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Abstract: Limited data are available on the effects of 5-aminolevulinic acid (ALA) on plant
photosynthesis in relation to the nitrogen (N) level. In this study, we investigate photosynthetic
responses to ALA in canola plants (Brassica napus L.). We used wild-type plants without ALA addition
(controls), wild-type plants with exogenous ALA application, and transgenic plants that endogenously
overproduced ALA. The plants were grown hydroponically in nutrient solutions with low, middle,
and high concentrations of N. Our results indicate that plants in both treatment groups had higher
chlorophyll contents and net photosynthetic rates and lower intracellular CO2 concentrations in the
leaves, as compared to controls. Furthermore, simultaneous measurement of prompt chlorophyll
fluorescence and modulated 820-nm reflections showed that the active photosystem II (PS II) reaction
centers, electron transfer capacity, and photosystem I (PS I) activity were all higher in treated plants
than controls at all N levels; however, the responses of some photochemical processes to ALA were
significantly affected by the N level. For example, under low N conditions only, a negative ∆K
peak appeared in the prompt chlorophyll fluorescence curve, indicating a protective effect of ALA
on electron donation via activation of the oxygen-evolving complex. Taken together, our findings
suggest that ALA contributes to the promotion of photosynthesis by regulating photosynthetic
electron transport under various N levels. These findings may provide a new strategy for improving
photosynthesis in crops grown in N-poor conditions or reduced N-fertilization requirements.

Keywords: 5-aminolevulinic acid (ALA); photosynthetic responses; nitrogen supply; canola

1. Introduction

In plants, photosynthesis serves as the foundation for all metabolic processes and is thus considered
to be one of the most susceptible physiological processes to biotic and abiotic stresses [1,2]. This process
is usually divided into photoreaction and dark reaction. In photochemical reactions, photosystem II
(PS II) uses light energy to strip electrons from water and release O2. Then, electrons are transferred to
photosystem I (PS I) via the plastoquinone (PQ) pool, cytochrome b6f complex, and plastocyanin (PC)
to produce nicotinamide adenine dinucleotide phosphate (NADPH). Meanwhile, the electron transfer
reaction also produces a proton gradient on the thylakoid membrane, followed by the production of
adenosine triphosphate (ATP) through ATP synthetase. Eventually, both ATP and NADPH provide
fuel for the Calvin cycle that holds carbon dioxide in a dark reaction.

Nitrogen (N) is an essential element for plants, which plays an important role in increasing crop
yield and improving the quality of agricultural products [3,4]. N deficiency leads to a decrease in leaf
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photosynthetic rate, resulting in a decrease in yield [5]. When N supply is insufficient, the decrease
in the photosynthetic rate of plants is caused by many factors, including a decrease in stomatal
conductance [6], pigment degradation [7], and a decrease in the light and dark reaction ability of
photosynthesis [8,9]; however, increasing agricultural yield by applying a large amount of N fertilizer
is not advisable. Excessive application of N often comes with environmental costs: water pollution,
soil degradation, trace gas emission, climate changes, and loss of biodiversity [10]; therefore, a strategy
to maintain an appropriate rate of photosynthesis under low N conditions without increasing more N
input is required.

The application of bioregulators (plant growth regulators and endogenous plant hormones) to
plants is an effective way to enhance photosynthesis. 5-Aminolevulinic acid (ALA) is an essential
precursor to tetrapyrrole biosynthesis in plants, and it plays key roles in various physiological
and biochemical processes, including heme and chlorophyll (Chl) biosynthesis [11], hormonal
activities [12,13], resistance to various stresses [14–16], and fruit coloration [17,18]. The important role of
ALA in photosynthesis was revealed by applying it exogenously to plants growing under normal [19,20]
and stressful conditions [21–24] and through the study of endogenous ALA-overproducing transgenic
plants [25,26]. These studies suggest that the proposed mechanisms underlying photosynthesis
improvement by ALA might be related to increases in Chl content [21], photosynthetic electron
transport activity [22], antioxidant activity [23,24], and Rubisco activity [25]; however, none of those
studies have evaluated photosynthetic responses in ALA-treated plants grown under various levels of
N availability. Some studies have investigated the role of ALA in N metabolism and suggested that
it may promote N absorption and assimilation [27,28]. This led us to hypothesize that the N supply
might play an important role in the physiology of endogenous ALA-overproducing transgenic plants
and the effects of exogenous ALA application.

Analysis of prompt Chl fluorescence (PF, also called OJIP) curves can allow for the examination of
the effects of ALA on the behavior of PS II under stress. This is because PF is a reliable and sensitive
measurement method that can provide a great deal of useful information on the photosynthetic
apparatus [29,30]. In a study of watermelons, Sun et al. [24] found that ALA increased the possibility
that a trapped exciton would move an electron into the electron transport chain beyond QA

– (ΨEo) and
the quantum yield of electron transport (ϕEo) but decreased the closure rate of active reaction centers
QA (Mo). Recently, An et al. [31] observed that ALA markedly improved photosynthetic performance
indexes (PIABS and PItotal) and significantly reduced Mo, the amount of dissipated energy (DIo/RC
and DIo/CS), and the relative variable fluorescence at J-step (VJ) in fig plants under waterlogging
stress. In addition, electron transport after PQ and to the PS I acceptors can be detected by the
modulated reflection (MR) signal measured at 820 nm [32,33]. In recent years, a new instrument that
simultaneously measures PF and MR signals has been developed to explore the photosynthetic electron
transport process and the interaction between PS II and PS I in plant leaves [34,35]. The effects of ALA
on the redox states of PS II and PS I reaction centers were recently reported in strawberry leaves by
analyzing PF and MR signals [20]. Unfortunately, very limited data are available on the effects of ALA
on PF and MR curves and the related fluorescence parameters under different nutritional environments.

In the present study, we investigate the effects of ALA on photosynthetic responses under various
N conditions in terms of Chl content, gas exchange parameters, and PF and MR curves. We examined
the effects of exogenous ALA on photosynthesis-related parameters in wild-type (WT) canola and
compared them with the photosynthetic responses of an ALA-overproducing transgenic line (T).
The objective of this study is to determine the influences of ALA on photosynthesis-related parameters
and PS I and PS II components in canola leaves under various levels of N nutrition.
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2. Results

2.1. Chl Content

Both N levels and ALA presence markedly influenced the Chl content (represented as SPAD
values) of canola leaves (Figure 1). The mean Chl contents of plants grown under middle- and high-N
conditions were 38% and 56% higher, respectively, than those plants grown under low-N conditions.
This indicates that canola is a nitrophilous plant and that a higher NO3

- concentration in the culture
media results in higher Chl contents in the leaves. Compared with controls, exogenous and endogenous
ALA enhanced the Chl contents of canola leaves grown under all N levels. There were no significant
interactions between the effects of ALA presence and N level on Chl content.
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Figure 1. Differences in chlorophyll content (represented as SPAD values) in exogenously 5-
aminolevulinic acid (ALA)-treated and endogenous ALA-overproducing canola leaves grown under
low-, middle-, and high-N conditions. Means ± standard errors are presented (n = 10). Means with
the same letter indicate a nonsignificant difference (p > 0.05), according to Duncan’s test. Sources of
variation: ALA, N-level, and ALA × N-level interaction; ** p < 0.01; ns: not significant. N = nitrogen.

2.2. Photosynthetic Gas Exchange Characteristics

To further investigate the effects of exogenous and endogenous ALA on photosynthesis in
canola plants grown under various N levels, we determined gas-exchange parameters, including the
net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs),
and transpiration rate (Tr).

In the control plants, when the N levels increased, the Pn, Gs, and Tr levels increased, while the
Ci levels decreased. Compared with controls, both exogenous and endogenous ALA plants had
increased Pn but decreased Ci at all N levels. Increased Gs was also observed in the leaves of
both the low- and middle-N groups. Exogenous ALA plants had increased Tr at all N levels,
but endogenous ALA-overproducing plants did not have altered Tr under the middle- and high-N
conditions. Interactions between ALA and N levels were observed for three of the parameters but not
Ci (Figure 2).

Correlation analysis showed that Pn was positively related to Chl content, Gs, and Tr, and negatively
related to Ci (Table S1).
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Figure 2. Differences in (a) net photosynthetic rate (Pn), (b) intercellular CO2 concentration (Ci),
(c) stomatal conductance (Gs), and (d) transpiration rate (Tr) in exogenously-treated and endogenous
ALA-overproducing canola leaves grown under low-, middle-, and high-N conditions. Values are
means ± standard errors (n = 10). The same letter indicates no significant difference (p > 0.05) according
to Duncan’s test. Sources of variation: ALA, N-level, and ALA × N-level interaction; * p < 0.05;
** p < 0.01; ns: not significant.

2.3. PF Curves and JIP-Test

Separation of the PF curves (OJIP curves; Figure 3a–c) facilitates the distinction of the various
effects of ALA at each N level. This shows that the kinetic curve of PF induction of canola leaves is very
sensitive to N supply. With the low-N solution, the I and P steps of the exogenous ALA-treated canola
were markedly higher than those of controls and were even higher in the transgenic plants. For plants
supplied with the middle-N solution, the J steps in the ALA treatments were significantly lower than
those of controls, while the P steps were higher. However, as shown in Figure 3c, with the high-N
solution, the P steps in the exogenous ALA-treated and endogenous ALA-overproducing canola were
still significantly higher than those of controls. Thus, the amplitude of the I-to-P phase was always
observed to be higher in the exogenous ALA-treated and endogenous ALA-overproducing canola
than in controls at all N levels.
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Figure 3. Changes in prompt fluorescence (PF) curves in exogenously-treated and endogenous
ALA-overproducing canola leaves under low- (a,d), middle- (b,e), and high-N conditions (c,f). (a–c) PF
curves plotted on a logarithmic time scale from 20 µs to 1 s (JIP time). The steps O (at 20 µs), J (at 2 ms),
I (at 30 ms), and P (peak) are marked. Each curve is the average of 10 replicate measurements. (d–f)
Variable fluorescence curves (∆V = ∆[(Ft − Fo)/(Fm − Fo)]), which were constructed by subtracting
the normalized (between the O step and P step) values of the PF recorded in wild-type (WT) canola.
The feature peaks ∆K, ∆J, and ∆I are marked.

The PF curves were normalized from the O step to the P step and presented as the relative variable
fluorescence (Figure 3d–f). We found that a sharp V-shaped curve with a negative ∆K peak appeared
at 0.7 ms under the low-N condition, and a W-shaped curve appeared with two negative peaks (∆J at
approximately 2 ms and ∆I at approximately 20 ms) under the middle- and high-N conditions. We also
compared the effects of N level on canola leaves (Figure S1). The results show that, compared with the
high-N condition, a ∆K peak appeared under the low-N condition and ∆J and ∆I appeared under the
middle-N condition. Thus, the occurrence of these feature peaks was dependent on the N supply.

The variation in the selected parameters derived from the PF curves is shown in Figure 4 and
Table S2. In the radar plots (Figure 4), the initial values of the parameters in the controls were scaled to
1, and the parameters in the treatment groups were calculated as ratios of the initial values. Exogenous
and endogenous ALA induced increases in the maximum yield of primary photochemistry of PS
II (Fv/Fm), QA-reducing reaction centers per PS II antenna Chl (RC/ABS), the quantum yields and
efficiencies/probabilities (ϕPo, ψEo, ϕEo, and ϕRo), specific energy fluxes per one PS II reaction center
(ETo/RC), performance indexes (PIABS and PItotal), and phenomenological energy flux per excited
cross-section values (RC/CSo). There was a decrease in Mo at all N levels, but this did not alter Fo. In the
exogenous ALA-treated and endogenous ALA-overproducing canola, δRo and REo/RC increased under
the middle- and high-N conditions, especially under the former condition. Overall, ALA-induced
changes in PF parameters might become less pronounced with increasing N levels.
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Furthermore, leaf Pn was negatively related to Mo but was positively related to Fm, Fv/Fm, ETo/RC,
ϕPo, ψEo, ϕEo, ϕRo, RC/ABS, PIABS, and PItotal (Table S1).

2.4. MR Curves and Related Parameters

Figure 5 shows the changes in the normalized MR (represented as MRt/MRo) induced by red
actinic light in canola leaves in response to exogenous and endogenous ALA treatment. Kinetic changes
in MR reflect the redox states of P700 and PC, i.e., initial oxidation of P700 and PC was followed by
rereduction when electrons arrive from PS II [25]. The minimal MRt/MRo (MRmin) value indicates
that the oxidation and rereduction rates of P700 and PC were equal and that MRmin was significantly
decreased by the low N supply in WT canola. A lower MRmin was always observed in the ALA
treatment groups. The ALA-induced change in MRmin did not depend on the N level, suggesting that
ALA treatment generally motivates electrons from P700 and the PC pool through the linear electron
transfer chain to reduce end-acceptors such as nicotinamide adenine dinucleotide phosphate and form
NADPH, which is necessary for CO2 fixation.
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inhibited under low N conditions. Similar findings have been reported for N-deficient radishes and 
algae [38,39] and pea plants under high-temperature stress [40]. In this study, the low N level caused 
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Figure 5. Changes in 820-nm modulated reflection (MR) curves, expressed as normalized MR
(represented as MRt/MRo), in exogenously-treated or endogenous ALA-overproducing canola leaves
grown under (a) low-, (b) middle-, and (c) high-N conditions.

The velocities of P700 and PC oxidation (Vox) and subsequent rereduction (Vred) can be calculated
from the maximal slopes of the kinetic curves of photoinduced MR changes (Figure 6). In the controls,
Vox and Vred gradually increased with increases in the N level. Compared with controls, Vox and
Vred were significantly higher in the ALA treatment plants. There were no significant ALA or N-level
interaction effects on Vox and Vred.
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Figure 6. Changes in the velocities of (a) P700 and plastocyanin (PC) oxidation (Vox) and (b) subsequent
rereduction (Vred) in exogenously-treated and endogenous ALA-overproducing canola leaves grown
under low-, middle-, and high-N conditions. Values are means ± standard error (n = 10). The same
letter indicates a nonsignificant difference (p > 0.05), according to Duncan’s test. Source of variation:
ALA, N-level, and ALA × N-level interaction; ** p < 0.01; ns: not significant.

Furthermore, leaf Pn was positively related to Vox and Vred (Table S1).

3. Discussion

Applying N markedly affected the photosynthetic ability of canola leaves [36,37]. The data from
this experiment support previous observations and show that increases in Chl content, Pn, Gs, and Tr,
and decreases in Ci, are associated with increasing N levels (Figures 1 and 2). Furthermore, we found
that WT canola grown under low-N conditions exhibited dramatically depressed J and P steps in the PF
curve (Figure S1), which indicates that electron flow from the reduced QA to QB was inhibited under
low N conditions. Similar findings have been reported for N-deficient radishes and algae [38,39] and
pea plants under high-temperature stress [40]. In this study, the low N level caused a general restriction
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of electron transport from PS II to PS I in WT canola leaves. This is also supported by our findings that
show that the maximum PS II efficiency of dark-adapted leaves (Fv/Fm) and the performance indexes
(PIABS and PItotal) were suppressed under the low-N condition (Table S2).

Improved photosynthesis after exogenous application of ALA was reported under normal
conditions [19] and various stressful conditions, such as cold [41], salinity [23,42], low light [22,43],
waterlogging [31], and heat stress [44]. Thus, we can conclude that ALA can promote plant
photosynthesis under multiple conditions. The results of this study also confirm that ALA can
improve photosynthesis in canola plants grown with various amounts of N, suggesting that ALA
has great application potential in agriculture. In addition, we used a transgenic line of canola that
contained a constituted gene YHem1, which biosynthesized more ALA than the plant would otherwise
produce; we found that this plant exhibited improved photosynthesis [45]. Sun et al. [25] suggested that,
when transformed into canola, the YHem1 gene accelerates endogenous ALA metabolism, leading to
greater Chl accumulation, higher diurnal photosynthetic rates, and upregulated expression of the gene
that encodes the Rubisco small subunit. Thus, both exogenous and endogenous ALA can be used as
models to study the mechanism of ALA-reinforced photosynthesis.

The photosynthetic rate (Pn) is generally higher in plants treated exogenously with ALA and
those that endogenously overproduce ALA [20,25]. The negative relationship between leaf Pn and Ci
(Table S1) in this study suggests that the ALA-induced increases in leaf Pn that were observed at all N
levels (Figure 3a) were mainly associated with nonstomatal factors, as was reported in watermelon [24].
Although ALA is the key precursor in Chl biosynthesis [11,12], it is difficult to attribute ALA’s
promotion of plant photosynthesis to greater accumulation of Chl. Hotta et al. [46] suggested that the
accumulation of Chl in plants can be stimulated by treatment with ALA alone; however, using ALA to
promote photosynthesis also requires a combined nutrient supply. Furthermore, Liu et al. [47] found
that exogenous ALA treatment did not influence Chl content but enhanced the photosynthetic rate
in strawberry leaves. Thus, other mechanisms involved in the regulation of Chl biosynthesis may
be involved in photosynthesis when plants are treated with ALA. In fact, in addition to Chl content,
exogenous or endogenous ALA also affects the Chl a/b ratio [25,48], which is related to the antenna
size of PS I and PS II reaction centers [49]; therefore, the ratio of PS II/PS I may be regulated by ALA.

The promotion of photosynthetic capacity by ALA could be related to its effect on the electron
transport chain. We observed that ALA-treated plants had more active PS II reaction centers (estimated
as an increase in RC/ABS) than untreated plants at all N levels. The higher RC/ABS implies that either
the active PS II reaction centers were more numerous or the apparent antenna size was smaller [38,50].
In this study, the increase in active PS II reaction centers in ALA-treated plants was supported by an
increase in the active reaction centers per excited cross-section (RC/CSo) and a decrease in the closure
rate of reaction centers (Mo). Additionally, we found that ALA enhanced the efficiency of electron
transfer from PS II to the acceptor side of PS I in the intersystem chain, characterized by an increase in
ϕPo, ψEo, ϕEo, and ϕRo in the ALA-treated plants.

Regardless of N level, ALA-treated plants had greater PS I activity than untreated plants. Until
now, the reason why ALA induces an increase in the IP phase was unclear. Many reports have
shown that the IP phase follows the rereduction of PC+ and P700+, indicating that this phase might
be primarily related to PS I redox [38,40]. This is also supported by our findings: IP, along with
Vred, was higher in the leaves of both treatments than in controls (Figures 3 and 6b). Additionally,
considering that the electron transport efficiency at the PS I end-electron acceptors may represent the
size of the PS I reaction centers, the amplitude of the IP phase also reflects changes in PS I content [51].
High PS I activity may endow ALA-treated plants with a high capacity for physiological adaptation in
response to various stressful conditions. This agrees with the findings of Sun et al. [24], who reported
that ALA affects PS I reaction centers by promoting antioxidant enzyme activity. This can cause the
scavenging of superoxide anions around PS I, leading to an increase in the apparent electron transport
rate. Furthermore, the parameters ϕRo, δRo, REo/RC, and PItotal were related to PS I activity; however,
in our study, at all N levels, these four parameters were affected differently according to treatment
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type (Figure 4). The lower δRo and REo/RC in the ALA treatment groups were only evident under the
low-N condition. This could be explained by the results of Kalaji et al. [52], who found that changes in
δRo and REo/RC are sensitive to nutrient deficiency.

ALA-treated plants exhibited N-dosage-specific effects on PS II activity, as indicated by the
appearance of three feature peaks at all N levels (Figure 3d–f). The ∆K peak is an important feature
of serious nutrient deficiency, as reported in radishes [38], citrus [50], maize and tomatoes [52],
and beans [53]. The appearance of a positive ∆K peak suggests that the oxygen-evolving complex
(especially the Mn complex on the PS II donor side) was inactivated and the antenna complexes
were more connected, possibly due to improper membrane organisms. Thus, there was lower energy
transfer and absorption efficiency in those leaves, especially the N-deficient ones [50]. On the contrary,
a negative ∆K peak occurred in both treatment groups under the low-N condition (Figure 3d),
confirming earlier observations that ALA promotes activity on the donor side of PS II reaction
centers [24]. Further, ∆J and ∆I peaks are associated with reductions in QA and the plastoquinone
pool at the PS II acceptor side, respectively [54,55]. Positive ∆J and ∆I bands have been observed in
moderately-nutrient-deficient plants, such as maize and tomatoes [52], and N-deficient radishes [38].
In the present study, the appearance of negative ∆J and ∆I peaks (Figure 3e,f) suggests that ALA
increased the activity of the PS II acceptor side under the middle- and high-N conditions. This suggests
that there are two types of ALA responses according to the N level. One type corresponds with damage
repair under low-N conditions, as indicated by the parameter ∆K. The other type is reflected in enhanced
performance indexes and electron transport efficiencies under middle- and high-N conditions.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

The canola (Brassica napus L.) used in this study comprised a wild-type (WT) and an ALA-
overproducing transgenic line (T). The T canola contains a recombinant gene YHem1, i.e., yeast Hem1
(aminolevulinate synthase-coded gene), controlled by a light-responsive promoter of the HemA1 gene
from Arabidopsis thaliana [26,45]. Thus, the transgenic plants synthesized more endogenous ALA under
light because of additional YHem1 expression and aminolevulinate synthase activity, so that the ALA
content in the transgenic plants was significantly higher than that in the WT [25,45]. The transgenic
canola seeds that were used in this study were at generation 5 and were homogenous.

We carried out the experiment in a plastic house at Nanjing Agricultural University (N 32◦2′6.25”,
E 118◦50′23.47”) from October to December 2018. In the plastic house, plants were grown under
10.50–12.25 h d−1 natural light; the maximum light intensity was about 700–800 µmol m−2 s−1,
the average day/night temperature was about 15/10 ◦C, and the relative humidity was 60%. Both WT
and T canola seeds were pregerminated at 28 ◦C in an incubator for 3 d and then transferred to plastic
containers with approximately 50 g of clean sand. One seedling was planted in each container and the
seedlings were watered with 1/2 Hoagland’s solution once every 2 d. After 1 month of cultivation,
once the fourth leaves had expanded, we transferred the seedlings to hydroponic containers and
supplied them with nutrient solutions containing one of three nitrate levels: 3.75 mmol L−1 (low N),
7.5 mmol L−1 (middle N), and 15 mmol L−1 (high N).

4.2. Nitrogen Supply and Exogenous ALA Addition

The complete nutrient solution included 6.0 mmol L−1 of KH2PO4, 2.8 mmol L−1 of MgSO4·7H2O,
24 µmol L−1 of H3BO3, 16 µmol L−1 of Fe-EDTA (ethylene diaminetetra acetic acid tetrasodium salt),
9 µmol L−1 of MnSO4, 3.5 µmol L−1 of ZnSO4, 1 µmol L−1 of CuSO4, and 0.1 µmol L−1 of (NH4)Mo7O24.
The low-N solution included 1.25 mmol L−1 of Ca(NO3)2 and 1.25 mmol L−1 KNO3, the middle-N
solution included 1.25 mmol L−1 of Ca(NO3)2 and 5 mmol L−1 KNO3, and the high-N solution included
5 mmol L−1 of Ca(NO3)2 and 5 mmol L−1 KNO3. The same concentrations of Ca2+ and K+ were added
to all treatments.
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Additionally, we added exogenous ALA at a concentration of 5 mg L−1 to the WT canola (exogenous
ALA), but not to the ALA-overproducing transgenic canola (endogenous ALA). The control was WT
canola without exogenous ALA. All culture solutions were renewed every 3 days. Measurements were
taken after 4 weeks of N limitation.

4.3. Measurement of Chl Content

We measured the leaf relative Chl content in terms of SPAD values of intact, topmost, fully-
expanded leaves using aSPAD-502 Chl meter (Konica Minolta, Osaka, Japan).

4.4. Gas Exchange Analysis

We estimated the photosynthetic gas exchange between 9:00 AM and 11:00 AM on the attached,
completely-expanded leaves using a portable gas exchange system (CIRAS-2, PP Systems, Hitchin,
UK). Net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular
CO2 concentration (Ci) were simultaneously recorded at an ambient CO2 concentration (approximately
350 µmol mol−1) and 25 ◦C, with a relative humidity of 85% and saturating light of 1000 µmol m−2 s−1.

4.5. Simultaneous Measurement of PF and MR Kinetics

We recorded the kinetics of PF and MR simultaneously with a multifunctional plant efficiency
analyzer (M-PEA, Hansatech Instrument Ltd., Norfolk, UK) according to the method described by
Strasser et al. [34,35]. Briefly, leaves were dark-adapted for at least 30 min before measurement. Then,
the dark-adapted leaves were illuminated with an actinic LED light (627 ± 10 nm) at an intensity
of 3000 µmol photons m−2 s−1 per 1 s pulse. During the illumination, the PF and MR kinetics were
simultaneously recorded.

We performed a JIP-test of the PF curve according to the method of Strasser et al. [34,35].
The following data from the original measurements were used: fluorescence intensity at 20 µs (O step,
Fo), 300 µs (FK), 2 ms (J step, FJ), 30 ms (I step, FI), and P step (considered to be maximum fluorescence
intensity, Fm).

The modulated 820-nm reflection signals were represented by the MRt/MRo ratio, where MRt

is the modulated reflection signal during illumination and MRo is the value at the onset of actinic
illumination (taken at 0.7 ms; the first MR measurement). The rapid-decrease phase in MRt/MRo,
from 1 to the minimum value, reflects the PS I oxidation process. The minimum value is a transitory
steady state with equal oxidation and rereduction rates in PS I. Subsequently, the slow-increase phase
in MRt/MRo indicates PS I rereduction.

4.6. Statistical Analysis

We performed statistical analyses with SPSS statistical software (version 22.0, IBM Corp., Armonk,
NY, USA) and calculated the means and standard errors of indicated replicates. For multiple
comparisons, data among treatments were subject to one-way analysis of variance (ANOVA), and means
were compared using Duncan’s tests with significance set at p = 0.05. We conducted a two-way ANOVA
to compare sources of variation, including ALA, N-level, and ALA × N-level interactions.

5. Conclusions

The results of the study demonstrate that, under various N levels, plants in the ALA treatment
groups had higher Chl contents and PS I and PS II activation. Thus, they had higher energy transfer,
absorption efficiency, and electron transfer to dark reactions and, hence, higher CO2 assimilation
rates. Currently, the use of chemical fertilizers on farmland is excessive. Application of exogenous
ALA with low-N fertilizer presents a promising strategy for reducing N use while maintaining high
photosynthetic capacity in canola and other crops. Moreover, the results for the transgenic line of
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plants suggest that the manipulation of endogenous ALA is another potential strategy for improving
the photosynthetic capacity of crops under various N-supply conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1419/s1.
Figure S1: Changes in (a) the prompt fluorescence (PF) and (b) the variable fluorescence curves (∆V) of canola
leaves under low, middle, and high nitrogen levels. Table S1: Correlation analysis for leaf Chl content, gas
exchange, and the considered PF and MR parameters. Table S2: The mean ± SE and statistical tests for the JIP test
parameters of each treatment group.
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