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Abstract: Water shortages have an important impact on the photosynthetic capacity of
Phragmites australis. However, this impact has not been adequately studied from the perspective of
photosynthesis. An in-depth study of the photosynthetic process can help in better understanding the
impact of water shortages on the photosynthetic capacity of P. australis, especially on the microscale.
The aim of this study is to explore the photosynthetic adaptation strategies to environmental changes
in saline-alkaline wetlands. The light response curves and CO2 response curves of P. australis in
five habitats (hygrophilous, xerophytic, psammophytic, abandoned farmland, paddy field drainage)
in saline-alkaline wetlands were measured at different stages of their life history, and we used a
nonrectangular hyperbolic model to fit the data. It was concluded that P. australis utilized coping
strategies that differed between the growing and breeding seasons. P. australis in abandoned farmland
during the growing season had the highest apparent quantum efficiency (AQE) and photosynthetic
utilization efficiency for weak light because of the dark environment. The dark respiration rate of
P. australis in the drainage area of paddy fields was the lowest, and it had the highest values for
photorespiration rate, maximum photosynthetic rate (Pmax), photosynthetic capacity (Pa), biomass,
maximum carboxylation rate (Vcmax), and maximum electron transfer rate (Jmax). The light
insensitivity of P. australis increased with the transition from growing to breeding season, and the
dark respiration rate also showed a downward trend. Moreover, Vcmax and Jmax would decline
when Pmax and Pa showed a declining trend, and vice versa. In other words, Vcmax and Jmax
could explain changes in the photosynthetic capacity to some extent. These findings contribute to
providing insights that Vcmax and Jmax can directly reflect the variation in photosynthetic capacity
of P. australis under water shortages in saline-alkaline wetlands and in other parts of world where
there are problems with similarly harmful environmental conditions.
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1. Introduction

Vegetation is a fundamental part of wetlands, so it is important to study the photosynthetic
response mechanisms of vegetation for wetland protection [1,2]. Phragmites australis is one of the
typical wetland plants and, therefore, studying the photosynthetic process of P. australis in differing
environments is helpful in further understanding the response strategies of plants to different
environmental conditions [3,4].
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The physiological characteristics of photosynthetic carbon fixation in plants are mainly studied in
terms of the effects of water (water level), salt [5], and heavy metal stress [6] on photosynthesis and
fluorescence in plants. Combined with the plant community characteristics and growth characteristics,
models are used to fit the photosynthetic carbon fixation process [7,8]. For example, the tolerance
to flooding of four species, including P. australis, has been compared using isotopic techniques.
The results showed that P. australis was the most tolerant plant because flooding resulted in an increase
in the stomatal conductance of P. australis, and anaerobic enzymes in the rhizosphere improved its
tolerance; in addition, the high photosynthetic rate (Pa) contributed to biomass accumulation and
CO2 fixation during this period [9]. P. australis is more tolerant to short-term flooding than to high
salinity [10] because these variables affect chemical oxygen demand (COD) and other indicators in
water. The photosynthetic rate decreases with increases in chemical oxygen demand, and higher COD
can interfere with plant metabolism [11]. Some plants can improve their tolerance to a high-salinity and
heavy metal environment by secreting protective enzymes such as superoxide dismutase (SOD), but
this only applies under low-salinity conditions; under high salinity, the ability of plants to produce SOD
will decrease or even disappear, thus inhibiting plant growth due to reduced protection against heavy
metal toxicity [12]. Moreover, high salinity stress also has a great influence on the chlorophyll content
of plant leaves, leading to a decrease in Pa. At the same time, the decrease in Pa under low-salinity
stress is related to stomatal closure, but after exceeding the concentration threshold, stomatal closure is
no longer the main reason for the decrease in Pa [13].

The effect of the water level on plant photosynthesis is mainly reflected in the distribution of
biomass in roots, stems, and leaves as well as the photosynthetic process. Generally, in the early
growing season, the biomass is mainly distributed to the leaves and stems to facilitate photosynthetic
carbon sequestration. In the middle of the growing season, it is mainly distributed to the stems, while
in the late growing season, it is distributed to the roots. Under adequate water conditions, plants will
further reduce the allocation of biomass to the roots and increase the allocation of biomass to the stems
and leaves. However, in the case of water shortage, the biomass allocation in leaves will be reduced
while being increased in roots [14]. As for the photosynthetic process, at different growth or breeding
stages, the response of plant photosynthetic carbon sequestration characteristics to hydrological
conditions also differs; by adjusting the stomatal conductance of leaves and its photosynthetic rate [15],
plants can adapt to changes in water depth and evolve into different ecological types. Therefore, it is
necessary to study the effects of hydrological conditions on the photosynthesis of plants in combination
with biomass.

The carbon sources and sink functions of saline-alkaline wetlands, as a special type of inland
wetland, differ from those of freshwater wetlands. In China, the Western Songnen Plain is one of
the main distribution areas for saline-alkaline wetlands. According to the results of China’s second
national survey of wetland resources, there are 430 km2 of wetlands in Western Jilin Province, with
reed marshes being dominant. Niuxintaobao Wetland is one of the typical distribution areas for reed
marshes in the Western Songnen Plain. It is also a typical saline-alkaline reed marsh, with abundant
reed resources, with a vegetation coverage rate of around 85% [16]. There is a distinct water gradient
from the center to the shore in the Niuxintaobao Wetland, and the change in water gradient results
in different reed habitats. Therefore, it is important to understand the photosynthetic adaptation
strategies of P. australis to environmental changes in saline-alkaline wetlands. As such, based on model
fitting, the two main objectives of this study were to (1) characterize the photosynthetic characteristics
of P. australis in different environments and (2) discuss how P. australis responds to environmental
changes on the microscale (for both light-dependent and -independent reactions). We anticipate that
the findings from this study will help in further understanding the relationship between plants and
the environment.
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2. Results

2.1. Characteristics of Light Response Curve

2.1.1. Characteristics of Light Response Curve in the Growing Season

During the growing season, the saturated light intensity (Im) of HP (hygrophilous type of
P. australis) was the lowest, and the Im of PP (P. australis in drainage area of paddy field) was the highest.
The apparent quantum efficiency (AQE) of FP (P. australis in abandoned farmland) had the highest
value, indicating that P. australis in abandoned farmland had the highest photosynthetic efficiency
under low light conditions. The value for maximum net photosynthetic rate (Pmax) of PP was the
highest, and its biomass (Bm) per unit area was also higher than that of other habitats (Table 1 and
Figure 1). The rate of dark respiration (Rd) of PP was also the lowest among the five habitats. Thus,
higher Pmax and lower Rd appear to be beneficial for the accumulation of biomass in the growth stage.

Table 1. Photosynthetic physiological characteristics of P. australis in the growing season (Im: saturated
light intensity; AQE: apparent quantum efficiency; Rd: rate of dark respiration; Pmax: maximum
net photosynthetic rate; Bm: biomass; HP: hygrophilous type of P. australis; XP: xerophytic type of
P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP: P. australis
in drainage area of paddy field). Different letters after the values indicate statistically significant
differences between five habitats in the same row. LSD: use ”least significant difference” as a method
when test the differences between variables.

Photosynthetic
Physiological
Characteristics

HP XP SP FP PP

Im 1046.9 ± 12.3a 1118.7 ± 5.7a 1261.3 ± 11.2b 2165.3 ± 21.7c 2278.1 ± 20.3d
AQE 0.029 ± 0.004a 0.021 ± 0.003a 0.039 ± 0.002b 0.047 ± 0.004c 0.031 ± 0.003a
Rd −0.65 ± 0.02a −0.45 ± 0.01b −0.55 ± 0.03c −0.45 ± 0.07b −0.29 ± 0.02d
Pmax 11.70 ± 0.13a 11.30 ± 0.25b 13.00 ± 0.24c 9.30 ± 0.11d 19.60 ± 0.17e
Bm 137.0 ± 2.7a 133.3 ± 3.5b 144.5 ± 5.4c 75.2 ± 6.8d 218.3 ± 5.9e

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 1. Fitting results of light response curves of (a) hygrophilous type of P. australis, (b) xerophytic
type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned farmland,
and (e) P. australis in paddy field drainage during the growing season. PAR: photosynthetically
active radiation.
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2.1.2. Characteristics of Light Response Curve in the Breeding Season

During the breeding season, the saturated light intensity (Im) of PP was the lowest, and the Im of
FP was the highest. There were no significant differences in the rate of dark respiration (Rd) between
HP (hygrophilous type of P. australis) and XP (xerophytic type of P. australis). SP (psammophytic type
of P. australis) had the lowest biomass. The order of AQE was FP < HP < XP < PP < SP, and the order
of Pmax was FP < PP < HP < XP < SP. SP had the highest values for AQE and Pmax. Furthermore, SP
also had the lowest Rd. However, PP still had the largest biomass (Table 2 and Figure 2). Therefore,
there may be other factors that determined the accumulation of biomass in the stage of breeding. At
the same time, after entering the breeding season, the change in Pmax varied depending on the habitat.
The Pmax of SP and PP changed greatly. The Pmax of SP increased by around 50% while the Pmax of
PP decreased by 50.5%. However, the Pmax of the others did not change significantly; the Pmax of HP
and FP decreased while that of XP increased.

Table 2. Photosynthetic physiological characteristics of P. australis in the breeding season (Im: saturated
light intensity; AQE: apparent quantum efficiency; Rd: rate of dark respiration; Pmax: maximum
net photosynthetic rate; Bm: biomass; HP: hygrophilous type of P. australis; XP: xerophytic type of
P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP: P. australis
in drainage area of paddy field). Different letters after the values indicate statistically significant
differences between five habitats in the same row. LSD: use ”least significant difference” as a method
when test the differences between variables.

Photosynthetic
Physiological
Characteristics

HP XP SP FP PP

Im 2086.7 ± 11.4a 1810.2 ± 4.9b 1838.3 ± 11.9c 2186.3 ± 12.5d 924.1 ± 9.2e
AQE 0.011 ± 0.003a 0.017 ± 0.004b 0.033 ± 0.003c 0.007 ± 0.002d 0.025 ± 0.005e
Rd −0.15 ± 0.06a −0.14 ± 0.03a −0.05 ± 0.02b −0.35 ± 0.01c −0.20 ± 0.04d
Pmax 11.50 ± 0.26a 14.30 ± 0.19b 19.50 ± 0.27c 9.00 ± 0.14d 9.50 ± 0.24d
Bm 448.3 ± 3.1a 250.0 ± 2.3b 166.7 ± 7.4c 365.0 ± 8.6d 665.3 ± 7.5e

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 2. Fitting results of light response curves of (a) hygrophilous type of P. australis, (b) xerophytic
type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned farmland, and (e)
P. australis in paddy field drainage during the breeding season. PAR: photosynthetically active radiation.
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2.2. Characteristics of CO2 Response Curve

2.2.1. Characteristics of CO2 Response Curve in the Growing Season

During the growing season, the order of CO2 saturation point (Cm) was PP < SP < XP < HP < FP;
the order of CO2 compensation point (Cc) was SP < PP < XP < HP < FP (Table 3 and Figure 3). FP had
the highest Cm and Cc, indicating that FP could make use of a wide range of concentrations of CO2.
However, the quantum efficiency of CO2 (ϕCO2) of FP was the lowest, indicating that the utilization
efficiency of low-concentration CO2 for FP was lower than compared to other conditions; this may be
why FP needed to make use of a wide range of concentrations of CO2. PP had the highest value of
ϕCO2, and its rate of respiration (Rl) and photosynthetic capacity (Pa) were also the largest among the
five habitats. However, as mentioned before, PP still had the largest biomass; a higher respiratory rate
would not be enough to affect the biomass accumulation.

Table 3. Characteristics of CO2 response curve of P. australis in the growing season (Cm: CO2 saturation
point; Cc: CO2 compensation point; ϕCO2: the highest quantum efficiency of CO2; Rl: rate of
respiration; Pa: photosynthetic capacity; HP: hygrophilous type of P. australis; XP: xerophytic type of
P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP: P. australis
in drainage area of paddy field). Different letters after the values indicate statistically significant
differences between five habitats in the same row. LSD: use ”least significant difference” as a method
when test the differences between variables.

Photosynthetic
Parameters HP XP SP FP PP

Cm 2195.7 ± 11.9a 1708.2 ± 4.0b 1678.9 ± 11.2c 3782.7 ± 12.0d 1334.9 ± 6.2e
Cc 13.8 ± 2.1a 12.5 ± 2.2b 6.3 ± 0.4c 48.6 ± 3.6d 12.2 ± 0.5b
ϕCO2 0.037 ± 0.004a 0.045 ± 0.002b 0.067 ± 0.001c 0.025 ± 0.001d 0.097 ± 0.005e
Rl −0.50 ± 0.02a −0.05 ± 0.01b −0.40 ± 0.03a −1.20 ± 0.02c −1.30 ± 0.04c
Pa 26.70 ± 0.23a 26.30 ± 0.32b 26.60 ± 0.17a 28.10 ± 0.34c 30.70 ± 0.37d

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 3. Fitting results of CO2 response curves of (a) hygrophilous type of P. australis, (b) xerophytic
type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned farmland, and (e)
P. australis in paddy field drainage during the growing season. Ci: intercellular CO2 concentration.
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2.2.2. Characteristics of CO2 Response Curve in the Breeding Season

During the breeding season, the order of CO2 saturation point (Cm) was SP < PP < XP < HP < FP,
and the order of CO2 compensation point (Cc) was SP < HP < XP < PP < FP (Table 4 and Figure 4);
hence, the values of Cm and Cc were still the highest for FP. Moreover, the quantum efficiency of
CO2 (ϕCO2) of FP was also the lowest, indicating that FP still needed to make use of a wide range
of CO2 concentrations. The photosynthetic capacity (Pa) was similar to that of the growing season,
i.e., under conditions of sufficient light and CO2, P. australis showed strong photosynthetic capacity in
five habitats, especially in the drainage area of paddy field (PP). However, compared with the growth
period, the photosynthetic capacity (Pa) of PP, HP, and FP decreased, while that of XP and SP increased.

Table 4. Characteristics of CO2 response curve of P. australis in the breeding season (Cm: CO2

saturation point; Cc: CO2 compensation point; ϕCO2: the highest quantum efficiency of CO2; Rl: rate
of respiration; Pa: photosynthetic capacity; HP: hygrophilous type of P. australis; XP: xerophytic type of
P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP: P. australis
in drainage area of paddy field). Different letters after the values indicate statistically significant
differences between five habitats in the same row. LSD: use ”least significant difference” as a method
when test the differences between variables.

Photosynthetic
Parameters HP XP SP FP PP

Cm 3417.9 ± 11.2a 2791.7 ± 4.6b 1486.4 ± 11.2c 5465.8 ± 17.5d 2363.1 ± 9.0e
Cc 12.9 ± 0.7a 15.2 ± 1.3b 5.9 ± 0.3c 59.7 ± 8.8d 35.4 ± 2.7e
ϕCO2 0.021 ± 0.003a 0.039 ± 0.002b 0.017 ± 0.003c 0.011 ± 0.002d 0.049 ± 0.003e
Rl −0.05 ± 0.006a −1.1 ± 0.05b −0.85 ± 0.03c −0.65 ± 0.03d −1.75 ± 0.1e
Pa 25.10 ± 0.70a 28.60 ± 0.23b 28.70 ± 0.37b 26.20 ± 0.45c 29.40 ± 0.68d

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 4. Fitting results of CO2 response curves of (a) hygrophilous type of P. australis, (b) xerophytic
type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned farmland, and (e)
P. australis in paddy field drainage during the breeding season. Ci: intercellular CO2 concentration.
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3. Discussion

3.1. Photosynthetic Characteristics of P. australis in the Growing Season

The fitting results for the light response curve demonstrated that apparent quantum efficiency
(AQE) was one of the most important indicators for characterizing the ability of plants to assimilate
CO2 under low light conditions. The slope of the light response curve at the weak light stage (i.e., the
smaller PAR value interval) was calculated as the apparent quantum efficiency, which means the
average amount of CO2 assimilated by one photon [17,18]. During the growing season, the AQE of
FP was the highest (0.047 ± 0.004) in five habitats, indicating that FP had a strong ability to utilize
weak light. Field investigations also revealed that in abandoned farmland, P. australis mainly grew in a
shady environment (shading by trees is one of the reasons leading to the abandonment of farmland).
Furthermore, the high AQE also indicated that P. australis adapted to long-term shading, indicating
that it had higher photosynthetic efficiency in weak light. The rate of respiration represents the rate
at which plants consume organic matter. It is generally believed that a higher respiration rate is not
conducive to the accumulation of organic matter. Maximum photosynthetic rate (Pmax) represents
the ability to assimilate CO2 under sufficient light; the higher the value of Pmax, the higher the rate
of carbon sequestration, and the more favorable it is for the accumulation of organic matter [19,20].
PP had the highest Pmax and the lowest respiration rate. Therefore, the general rule of biomass
accumulation of P. australis in five habitats was as follows: the higher the value of Pmax, the larger
the biomass. Studies have found that rich soil nutrient content is conducive to the accumulation of
photosynthetic carbon sequestration of plants [21,22]. The reason for PP’s greater Pmax is presumed to
be related to the use of fertilizers in paddy fields, which indirectly results in higher N, P, and other
nutrient elements in soil than in other habitats, which is more conducive to the fixation of CO2 and
accumulation of organic matter [23]. However, PP had the lowest Pmax. Some studies have shown
that P. australis can regulate its genes, to some extent, to adapt to high-salinity environments. These
genetic regulations include higher relative expression levels of genes associated with photosynthesis
and lignan biosynthesis, indicative of a greater ability to maintain growth under saline conditions [24].
At the same time, the distribution of photosynthetically fixed C in roots and soils also changes, for
example, with lower contents of photosynthetically fixed C in roots and higher contents in soil [25].

Photosynthetic capacity (Pa) is one of the most important indicators for analyzing the characteristics
of the CO2 response curve. It is used to characterize the maximum potential of fixing CO2 under
conditions of sufficient light and CO2. Photorespiration refers to the consumption of superfluous
substances by respiration when high amounts of [H] and ATP accumulate in the photoreaction but
the photosynthetic dark reaction is inhibited so as to prevent their accumulation, affecting plant
metabolism [26–29]. Therefore, the rate of photorespiration (Rl) in plants can reflect their photoreaction
rate to a certain extent, and this then affects the final net photosynthetic rate. During the growing
season, the general rule for the photosynthetic capacity of P. australis in the five studied habitats was
that the higher the Rl value, the higher the Pa value. The Rl of PP was the highest, and the Pa of PP was
also the highest among the five habitats. Moreover, the CO2 quantum efficiency (ϕCO2) of PP was also
the highest, indicating that it had the highest photosynthetic efficiency for low concentrations of CO2.

By further fitting the CO2 response curve, the limits for the photosynthetic rate in the dark
reaction process were obtained for different intercellular CO2 concentrations (Ci). Vc represents the
limitation of Rubisco carboxylase and J represents the limitation of RuBP (ribulose bisphosphate)
regeneration. Therefore, the intersection point (Ci_transition) of the Vc-limit curve (blue) and J-limit
curve (red) was the demarcation between the limitation of Rubisco carboxylase and the limitation of
RuBP regeneration. When C < Ci_transition, the photosynthetic rate is mainly limited by Vc, and
when C > Ci_transition, the photosynthetic rate is mainly limited by J [30,31]. According to the fitting
results, during the growing season, the Vcmax and Jmax of PP were the highest among the five habitats,
and the photosynthetic capacity (Pa) of PP was also the highest (Table 5 and Figure 5). Moreover,
the value of Ci_transition of PP was 308 ppm, which was lower than the general environmental CO2
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concentration (around 400 ppm). Therefore, the photosynthetic rate of PP was mainly determined by
Vc and J, while the photosynthetic rates of others were mainly determined by Vc.

Table 5. Characteristics of photosynthetic dark reaction of P. australis in the growing season (Vcmax:
maximum carboxylation rate; Jmax: maximum electron transfer rate; Ci_transition: intersection point
of the Vc-limit curve (blue) and J-limit curve (red); HP: hygrophilous type of P. australis; XP: xerophytic
type of P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP:
P. australis in drainage area of paddy field). Different letters after the values indicate statistically
significant differences between five habitats in the same row. LSD: use ”least significant difference” as a
method when test the differences between variables.

Photosynthetic
Parameters HP XP SP FP PP

Vcmax 94.53 ± 2.61a 41.47 ± 2.04b 53.76 ± 3.23c 70.59 ± 1.62d 138.99 ± 3.93e
Jmax 148.28 ± 2.51a 107.29 ± 1.32b 111.57 ± 3.91b 115.13 ± 2.10b 195.75 ± 2.85c
Ci_transition 530 787 519 828 308

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 5. Modeling results of photosynthetic rate limitations of (a) hygrophilous type of P. australis,
(b) xerophytic type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned
farmland, and (e) P. australis in paddy field drainage during the growing season. Ac is the gross
photosynthetic rate when Rubisco activity is limiting; Aj is the gross photosynthetic rate when RuBP
regeneration is limiting (RuBP: ribulose bisphosphate; Ci: intercellular CO2 concentration).

3.2. Photosynthetic Characteristics of P. australis in the Breeding Season

By comparing the characteristics of light response curves, reeds in all habitats showed an increase
in the value of the light saturation point (Im) and a decrease in the value of AQE after entering the
breeding season, which meant a gradual adaptation to and utilization of the high-light environment.
It was believed that the general downward trend observed for the value of AQE during the process of
plant growth may be related to the increase in average solar radiation intensity [32]. Meanwhile, the
rates of dark respiration of P. australis in all habitats were lower than those of the growing season, and
the biomass showed accumulation with a decrease in the rates of dark respiration. Moreover, the rate
of biomass accumulation of FP was the highest among the five habitats (386.7%). However, the Pmax
of HP, FP, and PP showed a downward trend. The decrease in photosynthetic rate was related to the
decrease in stomatal conductance, and the decrease in stomatal conductance was related to the increase
in salinity [33]. Some studies have shown that reeds could adapt to a saline and alkaline environment
by rapid ecological evolution and phenotypic differentiation. At the same time, reeds could also
adapt to a harsh environment by reducing the photosynthetic rate or chlorophyll concentration and
increasing the K+ concentration in leaves [34–36].

By comparing the characteristics of CO2 response curves, reeds in all habitats showed a decrease
in the value of CO2 quantum efficiency (ϕCO2) after entering the breeding season, which represents
an adaptation to high concentrations of CO2. Except for HP, reeds in all habitats showed an increase in
the value of CO2 compensation points (Cc), which meant decreased photosynthetic sensitivity to low
concentrations of CO2. In addition, PP had the highest ϕCO2, Rl, and Pa in both the growing and
breeding seasons. Moreover, Vcmax and Jmax as well as Pmax and Pn of XP and SP showed an upward
trend while showing a downward trend for HP, FP, and PP (Table 6 and Figure 6). The results showed
that the fitting results of the light response curves and the CO2 response curves were consistent. It
was also found that XP and SP entered the withering season later than HP, FP, and PP during the field
investigation, which may be related to the later decline in ability to undergo dark reaction (Vcmax,
Jmax) of XP and SP. Therefore, Vcmax and Jmax, as important indicators reflecting the characteristics
of photosynthetic dark reaction, could explain the changes in photosynthetic rate to some extent [37].
However, Vcmax and Jmax represent only the dark reaction part of photosynthesis, and if combined
with the chlorophyll fluorescence parameters, i.e., the characteristics of the light reaction part of
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photosynthesis, the variations in the photosynthetic rate will be explained more comprehensively.
Hence, it is necessary to conduct further studies on the specific photosynthetic process of P. australis.

Table 6. Characteristics of photosynthetic dark reaction of P. australis in the breeding season (Vcmax:
maximum carboxylation rate; Jmax: maximum electron transfer rate; Ci_transition: intersection point
of the Vc-limit curve (blue) and J-limit curve (red); HP: hygrophilous type of P. australis; XP: xerophytic
type of P. australis; SP: psammophytic type of P. australis; FP: P. australis in abandoned farmland; PP:
P. australis in drainage area of paddy field). Different letters after the values indicate statistically
significant differences between five habitats in the same row. LSD: use ”least significant difference” as a
method when test the differences between variables.

Photosynthetic
Parameters HP XP SP FP PP

Vcmax 86.91 ± 6.54a 61.85 ± 2.26b 94.26 ± 3.19c 30.21 ± 0.89d 82.90 ± 1.69a
Jmax 120.02 ± 4.77a 116.62 ± 3.53a 154.89 ± 3.08b 59.58 ± 1.43c 146.62 ± 2.19b
Ci_transition 405 815 428 999 808

Note: Means (n = 10) followed by different letters are significantly different by LSD (p < 0.05).
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Figure 6. Modeling results of photosynthetic rate limitations of (a) hygrophilous type of P. australis,
(b) xerophytic type of P. australis, (c) psammophytic type of P. australis, (d) P. australis in abandoned
farmland, and (e) P. australis in paddy field drainage during the breeding season. Ac is the gross
photosynthetic rate when Rubisco activity is limiting; Aj is the gross photosynthetic rate when RuBP
regeneration is limiting (RuBP: ribulose bisphosphate; Ci: intercellular CO2 concentration).

4. Materials and Methods

4.1. Study Area

Niuxintaobao Wetland (45◦13′–45◦16′ N, 123◦13′–123◦21′ E) is located in the west of Songnen Plain
in Northeastern China (Figure 7). Administratively, it is within the provinces of Jilin and Heilongjiang
of China. It is formed by water accumulation in the interfluvial lowlands caused by the hydraulic
movement of Huolin and Taoer Rivers. It is moderately saline-alkaline, with an area of around 33 km2.
The main source of water supply is Taoer River [38]. P. australis saline-alkaline marshes are distributed
in the study region, and it is characterized by a typical semiarid and moderate monsoon climate with
distinctive seasons; the total annual sunlight is 5259 MJ/m2, the frost-free period is 137 d of the year [39],
and it is one of the typical distribution areas of reeds in inland China.

A field survey was carried out during May (growing season) and August (breeding season).
Reed habitats were classified according to the measured soil moisture as follows: hygrophilous (HP),
xerophytic (XP), psammophytic (SP), abandoned farmland (FP), or paddy field drainage (PP) [40]. Ten
stands (5 m × 5 m) in each habitat were selected and used as replicates for all habitats (Table 7 and
Figure 7).

Table 7. Characteristics of five P. australis habitats.

Habitats Density of Reed Water Level (cm) Soil Moisture (%) Area (km2)

HP 131 20–40 43.12 2.48
XP 179 0 36.25 6.35
SP 25 0 18.29 2.93
FP 54 0 29.33 3.23
PP 126 30–60 54.72 2.87
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4.2. Experimental Design

4.2.1. Biomass Collection

There are non-destructive sampling methods using remote sensing spectroscopy for measuring
plant biomass, and these methods are mainly used in the macro or large-scale research [41–46]. In order
to directly reflect the characteristics of biomass, combined with the sampling methods commonly used
by previous researchers [47–52], we chose the harvesting method to measure the biomass. That is,
the aboveground parts of P. australis in five habitats were mowed in a 0.5 m × 0.5 m square and
then dried in an oven at 75 ◦C for 48 h. The final weight was recorded when the weight showed no
further reductions.

4.2.2. Measurement of Light Response Curve

The third top leaves of 10 shoots from each stand were used as replicates. The relative humidity
was 45–50% and the temperature was around 25 ◦C. The light response curve was measured by
LI-6400XT (LICOR, Lincoln, NE, USA) at 9:00–11:00 on a bright, clear day in May and August. Full
light induction was carried out after installing the red and blue light source leaf chamber (6400-02B).
After successful induction, the stable photo values under 15 light intensity (PAR, µmol/m2/s) gradients
(2000, 1800, 1600, 1400, 1200, 1000, 800, 600, 400, 200, 150, 100, 50, 25, and 0) were selected and recorded
in the file. Photo values were recorded in order of light intensity, from high to low. The standard of
photo value recording is that the intake concentration of the instrument is stable without leakage; the
stomatal conductance (Cond), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of line C
are all positive, the value of Cond is between 0 and 1; and the change rate of photo value (4P) is less
than 2%.
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4.2.3. Measurement of CO2 Response Curve

The leaves were the same as those used in measuring the light response curve. After full light
induction, the CO2 mixer was used to control the CO2 concentration gradient of 2000, 1800, 1600, 1400,
1200, 1000, 800, 600, 400, 200, 150, 100, 50, 25, and 0. The saturated light intensity (2000 µmol/m2/s) was
chosen as the light intensity. However, the photo values were recorded in the following order: 400, 200,
150, 100, 50, 25, 0, 400, 600, 800, 100, 1200, 1400, 1600, 1800, and 2000. The standard of recording the
photo value is the same as that of the measurement of the light response curve.

4.3. Data Calculation and Analysis

4.3.1. Fitting Light Response Curve

The fitting of light response curve is based on the nonrectangular hyperbolic model
(Equation (1)) [53,54]:

Pn(I) =
aI + Pmax−

√
(aI + Pmax)2

− 4θaIPmax

2θ
−Rd (1)

where Pn is the photosynthetic rate, I is the light intensity, a is the apparent quantum efficiency (AQE),
Pmax is the maximum photosynthetic rate, Rd is the respiratory rate, and θ is the correction coefficient.
According to the formula, Ic is set as the light compensation point, i.e., the value of I when Pn(I) = 0, Im
is the light saturation point, i.e., the value of I when Pn’(I) = 0, and Pn’(I) is the first derivative of the
function Pn(I).

4.3.2. Fitting the CO2 Response Curve

A nonrectangular hyperbolic model was also used to fit the CO2 response curve (Equation (2)) [55],
but there are corresponding deformations when calculating Vcmax (represented by Ac in Equation (3))
and Jmax (represented by Aj in Equation (3)) [56]:

Pn(C) =
aC + Pa−

√
(aC + Pa)2

− 4θaCPa

2θ
−Rl (2)

where Pn is the photosynthetic rate, C is the CO2 concentration, a is the CO2 quantum efficiency
(ϕCO2), Pa is the photosynthetic capacity, Rl is the respiratory rate, and θ is the correction coefficient.
According to the formula, Cc is set as the CO2 compensation point, i.e., the value of C when Pn(C) = 0,
Cm is the CO2 saturation point, i.e., the value of C when Pn’(C) = 0, and Pn’(C) is the first derivative of
the function Pn(C).

Am =
Ac + Aj−

√
(Ac + Aj)2

− 4θAcAj

2θ
−Rl (3)

where Am is the hyperbolic minimum of Ac and Aj, Ac is the gross photosynthetic rate when Rubisco
activity is limiting, Aj is the gross photosynthetic rate when RuBP regeneration is limiting, Rl is the
respiratory rate, and θ is the correction coefficient.

4.3.3. Statistical Analysis

The least squares method was used to estimate the fit of the experimental data. The test of fitting
results could be divided into a goodness of fit test and a significance test for the regression equation.
The decision coefficient R2 was used to verify the goodness of fit, and the F test was used to verify
the significance of the regression equation. One-way ANOVA was used to test the differences in
photosynthetic characteristics of P. australis in different habitats. The confidence intervals of all the
analyses were 95%. Statistical software SPSS22.0 for Windows (IBM Corp., Armonk, NY, USA) was
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used for the above statistical analyses, and the experimental data and regression model were also
plotted and analyzed by R language software package “plantecophys”, written by Remko Duursma [57]
(v.3.4.2; R Foundation for Statistical Computing, Vienna, Australia).

5. Conclusions

This study was the first attempt to compare the response of P. australis to environmental changes
from the perspective of the photosynthetic process. The findings indicate that with the transition from
the growing season to the breeding season, P. australis showed decreased photosynthetic sensitivity,
the rate of dark respiration also showed a downward trend, and plants were more conducive to
the accumulation of biomass. P. australis in the drainage area of a paddy field benefited from
abundant nutrition; its biomass and photosynthetic capacity were the highest. Moreover, the maximum
photosynthetic rate and photosynthetic capacity of P. australis in all five habitats had the same trend of
variation, and the trend was consistent with that of Vcmax and Jmax. Overall, our results suggest that
study of Vcmax and Jmax is beneficial for exploring the photosynthetic adaptation strategies to harsh
environmental changes, such as water shortages in saline-alkaline wetlands, and in other areas facing
the same problems in the world. However, if combined with the chlorophyll fluorescence parameters,
i.e., the characteristics of the light reaction part of photosynthesis, the variation in photosynthetic
capacity can be explained more comprehensively. Hence, the specific photosynthetic process of
P. australis deserves further research.
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