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Abstract: Developing forest harvesting regimes that mimic natural forest dynamics requires knowledge
on typical species behaviors and how they respond to environmental conditions. Species regeneration
and survival after disturbance depends on a species’ life history traits. Therefore, forest succession
determines the extent to which forest communities are able to cope with environmental change. The aim
of this review was to (i) review the life history dynamics of hemi-boreal tree species in the context
of ecological succession, and (ii) categorize each of these tree species into one of four successional
development groups (gap colonizers, gap competitors, forest colonizers, or forest competitors). To do
this we embraced the super-organism approach to plant communities using their life history dynamics
and traits. Our review touches on the importance and vulnerability of these four types of successional
groups, their absence and presence in the community, and how they can be used as a core component to
evaluate if the development of the community is progressing towards the restoration of the climatic
climax. Applying a theoretical framework to generate ideas, we suggest that forests should be managed
to maintain environmental conditions that support the natural variety and sequence of tree species’
life histories by promoting genetic invariance and to help secure ecosystem resilience for the future.
This could be achieved by employing harvesting methods that emulate natural disturbances and
regeneration programs that contribute to maintenance of the four successional groups.

Keywords: climatic climax; life history; forest disturbance; gap colonizers; gap competitors;
forest colonizers; forest competitors; forest dynamics; forest management

1. Background

Forests are complex systems of interacting organisms; to manage them for tree species composition
and production we need thorough knowledge of the variety of tree species’ life histories and how they
interact. Within the hemi-boreal forest climatic zone there are three main forest disturbance regimes that
host a variety of successional characteristics: (i) stand succession (large or stand replacing disturbance such
as severe fire, windthrows, or current clear felling), (ii) cohort dynamics (related to partial disturbances
of a stand such as a low intensity ground fire or forest thinning), and (iii) gap dynamics (such as small
patch or a fallen tree) [1]. Succession is a sequential shift of patterns and processes in terms of the relative
abundance of dominant species [2]. The succession of forest stands and patches largely determines the
extent to which forest communities are able to cope with changes in environmental conditions and forest
loss due to natural disturbances or human activity [3–6]. Forest disturbances trigger successional events
that lead to climatically determined end communities or climatic climax, generally regarded as a position
of stability in the development of vegetation [7–9].
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The first definition of climax was described by Clements [10] as the ability of species composition to
remains stable for more than one tree generation (i.e., the tree species replace themselves) in the absence
of disturbance other than tree deaths due to old age. Thus, a forest that can regenerate naturally with the
same composition over time can qualify as natural climax. Although Clements’ [10] dynamic ecology
concept is still valid [11], it does not represent the boundless factors impacting ecological succession.
For example, the role and importance of both biotic and abiotic factors in predicting species distributions
remains unclear [12–16]. Therefore, no clear conclusion can be drawn as to the successional position of
tree species [10]. The probability of species survival and succession after disturbance depends on a species’
genetic profile to deal with a variety of environmental characteristics [17]. In other words, a tree’s life
history traits define its position along its successional pathway that includes functional strategies for
reproduction or resource capture [18].

The fundamental principle underlying the theory of invariance is that the laws of nature always have
the same form for all observers [19]. This implies that all the elements of any developing living system
interact, and thus all elements are ecologically equivalent, as the essence of ecological law and processes
lies in invariance by which a living system following a disturbance returns to its stable state [20,21].
From a wildlife perspective, each organism, population, and community have different environmental
scales in both time and space [22], and individual species may impact another species’ life history
traits [23,24]. Thus, there are different perceptions about the interactions among species (that otherwise
can survive virtually the same for millions of years), which proceed towards the ecological equivalence of
climatically determined end communities [25]. Primary forests exist in a delicate but stable climax with
all other components of the ecosystem; not one component can change without compensating changes in
the others. For example, harvesting or thinning a forest stand will inevitably be followed by changes in
the soil profile, vegetation, and life occurrence [9]. Generally, the dynamics of forest communities can be
controlled by a set of ecologically invariant life-history traits of tree species turnovers [9,26–29].

The natural tendency of forest succession is towards climatic climax, whereas the succession of
forests after human activity (e.g., fire, grazing, and soil deterioration due to over-cultivation) can result in
adaptation of biotic climaxes [9]. Therefore, forest restoration that aids the recovery of forest structure,
ecological functioning, and biodiversity towards those typical of a climax forest by the re-instatement
of ecological processes is needed [30]. From an organism-centered perspective, developing forest
management and exploitation regimes that mimic the natural conditions as closely as possible requires
the determination of the degree to which typical species behaviors are responsible for the emergence of
climatic climax [31–36].

The aim of this review was two-fold: (i) to review the life history dynamics of hemi-boreal tree species
found in Lithuania in the context of ecological succession, and (ii) to categorize Lithuania’s forest tree
species into four successional development classes. Finally, we discuss how they can be used to evaluate
if the development of the community is progressing towards the restoration of the climatic climax.

2. Successional Categorization of Forest Tree Species in Lithuania

Lithuania (62,000 km2) is situated in the hemi-boreal climatic zone (i.e., the transitional zone from
temperate to boreal forests) and is affected by the humid marine climate of the Baltic Sea [37]. The natural
potential forest cover of Lithuania is predominantly composed of five main forest types: (i) hemi-boreal
spruce forest with mixed broadleaved trees (55%), (ii) mixed oak–hornbeam forests (22%), (iii) boreal
and hemi-boreal pine forests with partial broadleaved trees (18%), (iv) lime-pedunculate oak forests
(4%), and (v) species-poor oak and mixed oak forests (1%) [38]. Thus, the natural climatic climax of the
region for tree species consisted of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) Karst),
birch (Betula pendula Roth and B. pubescens Ehrh), alder (Alnus glutinosa L. Gaertn. and A. incana L.
Moench), English oak (Quercus robur L.), small-leaved lime (Tilia cordata Mill.), and European hornbeam
(Carpinus betulus L.) [39]. Currently approximately 33% of Lithuania is forested with Scots pine, Norway
spruce, and birch forming the dominating forest stand types [40]. The full range of hemi-boreal forest
species found in Lithuania and their life history dynamics can be found in Table 1.
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Table 1. A simplified framework for the life history dynamics for hemi-boreal tree species in Lithuania. See Supplementary Materials 1 for more details on each species.

Tree Species

Life History Traits

Dominant Stand
Proportion [40]

Soil Moisture A

[41,42]
Soil Fertility B

[41,42]
Shade Tolerance Hardiness C [43]

Life Expectancy [42]
(Harvesting Age) [44] Successional Strategy

Dominant Forest Tree Species

Scots pine (Pinus sylvestris L.) 34.6% 1–3 and 5 1–3 and 5 Intolerant 9 300–400 (110) Disturbance generalist
Norway spruce (Picea abies L. Karst) 20.9% 3–4 3–4 Intermediate 7 200–300 (71) Succession generalist
Silver birch (Betula pendula Roth) 22.0% 2–5 2–4 Intolerant 9–10 150 (61) Disturbance generalist
Black alder (Alnus glutinosa L. Gaertn) 7.6% 4–5 3–4 Intermediate 7 180–200 (61) Disturbance generalist
Grey alder (Alnus incana L. Moench) 5.9% 2–5 3–4 Intermediate 9 50–70 (31) Disturbance generalist
Eurasian aspen (Populus tremula) 4.6% 3–4 3–4 Intolerant 9 80–100 (41) Disturbance generalist
English oak (Quercus robur L.) 2.2% 3–4 3–4 Intolerant 6–7 500–600 (121) Disturbance specialist
European ash (Fraxinus excelsior L.) 0.9% 3–5 4–5 Intermediate 7–8 > 300 (101) Succession specialist

Other Secondary Native Forest Species

Small-leaved lime (Tilia cordata Mill.) 0.4% 3 3–4 Intermediate 7 500–600 (61) Succession specialist
Downy birch (Betula pubescens Ehrh) 0.4% 3–5 2–5 Intolerant 9 100 D Disturbance generalist
European hornbeam (Carpinus betulus L.) 0.2% 3 3–4 Tolerant 5 200–300 (61) Disturbance generalist
Norway maple (Acer platanoides L.) 0.2% 3–4 3–5 Tolerant 8 150–300 (101) Disturbance specialist
White willow (Salix alba L.) <0.2% 4 4–5 Intolerant 8 >100 (31) Disturbance generalist
Bird cherry (Prunus padus L.) <0.2% 4–5 3–5 Intermediate 9 150 D Disturbance specialist
Crack willow (Salix fragilis L) <0.2% 4 4–5 Intolerant 8 75 (31) Disturbance generalist
Field elm (Ulmus minor Mill.) <0.2% 2–4 4 Intermediate 5 300 (101) Succession specialist
European white elm (Ulmus laevis Pall.) <0.2% 3–4 3–4 Tolerant 6–7 250–300 (101) Succession specialist
Wych elm (Ulmus. glabra Huds.) <0.2% 3–4 4–5 Tolerant 6 300 (101) Succession specialist
Wild apple (Malus sylvestris L. Mill.) <0.2% 4–5 3–5 Intolerant 8 300 D Disturbance specialist
Wild pear (Pyrus pyraster L. Burgsd.) <0.2% 3–4 3–4 Intermediate 6 200–300 D Disturbance specialist

Introduced Species

European beech (Fagus sylvatica L.) <0.2% 3 [37] 3–4 Tolerant 5 500 (101) Succession generalist
Sessile oak (Quercus petraea Matt. Liebl.) <0.2% 3 2–3 Intermediate 6–7 500–600 D Disturbance specialist
Large-leaved lime (Tilia platyphyllos Scop.) <0.2% 3–4 4–5 Intermediate 7 500–600 D Succession specialist
Wild cherry (Prunus avium L.) <0.02% 3–4 3–4 Tolerant 8 100 D Disturbance generalist

A Soil moisture is rated on 1–5 scale: 1 = dry and 5 = very wet. B Soil fertility is rated on a 1–5 scale: 1 = infertile and 5 = very fertile. C Hardiness refers to the ability of tree to tolerate the
cold: 0 = intolerant, 0 ◦C, and 10 = most tolerant, down to −40 ◦C [43]. D Harvest age was not defined.
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3. Four Types of Forest Successional Groups for Lithuania

In landscape ecology, invariance of scale is a main concept that focuses on the influence exerted
by spatio-temporal patterns of species distribution on the organization of, and interaction among,
functionally integrated multispecies ecosystems [45,46]. Successional trajectories are an expression of
sensitivity of interaction among the patterns of species distribution [35,45]. Watt [47] was a pioneer
in linking space and time using the scale of landscape by applying two main forest dynamic models:
(i) the patch–mosaic model, and (ii) the gap–phase model [45,48]. However, Watt [47] highlighted that
phases were synonymous with patches, and that the gap phase could have different spatial dimensions,
which could be considered as a stage of forest development where regeneration was confined.
Nonetheless, patches within the landscape may not be self-evident, as environmental characteristics
of different species, genotypes, or phenotypes may vary in scale [49]. For example, from a forest
management and exploitation perspective, a patch may correspond to a forest stand, which may not
function as a patch of habitat from a particular organism’s perspective [50]. Moreover, Bugmann’s [51]
forest gap model analysis was not able confirm the assumption that a forest can be summarized as
a composite of many horizontally homogeneous patches of land, where each patch can have a different
age and successional stage, and that the successional processes may be described for each patch
separately. Gap formation drives both the forest growth cycle and also determines forest floristics [52].
For instance, pioneer species often have a variety of specific life traits and in turn can produce sporadic
and opportunistic patches during later stages of the succession [9]. In general, shade-tolerant species
have a greater chance of successful regeneration in small gap openings compared to light-demanding
species, which require larger gaps or stand replacement succession [49]. This is attributable to the
contrasting growth patterns and life history traits of tree species with early-successional or large gap
specialists exhibiting a height growth type, while on the other hand, late-successional or small gap
specialists exhibit a crown growth type [49].

The trajectories of succession can be defined by rates of recruitment, growth, and mortality of
a tree species population [53]. Therefore, using life history dynamic traits (e.g., natural regeneration
dynamics, establishment, and growth (Table 1 and Supplemental Materials 1), we categorized each of
Lithuania’s forest tree species into one of the four types of successional groups based on environmental
specialization of species and tree regeneration modes in forest gaps (Table 2). These resemble Clark
and Clark’s [54] four dominant microsite patterns of tree species (A–D), which suggest significantly
different regeneration biology, Whitmore’s [55] pioneer tree species index (1–4), Yamamoto’s [56]
four major types of tree regeneration mode in gaps, Petrere et al.’s [36] four community types,
and Chazdon et al.’s [53] old-growth generalists, successional generalists, and successional specialists.

Table 2. Successional categories of the hemi-boreal forest tree species establishment and growth in
Lithuania [39,41,57–61]. The four types of successional groups (in bold) resemble Clark and Clark’s [54]
four dominant microsite patterns of tree species (A–D) and Whitmore’s [55] tree species groups (1–4).
Modified from Franklin [5].

Growth
Establishment

Forest Gaps

Forest

Forest Competitors or Natural Climax (A)
Advanced self-regeneration under shade
and grows best in forest stands; average
growth rates, especially as juveniles (1).

Gap Competitors or Post-pioneers (C)
Regenerates and grows best in gaps,

saplings can survive in closed forests;
increased juvenile growth potential over

groups A or B (3).

Tilia cordata
Tilia platyphyllos
Fagus sylvatica

Carpinus betulus

Quercus robur
Quercus petraea

Fraxinus excelsior
Ulmus laevis

Malus sylvestris
Pyrus pyraster
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Table 2. Cont.

Growth
Establishment

Forest Gaps

Gaps

Forest Colonizers or Pre-climax (B)
Regenerates in shade but shows heightened
association with gaps as saplings; growth
rates are as low as group A but increase

with size (2).

Gap Colonizers or Pioneers (D)
Regenerates after gap formation and

achieves optimal growth at all juvenile
stages; juveniles have the highest growth

potential (4).

Picea abies
Acer platanoides

Ulmus glabra
Ulmus minor

Betula pendula
Betula pubescens
Pinus sylvestris
Populus tremula
Alnus glutinosa

Alnus incana
Salix alba

Salix fragilis
Prunus avium
Prunus padus

4. General Suggestions for Forest Management

Many of the difficulties encountered by silviculturists and forest managers to secure natural
regeneration of climax forest species occur due to the selection of shade-intolerant, rapid-growing,
pioneer species or through the premature stopping of natural succession in order to maintain a forest in
a certain seral stage [7]. However, large scale biogeography and climatic factors have been connected to
the shade tolerance of tree species during regeneration succession [62], and the low light survival/high
light growth trade-off is only one of the many possible characteristics of tree regeneration along
a disturbance gradient [63].

The transition to post-disturbance stands dominated by fast growing shade intolerant tree species
will eventually be replaced by late-seral shade-tolerant species. This is not a simple unidirectional
sequence of stages, but rather a complex paradigm that is subject to responses of both species and
environmental factors [45,64]. For example, Norway spruce is considered a climatic climax forest
species in some parts of central Europe but is considered a pioneer species in northern Russia [7,65],
or a climax beech forest after one generation may transit into a silver fir dominated stand in one
area and a spruce dominated stand in another area [9]. Thus, understanding the dynamics of a tree
community following a disturbance requires knowledge of the responses of individual tree species’
traits and how they interact within the local forest community [17]. The life history traits and strategies
of individual species are intrinsically related to forest disturbances and account for the interaction
among the patterns of species distribution [66]. This offers new ways to test the efficacy of specific
interventions by modifying disturbance-related changes in dynamic forest communities [7,32,45].

A natural forest community, according to the theoretical framework applied in this study on
successional categorization of the life history dynamics tree species, deems that forests should contain
a mixture of tree species from each of the successional categories. This would ensure that the life
history traits of both optimal colonizing tree species and optimal competitor tree species would
be maintained. For optimal colonizing tree species, this would include dispersal, large somatic
plasticity, and regeneration establishment dependency [7,67–70], whereas for optimal competitor tree
species, this would include selective dispersal [71], large hereditary plasticity [72–75], and regeneration
growth dependency [76]. Moreover, the genetic profile of predominantly self-fertilizing colonizing
species indicates that there is cooperation between cross-pollinators and the population stability of
the self-fertilizers, and this stimulates the adaptation towards a forest mosaic of small patches [7].
However, the interspecific interactions of new species assemblages provide both opportunities and
challenges for species survival. Thus, a variety of tree species’ life histories and how they are integrated
into the forest system need to be summarized as a continuum of ecologically invariant life-history
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trajectories of species turnover [77]. Unfortunately, there is limited research evidence as to why forests
may lack certain types of successional pathways for species that have life history strategies that are
needed to achieve natural climax.

The abandonment of natural regeneration to focus on high yield forest management and timber
production [7] is often still considered as a criterion of good forest management. However, how can
forest managers, conservationists, and researchers help forest ecosystems maintain optimum stability?
One avenue is to concentrate efforts to undertake vulnerability and risk assessments that feed into
action plans toward managing native tree species [26]. For example, in the United States of America,
the Forest Tree Genetic Risk Assessment System (ForGRAS) is used to rank forest tree species for
a number of primary risk factors including population structure, rarity, regeneration capacity, dispersal
ability, habitat affinity, genetic variation, pest and pathogen threats, and climate change pressure [4,33].
In general, these factors affect ecological processes that are important for ecosystem functioning, such as
primary productivity, population recovery from disturbances, interspecific competition, community
structure, and fluxes of energy and nutrients. Ultimately, a key management target is to conserve the
genetic legacies for ecosystem memory and the adaptive ability they provide [78].

Indeed, one of the central paradigms in the biological theory is the idea that life adapts genetically
to environmental change [33]. However, the available paleodata provides an independent testimony
that such an adaptation does not take place for species that succeed each other in the paleorecord,
instead they emerge unexpectedly as discrete morphological and genetic entities and survive virtually
the same for millions of years [31]. Living ecosystems themselves represent a unique genetic mechanism
responsible for the maintenance of Earth’s habitability. A lack of biotic regulation of environmental
conditions would trigger large scale uncontrolled changes that would be four orders of magnitude
faster than physicochemical processes [33]. For this reason, the variety of tree species’ life history traits
and how they interact, constantly evolving toward the climatically determined end communities or
climatic climax, is a manifestation of already existing genetic information, written in the genomes of
species, which has remained practically unchanged for time periods in the order of several million
years (mean time of species existence). Whenever the environment deviates from the optimum,
genetically programmed species-typical behaviors and responses ensure that biotic processes can
compensate for unfavorable change. The model of initial floristic composition postulates that most
late successional tree species will become dominant due to an established soil seed bank or seedling
bank [79]. However, in reality, the difference between a successional forest and a climax forest is
subjective, as a forest ecosystem is dynamic, where succession is a continual process [32].

In the absence of external disturbances, a climax community is able to keep its own optimal
environment stable for infinitely long periods of time [35,77]. For instance, many of the rarest
hemi-boreal forest species are associated with ancient trees that still remain and can be tracked through
time to a continuous cover of old trees [38,39]. Thus, understanding the biological legacies produced
by natural disturbances and succession is crucial towards reaching sustainable forest management for
both conservation and wood production [80].

Remnant tree species of the natural potential forests [38] continue to exist in Lithuania through
the current dominant and secondary tree species, as outlined in Table 1. Large scale changes in
forest cover, regeneration, establishment, species survival, and composition throughout millennia
have led to biotic climaxes. For instance, natural oak, ash, and lime forests have become rarer due
to both the past and current forest management objectives as well as altered hydrology. Over the
past century, Lithuanian forestry has been juxtaposed between two contrasting approaches to forest
management: German influence that favored artificial regeneration, and Russian reliance on natural
regeneration after timber harvest [66]. Since regaining independence in 1991, Lithuanian forestry has
turned into a timber production industry by employing silvicultural practices to generate sustained
high yield wood production [40]. This is achieved by forming productive man-made forests that
comply with site type conditions [40,81] and reduced harvesting ages of forest stands in comparison to
natural forest succession (Table 1). As observed by Roberge and Angelstam [82] the anthropogenic
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impact on Lithuanian forest biodiversity is still lower compared to countries in western Europe.
However, under Lithuania’s current forest management trajectory, it is expected that Lithuania’s forest
biodiversity will follow the declining trends of western Europe [83]. In addition, European beech may
be expanding its range into the Baltics through the introduction of forestry [84], and wild cherry is
spreading into forest stands naturally from domesticated sources [57,60].

The experimental approach to climatic climax in Lithuanian forests until now had not been
analyzed. Based on this review, we suggest that forest management should (i) utilize various
harvesting methods that not only consider site type regeneration but also emulate natural disturbances,
which includes but is not limited to clear cutting of stands, continuous cover forestry, and selective
harvesting or gap creation [85]; (ii) the regeneration for forest stands should move away from single
species regeneration by implementing the maintenance of the four types of successional groups
(Table 2); and (iii) increase the felling ages by considering natural succession. As we have highlighted,
this will enable the life history traits of the native forest tree species to evolve by invoking genetic
invariance and to help secure ecosystem resilience for the future.

5. Concluding Remarks

This review focused on the life history dynamics (natural regeneration, establishment, growth, and
survival) of 8 dominate tree species, 12 secondary tree species, and 4 introduced species for Lithuania’s
hemi-boreal forests. Considering the dendroflora characteristics of Lithuania [41,42], we reviewed
each tree species’ characteristics (Table 1 and Supplement 1) and assigned each tree to one of the
four successional categories (Table 2). This was done by embracing the super-organism approach
to plant communities that succession is a universal process of a series of events where the types of
vegetation in an area are directly related to climate [10]. This analysis of the successional categorization
of hemi-boreal forest tree species exemplifies aspects of tree species’ life histories and how they can
interact. All individual populations that form a continuous cover of trees throughout time on a site
exhibit sensitive interactions. This sensitivity relates to the life history dynamics of tree species turnover
towards the restoration of the climatic climax. The sensitivity of interaction among the patterns of
species distribution provides new opportunities to test the efficacy of specific interventions to modify
the disturbance-related changes in forest dynamics.

Due to the adverse risk and effects of climate change on forest and wildlife management,
the organization and interaction among multi-species ecosystems need to be understood to forecast
the dynamics of local ecological communities following disturbance. This would enable solutions
that support climatic climax by introducing a successional approach to restore ecological processes,
which would accelerate the recovery of forest structure, ecological functioning, and biodiversity
levels towards those typical of climax forests based on predictive models for natural regeneration
establishment, growth, and survival. The vulnerability of forest communities to negotiate anthropogenic
impacts and climatic changes (the two major forms of disturbance occurring today) could be inferred by
identifying the types of successional groups that are absent from a particular forest (target community)
but predicted to occur in comparable natural forests (reference community).

Despite the recognition that a continuum of biotic patterns related to succession exist, forests should
be managed to maintain environmental conditions that support the natural variety and sequence
of tree species’ life histories. Each forest tree species can be represented by one of the four types of
ecologically invariant life-history trajectories of species turnover: gap colonizers, gap competitors,
forest colonizers, or forest competitors. Forest colonizers and forest competitors dominate the climax
community, which can regenerate in the same composition over time in the absence of disturbance
other than tree deaths due to old age. In contrast, the most shade-intolerant species of gap colonizers
and gap competitors depend upon opportunistic disturbances to become established.

In this review, we touch on the importance of these four types of successional groups, their absence
and presence in the community, and how they could be used as a core component to evaluate if
the development of the community is progressing towards the restoration of the climatic climax.



Plants 2020, 9, 1381 8 of 11

However, further research in needed to develop the concept of forest succession. This could be
undertaken through the inclusion of other biotic components, such as, ground vegetation, wildlife and
microorganisms, and their impacts on forest succession as an ecosystem. In closing, we suggest that
forests should be managed to maintain environmental conditions that support their natural variety
and the sequence of tree species’ life histories.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/10/1381/s1,
Table S1: A description of the life history dynamics of hemi-boreal forest tree species and suggested successional
categories for Lithuania.
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