Table 2. List of base DL models with feature extraction methods along with mean average precision
(mAP) on the Common Objects in Context (COCO) dataset.

Base Networks Feature Extraction Methods mAP (%) for COCO Dataset

SSD Inception v2 24

Faster-RCNN

Inception v2 28
ResNet-50 30
ResNet-101 32

Inception-ResNet v2 37
R-FCN ResNet-101 30

Table 3 presents the hyperparameters: α (learning rate), β1 known as the first moment has a
default value of 0.9, β2 known as the second moment has a default value of 0.999, and epsilon (ξ)= 10−8.
However, the default value of ξ may not be sufficient in general for some machine learning problems.
The best learning rate was selected from three sets (10−4, 10−5, 10−6) to determine the efficacy
of the initializations. These learning rates were considered for different steps of iterations while
training [31,33,37]. The tuning of the hyperparameters of all the DL optimizers was performed using
the random search technique [15,41]. All the DL models were trained using Graphics Processing Units
(NVIDIA GTX 1650 and 1050) for high-performance acceleration.

Table 3. List of hyperparameters of the respective DL optimizers.

DL Optimizers lr Momentum β/β1 β2 ξ

SGD with Momentum (default) 0.01 0.9 - - -
SGD with Momentum (modified) 0.0003 0.9 - - -

Adam (default) 0.001 - 0.9 0.999 1 × 10−08

Adam (modified) 0.0002 - 0.9 0.9997 1 × 10−03

RMSProp (default) 0.001 0.0 0.9 - 1 × 10−08

RMSProp (modified) 0.0004 0.0 0.95 - 1 × 10−02

2.7. Performance Metric

The performance of the DL-based plant disease detectors was evaluated by using mean average
precision (mAP). This performance metric is commonly used with the DL meta-architectures (SSD,
Faster-RCNN) to detect artifacts such as COCO [29] and PASCAL’s VOC challenge [42]. Any algorithm
providing the predicted bounding boxes as an output can be assessed with intersection of union (IoU),
Average Precision (AP), and mAP [42]. The x, y coordinates require (Xmin, Xmax, Ymin, and Ymax) to
track the efficiency of the DL architectures. In Figure 7, an image belongs to a strawberry leaf class is
presented, where the DL model provided an output in the form of a predicted bounding box with
scorch disease on the image. Two bounding boxes can be seen in Figure 7: one shows the exact location
of the healthy/defected part in an image, named as the ground-truth bounding box. Another is an
actual predicted bounding box that is drawn by the trained DL model.
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3. Results and Discussion 

The goal of this research is not only the identification of the presence of diseased and healthy 
leaves but also to locate a confidence score indicating the likelihood that there is a correct (true 
positive) class in a bounding box. The score was considered between 0 and 1 (or 0–100%), indicating 
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For evaluating the mAP, it should be noted that the precision measures how accurate the predictions
are—that is, the percentage of the correct predictions—and recall measures how well all positive
outcomes are found. The average precision (AP) was assessed with an 11-point interpolated average
precision method. The precision and recall were computed for each class. The AP is the average
precision across all unique recall levels. Before measuring AP, we first interplay the precision at
multiple recall levels. At a certain recall level r, the interpolated precision (pint) is specified as the
highest precision for a recall level r′ ≥ r [24,42] (Equations (19) and (20)).

pint(r) = maxp(r′) (19)

where p(r′) is the measured precision at the max recall rr′.
The AP is then described as the mean precision at the eleven recall rates equally spaced [0, 0.1, 0.2,

......, 1].

AP =
1

11

∑
r∈{0,0.1 , 0.2, ..... 1}

pint(r) (20)

The mean average accuracy (mAP) is the approximate average value of all individual APs.
To evaluate the mAP, the AP of each class was first calculated (as described above). Then, the mAP
was found by Equation (21):

mAP =

n∑
i=1

APi

n
(21)

where n = 38 (number of classes).

3. Results and Discussion

The goal of this research is not only the identification of the presence of diseased and healthy
leaves but also to locate a confidence score indicating the likelihood that there is a correct (true positive)
class in a bounding box. The score was considered between 0 and 1 (or 0–100%), indicating how
much precisely the type of plant disease was recognized. It was empirically observed that all the DL
meta-architectures required 126 epochs (200,000 iterations) to converge their training. The loss plots of
each DL architecture with its detection results are presented in this section. Moreover, the improvement
in the performance of the best-suited architectures is also presented. The mAP attained by each DL
meta-architecture with its corresponding optimizer is shown in Table 4.



Plants 2020, 9, 1451 13 of 23

Table 4. Summary of plant disease identification results indicating the Average Precision (AP) for each leaf class and the overall mAP for each DL meta-architecture.
The hyphen (-) denotes the failed detection in the respective classes.

Annotated
Class

Labels

DL Meta-Architectures with Feature Extractors and Optimizers

R-FCN
ResNet-101

Faster-RCNN

SSD Inception-v2
ResNet-50 Inception

ResNet-v2 Inception-v2 ResNet-101

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum RMSProp Adam SGD with

Momentum RMSProp Adam

A_Scab 90.61 - 90.04 31.22 61.37 99.83 22.93 27.24 36.16 27.27
A_Blk_Rot 47.36 89.69 - 24.6 41.82 57.41 43.82 45.42 45.45 54.55
A_C_Rust 90.24 65.33 - 7.27 34.98 91.64 35.48 45.45 45.45 54.55
A_Healthy 90.85 99.97 2.19 75.91 43.42 6.71 18.13 90.91 100 90.91
B_Healthy 99.97 - 100 85.58 90 22.77 88.8 100 90.91 100

Ch_Healthy 79.22 - - 87.32 75.69 99.84 63.66 90.86 90.91 90.91
Ch_Mildew 40.46 - - 99.62 99.55 95.39 98.87 36.36 45.45 45.45
Corn_Rust 0.76 - - 99.85 99.89 100 99.63 90.91 99.89 99.92

Corn_Healthy - - - 100 99.96 76.13 90.87 90.91 90.91 90.91
Corn_Blight 42.57 - - 51.01 66.34 93.53 96.09 45.45 54.55 54.29
Corn_Spot 0.31 - - 1.15 20.56 31.83 10.95 0.73 5.62 33.13
G_Blk_Rot 7 - - 1.16 53.9 53.87 0.05 71.26 72.73 72.73

G_Blk_Measles 0.09 - - 100 100 100 99.61 100 90.91 99.87
Grp_Healthy - - - 99.59 99.3 98.86 90.55 100 90.91 100
Grp_Blight 0.21 - - 72.73 99.93 94.29 81.06 72.73 72.73 72.73
O_HLBing 12.74 - - 99.99 90.91 98.14 90.91 90.91 90.91 90.91

Pec_Bact_Spot 0.28 - - 14.23 40.23 74.16 - 9.09 18.14 27.23
Pec_Healthy - - - 8.21 34.11 42.93 5.34 90.91 99.28 100
Pep_Bact_Spot 6.8 - - 1.86 2.58 35.61 - 9.09 18.11 36.27
Pep_Healthy 50.95 - - 6.45 2.11 19.08 2.33 90.91 90.8 90.91
Po_E_Blight 59.95 - - - 2.51 32 - 9.09 9.09 26.84
Po_Healthy - - - - - 0.18 - 90.91 90.61 90.91
Po_L_Blight 94.77 - - - - 1.79 - 29.16 43.81 44.92
Ras_Healthy 0.23 - - 0.33 1.6 9.53 1.14 90.91 100 100
Soy_Healthy 88.11 - - 26.03 59.43 9.6 3.35 90.91 90.13 90.91
Sq_Powdery 99.46 - - 52.68 99.4 5.65 54.61 81.82 90.91 81.82
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Table 4. Cont.

Annotated
Class

Labels

DL Meta-Architectures with Feature Extractors and Optimizers

R-FCN
ResNet-101

Faster-RCNN

SSD Inception-v2
ResNet-50 Inception

ResNet-v2 Inception-v2 ResNet-101

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum

SGD with
Momentum RMSProp Adam SGD with

Momentum RMSProp Adam

Straw_Healthy 99.3 - - 53.33 18.07 1.1 62.53 100 90.91 100
Straw_Scorch 100 98.34 - 72.62 70.47 86.45 6.94 72.66 72.7 72.69
Tom_Bact_Spot 98.85 - 99.93 0.29 2.3 5.57 - 18.03 26.67 36.28
Tom_E_Blight - - - 7.04 39.38 64.2 11.59 27.12 36.36 54.45
Tom_Healthy 0.2 - - 100 87.13 49.65 100 100 100 100
Tom_L_Blight - - - 99.96 99.96 95.92 90.36 81.79 81.72 90.77
Tom_L_Mold 3.87 - - 96.21 98.7 99.55 82.21 45.41 63.6 63.64

Tom_Sept - - - 99.56 95.24 100 99.83 90.86 90.88 90.91
Tom_Sp_Mite 85.12 - - 98.52 98.06 98.73 99.9 90.88 90.88 90.91
Tom_Target 1.12 - - 61.56 99.98 83.77 96.41 35.81 35.24 45.4
Tom_Mosaic 98.15 - - 9.8 85.98 22.17 - 72.73 54.55 63.64

Tom_Curl 85.48 - - 99.68 99.98 99.86 100 100 100 100
mAP (%) 41.45 9.30 7.69 51.19 60.92 59.41 48.63 66.51 68.89 73.07
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3.1. Performance of Deep Learning Meta-Architectures

During the first phase of the proposed approach, all the DL architectures were trained with the
momentum optimizer due to its fast convergence ability [43]. The SSD model outperformed Faster
RCNN and RFCN models. Further explanations of the results of each model are provided as follows:

3.1.1. SSD Architecture

An input image of 300 × 300 size was considered for all the experiments. The SSD architecture was
trained with the feature extraction method called Inception-v2 with different learning rates. The model
was trained by using SGD with the momentum optimizer using the learning rate as 3 × 10−4, 3 × 10−5,

and 3 × 10− 6 for 90k, 30k, and 80k iterations, respectively. This model took approximately 4.25 days to
complete its training. The training loss curve of the SSD model is shown in Figure 8. At the end of
the training, the loss curve indicated its fluctuation between 0.64% and 3.73%. After the training of
the SSD model, the images from the testing dataset were used to classify and localize the defected
spots of plant disease. Figure 9 shows the detection results obtained by the SSD along with their
confidence score. Table 4 indicates the average precision of each leaf category and the mAP of 38 leaf
disease categories. The mAP obtained by this state-of-the-art DL architecture was 66.51%, which is the
highest among all the other models. It is noticed that the results of six plant classes such as blueberry
healthy, grape healthy, grape black measles, strawberry healthy, tomato healthy, and tomato curl virus
were quite promising, due to their 100% average precision. For around 12 leaf categories, the average
precision was more than 90%. Around 14 disease classes achieved low precision (less than 50%). It is
also noticed that the precision of corn gray leaf spot was the lowest among all the other classes of plant
disease, which was addressed in the next step of the proposed method.
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Figure 9. The detection results by the SSD with the Inception-v2 model having a threshold score of 0.5.
Each predicted box is associated with a category label having a confidence score between 0 and 100%.

3.1.2. Faster-RCNN Architecture

The Faster-RCNN model was trained with the feature extractors including ResNet-50, ResNet-101,
Inception-v2, and Inception ResNet-v2. All the feature extraction methods were trained with momentum
optimizer using learning rate 3× 10−4, 3× 10−5, and 3× 10−6 for 90k, 30k, and 80k iterations, respectively.
Initially, the Faster RCNN model was trained with the feature extraction methods such as ResNet-50
and Inception Resnet-v2, but they failed to detect and localize most of the classes (as shown in Figure 10,
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Figure 11, and Table 4) and resulted in the lowest mAP among all the DL architectures. This was due to
the presence of some challenging disease categories (potato early blight, potato late blight, tomato early
blight, and tomato late blight, etc.), since specific features such as leaf shape, disease spots, and colour
of disease spot were quite similar.
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Figure 10. False positive detection results of healthy classes by Faster-RCNN with ResNet-50 architecture.
The first image is from the apple healthy category, which is the only class that the model detects correctly.
Other images were originally from blueberry, cherry, corn, grape, peach, pepper bell, potato, raspberry,
soybean, strawberry, and tomato healthy classes, but the model identified them as Apple healthy class.

Plants 2020, 9, x FOR PEER REVIEW 15 of 23 

Plants 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/plants 

ResNet-101. It achieved 60.92% mAP@0.5, which is 9.73% higher than with the Inception-v2 (51.19%) 
with the same training settings. The training loss obtained by the Faster RCNN with the ResNet-101 
model is presented in Figure 12, and its lower percentage error proved the effective learning of the 
specific features of plant disease after 200k iterations. From Table 4, it can be observed that the Faster 
RCNN with ResNet-101 architecture identified Grape Black Measles disease with 100% precision. 
Moreover, it attained more than 90% precision for almost 14 leaf classes. However, 13 classes achieved 
a precision of less than 50%. A further five classes were poorly detected and resulted in less than 10% 
precision. It is also noticed that two classes (potato healthy and potato late blight) failed to detect by 
Faster-RCNN with the ResNet-101 model. 

 

Figure 10. False positive detection results of healthy classes by Faster-RCNN with ResNet-50 
architecture. The first image is from the apple healthy category, which is the only class that the model 
detects correctly. Other images were originally from blueberry, cherry, corn, grape, peach, pepper 
bell, potato, raspberry, soybean, strawberry, and tomato healthy classes, but the model identified 
them as Apple healthy class. 

 
Figure 11. Some of the examples of false positives detection results using the Faster-RCNN with 
Inception ResNet-v2 architecture. It identified most of the leaf categories as the tomato bacterial spot. 
Figure 11. Some of the examples of false positives detection results using the Faster-RCNN with
Inception ResNet-v2 architecture. It identified most of the leaf categories as the tomato bacterial spot.

To obtain a noticeable improvement in the identification results by the Faster-RCNN model,
two other classification models/feature extractors (Inception-v2 and ResNet-101) were also considered.
Due to different feature extractors, the training time of the Faster RCNN model was varied. For example,
ResNet-50 required the lowest training time of around 34 h, whereas Inception-v2 was the slowest
among the other classification models as it took approximately 48 h to complete its training. However,
ResNet-101 and Inception ResNet-v2 needed 37.5 and 44.20 h, respectively. It was observed that the
baseline Faster-RCNN performed well when combined with the feature extraction method ResNet-101.
It achieved 60.92% mAP@0.5, which is 9.73% higher than with the Inception-v2 (51.19%) with the
same training settings. The training loss obtained by the Faster RCNN with the ResNet-101 model
is presented in Figure 12, and its lower percentage error proved the effective learning of the specific
features of plant disease after 200k iterations. From Table 4, it can be observed that the Faster RCNN
with ResNet-101 architecture identified Grape Black Measles disease with 100% precision. Moreover,
it attained more than 90% precision for almost 14 leaf classes. However, 13 classes achieved a precision
of less than 50%. A further five classes were poorly detected and resulted in less than 10% precision.
It is also noticed that two classes (potato healthy and potato late blight) failed to detect by Faster-RCNN
with the ResNet-101 model.
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Figure 12. Training loss curve of Faster-RCNN with ResNet-101 model.

3.1.3. R-FCN Architecture

Using the ResNet-101 as the feature extractor, the RFCN model achieved good detection results
of 83.6% mAP on the PASCAL VOC dataset. Therefore, the same feature extractor with the baseline
model (RFCN) was also considered in this research. In this DL method, all learnable weight layers are
convolutional, which computes the feature map on the entire image. The R-FCN model was fine-tuned
and trained with the momentum optimizer using the learning rate 3 × 10-4 for 90k steps, and then
continued training for the next 30k steps with 3 × 10-5, and finally, 80k steps with 3 × 10− 6. This model
completed 200k iterations in 33.7 h. The training loss obtained by the RFCN model is presented in
Figure 13, and its percentage loss oscillated from 0.03% to 1.28% after 200k iterations.
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Figure 13. Training loss curve of the R-FCN model.

This model identified a lesser number of classes than the SSD and Faster RCNN (with ResNet-101)
models; the failed classes were: corn healthy, grape healthy, peach healthy, potato healthy, tomato
Septoria, tomato early blight, and tomato late blight (as shown in Table 4). The strawberry scorch
class achieved the perfect average precision of 100%. It is also observed that 9 plant classes provided
good detection results and achieved considerable precision (more than 90%). Around 11 other classes
showed an average precision of less than 10%. Few examples of the false/confused detection results by
the RFCN model are shown in Figure 14.
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Figure 14. Some examples of false-positive detection results by the RFCN model.
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3.2. Overall Remarks for SSD, Faster RCNN, and RFCN Architectures

From Table 4, important observations regarding the performance of the DL meta-architectures are
presented as follows:

• The SSD model achieved the highest mAP among all the DL meta-architectures. This is due to
the structural behaviour of the SSD model which provides a fixed-size predictive box set and
scores at each feature-layer position of a kernel. The convolutional layers are added to the last
of the base network which predicts multiple scales [31]. The projected performance value boxes
in each feature map location compared to the default position boxes are determined using an
intermediate connected layer in these positions instead of a fully convolution layer.

• Another significant distinction of the SSD model is that the information in ground-level truth
boxes allocates to different outputs within the defined collection of detector outputs during SSD
training compared to other regional networks. The structure of the network decides which ground
box should be matched with its corresponding default box during the training stage, known
as matching strategy in SSD. Thereby, the use of several convolutional bounding box outputs
connected to features maps at the top of the network made this model successful as compared to
other region-based methods.

• The base network SSD combined with the” Inception” model performed better than the
Faster-RCNN combined with the same feature extraction method. Moreover, Table 4 shows that
the base network Faster-RCNN with feature extractor ResNet-101 showed relatively higher mAP
than with the Inception model.

• The RFCN model achieved lower mAP than the SSD and Faster RCNN (with
ResNet-101) architectures.

• More interestingly, the SSD architecture was able to detect few of those classes that were completely
undetected by the Faster RCNN and RFCN models (as shown in Table 4).

• Following the proposed methodology presented in Section 2, the SSD with Inception-v2 and
Faster RCNN with ResNet-101 models achieved the highest mAP among all the other DL
meta-architectures. Therefore, they were selected for the next stage of this research.

3.3. Performance Improvement by DL Optimization Algorithms

After obtaining two best-suited DL meta-architectures, better optimization of the weight
parameters was attempted by Adam and RMSProp optimization algorithms. Their learning rate is
presented in Table 3. Table 4 presents the change in mAP for both the selected models. Some concluding
remarks are provided as follows:

• The Faster-RCNN with the ResNet-101 model trained by Adam and RMSProp optimizers failed
to improve its overall mAP as compared to the SGD (with momentum) optimizer.

• On the other hand, the SSD model achieved 66.51% mAP when it was trained by the momentum
optimizer. Then, its mAP was increased by about 2.38% with the RMSProp optimizer. Further
improvement of 3.39% in the mAP was observed when the weights of the SSD model were
optimized by the Adam optimization algorithm.

• It is also noticed that when the SSD model was trained by Adam optimizer, the average precision
of several leaf categories significantly improved, due to which the highest mAP of 73.07% was
attained. The AP of classes such as Apple black rot, Apple cedar rust, Tomato early blight,
and disease was increased to more than 50%. The AP of few other classes also improved (but still
less than 50%) including Tomato target spot, Tomato bacterial spot, Potato late blight, Potato early
blight, Pepper bacterial spot, and Peach bacterial spot. The AP of corn gray leaf spot class also
improved, which was previously unsuccessful in providing a noticeable AP when the dataset
was trained with the SGD with momentum and RMSProp optimizers. However, the further
improvement in AP should be considered in future research.
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• Figure 15 presents the change in AP for each class of the PlantVillage dataset when they were
trained by the SSD model with all the three DL optimizers.

• A summary of the mAP achieved by DL meta-architectures trained with different optimization
algorithms is presented in Figure 16.

Figure 15. Performance plot of the SSD model trained with three DL optimizers.

Figure 16. Summary of mean average precision (%) achieved by the DL meta-architectures with
their respective optimizers (the best combination of DL meta-architecture and optimizer is shown by
green bar).

4. Conclusions and Future Work

The main goal of this research was to perform the complex task of plant disease localization and
classification in a single framework. In this regard, state-of-the-art deep learning meta-architectures
including SSD, Faster RCNN, and RFCN models were trained and tested on 38 different classes of
healthy/defected plant leaves. Moreover, an improvement in their performance was also attempted
by better optimization of weight parameters through Adam and RMSProp optimizers. The SSD
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model trained with the feature extractor Inception-v2 attained the highest mean average precision as
compared to the other DL meta-architectures. It achieved the best identification results by training
through an Adam optimizer and attained 73.07% of mAP. All the healthy/diseased leaf classes were
identified, which proves the novelty of the proposed approach. Practically, the successful detection of
plant disease by DL technique would be useful to reduce the undesirable application of fungicide spray.

Few future recommendations for the research community are presented as follows:

• The trained and tested DL models’ pipeline, checkpoints, and weights can be reused as a transfer
learning approach for upcoming researches related to plant disease detection.

• Various factors affecting the performance of best-suited DL architecture should be investigated
such as data augmentation techniques, batch size, aspect ratios, etc.

• Although, all the classes of the PlantVillage dataset were identified by the proposed methodology;
still, few of them achieved a lower average precision. Therefore, few modifications in DL networks
can also be proposed in the future to further improve the mean average precision.

• This research could also be beneficial for several robotic systems to identify/classify healthy and
unhealthy crops in real-time that would contribute to agricultural automation.
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