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Abstract: The objective was to explore a fast, accurate, non-destructive, and less disturbance method
for predicting the aboveground biomass (AGB) of the typical steppe, by using plant height and
canopy diameter of the dominant species, Stipa bungeana, Artemisia capillaris, and Lespedeza davurica,
data were observed from 165 quadrats during the peak plant growing season, and the product of
plant height (PH) and canopy diameter (PC) were calculated for each species. AGB of population
were predicted for the same species and other species through using 2/3 of the measured data, and the
optimal predictive equation was linear in terms of determination coefficient. The other 1/3 of the data,
which was measured from no grazing paddocks or rotational grazing paddocks, was substituted into
the predictive equations for validation. Results showed that PC of one dominant species could be
used to predict AGB of the same species or other species well. The predicted and measured values
were significantly correlative, and most of the predictive accuracy was above 80%, and not affected
by managements of grassland, including rotational grazing or no grazing. A combination of 3 to
6 representative species was used to predict AGB of the community, and the predictive equations
with PC of six species as an independent variable were the most optimal because explaining 83.5%
variation of AGB. The predictive methods cost 1/15, 1/9, and 1/51 of time, labor, and capital as much
as the destructive sample method (quadrat sampling method), respectively, and thus improved the
efficiency of field study and protecting the fragile study areas, especially the long-term study sites
in grassland.
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1. Introduction

Grassland is the largest terrestrial ecosystem and one of the three dominant human food production
bases in the world [1,2]. As the carrier of elements and energy [3,4], biomass is one of the most important
attributes of life systems, and therefore is one of the most necessary measurements especially in the study
of life science [5,6]. To address the mechanism for maintaining the structure and function of grassland,
the biomass is always measured under various conditions of grazing, the exclusion of livestock, mowing,
fertilization, tourism, and so on [7,8]. Although measurement of aboveground biomass (AGB) under
different utilization provides a basis for the sustainable management of grasslands [9], a quantitative,
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accurate, simple, and fast measurement of grassland AGB is still a worldwide problem [10], and there
are no enough studies.

The destructive sample method of the vegetation was one of the most predominant for monitoring
AGB of global grasslands [11], because simply and easily obtaining accurate data, but required a lot
of labor, time, and materials [12,13]. In field studies, frequent sampling caused great interference to
the study results and disturbed the study sites, especially in small plots or long-term sites [14,15].
Therefore, empirical prediction modeling was a practical demand because not destroying sites and
disturbing the environment, saving time and labor, and simultaneously was easier to be integrated
with remote sensing and unmanned aerial vehicle (UAV) [16]. However, AGB of the population
was usually predicted by the growth indicators (GI) of the same species in previous studies [17–19],
seldomly by those of other species, and there were few studies to predict AGB of a community by
using GI of dominant species or major accompanying species. At present, for prediction of AGB,
most vegetation types were trees and shrubs [20–22] and herbaceous plants were rarely studied [23,24].
Moreover, the accuracy of predictive equations depended on the data of destructive samples [25–27].

Plant height (PH) and canopy diameter (CD) reflect the vertical and horizontal allocations
of AGB, and to a certain extent, the product of PH and CD (PC) represents the plant volume,
which illustrates the ability to compete the limited and common resource, i.e., intraspecific competition
or interspecific competition [28]. As AGB of population or community is the consequence of both
intraspecific and interspecific interactions [29], PH, CD, and PC could reasonably predict AGB
(Figure 1). Moreover, several major species always contribute to most of AGB in a community [30],
and consequently, their GI could predict the AGB of a community (Figure 1).

Figure 1. Conceptual sketch for the growth indicators (GI) of plant species predicting the aboveground
biomass (AGB) of populations and community.

Hereby, we conducted a field experiment with no grazing and grazing in a typical steppe of
eastern Gansu Loess Plateau. The objectives were to (1) use the PH, CD, and PC of dominant species to
predict AGB of the same species or other species, (2) apply the PC of several representative species
(dominant species and major accompanying species) to predict AGB of the community, (3) validate
the accuracy and stability of the predictive equations under different managements of grassland,
including rotational grazing and no grazing. The present study was expected to recommend a fast,
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nondestructive and accurate method of AGB measurement, which was based on GI of pant and saved
the cost of labor, time and funding, and moreover to a certain extent, identified the mechanism of AGB
formation and allocation.

2. Materials and Methods

2.1. Study Site

The study was conducted in Huanxian Grassland Agriculture Trial Station of Lanzhou University,
Huanxian County, Gansu Province, China (37.12◦N, 106.84◦E, 1700 m a.s.l). Mean annual temperature
was 8.4 ◦C and mean annual precipitation was 266.2 mm, over half of which took place from late June
through September. The grassland was classified as cool temperate-semiarid temperate typical steppe,
abbr. typical steppe [31]. Dominant species of rangeland are Lespedeza davurica (Laxm), Artemisia
capillaris (Thunb), and Stipa bungeana (Trin), and three major accompanying species are Heteropappus
altaicus (Willd) Potentilla bifurca (Linn) and Torularia humilis (Meyer) (Table 1).

Table 1. Proportion of aboveground biomass (AGB) of species in the community.

Order Species Proportion of AGB (%)

1 Lespedeza davurica 21.755
2 Artemisia capillaris 20.550
3 Stipa bungeana 14.587
4 Heteropappus altaicus 7.178
5 Potentilla bifurca 4.120
6 Potentilla multifida 3.476
7 Torularia humilis 2.914
8 Artemisia frigida 2.891
9 Oxytropis racemosa 2.781

10 Cleistogenes squarrosa 2.570
11 Astragalus scaberrimus 1.930
12 Ixeridium chinense 1.818
13 Astragalus efoliolatus 0.939
14 Allium polyrhizum 0.754
15 Hedysarum gmelinii 0.727
16 Agriophyllum squarrosum 0.685
17 Pennisetum centrasiaticum 0.498
18 Astragalus galactites 0.334
19 Dodartia orientalis 0.329
20 Cleistogenes songorica 0.314
21 Leymus secalinus 0.290
22 Polygala tenuifolia 0.225
23 Gueldenstaedtia verna 0.190
24 Melilotus officinalis 0.111
25 Calystegia hederacea 0.065
26 Convolvulus ammannii 0.033
27 Cynanchum thesioides 0.021
28 Euphorbia esula 0.020
29 Convolvulus arvensis 0.019

2.2. Plot Allocation and Data Collection

In May, 2001, we chose a flat area with similar vegetation type and set up twelve 50 × 100 m
paddocks, that consisted of nine rotational grazing paddocks, which had been rotationally grazed
by local Tan sheep from early June to early September each year, and three fenced paddocks (no
grazing) [32]. After the third cycle of grazing in August from 2001 to 2010, we randomly put four
1 × 1 m quadrats in each paddock and measured the PH and CD of five individual plants and AGB for
each species, respectively, and then mean values of each species were calculated for every quadrat.
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The plant samples were dried in 65 ◦C oven until constant weight. AGB of community was sum of
each species in a quadrat.

2.3. Model Establishment and Validation

2/3 of the measured data (76 quadrats) of no grazing paddocks was randomly selected out,
and AGB of the same species and other species were predicted with the PC of dominant species as the
independent variable. The optimal predictive equation was estimated by the determination coefficient
(R2) of regressive equations. 1/3 of the measured data in no grazing paddocks (38 quadrats) and
rotational grazing paddocks (51 quadrats) were substituted into the predictive equations for validation,
respectively. The accuracy and stability were validated according to the total relative error (RS, <10%)
(Formula 3), the average absolute value of relative error (RMA, <30%) (Formula 4) and the prediction
accuracy (PA, >70%) (Formula 5) [33]. A combination of 3 to 6 species, which were selected out from
three dominant species and three major accompanying species (Table 1), were used to predict AGB
of community.

AGB of population was predicted by formula 1 as following:

Y = aXi + b (1)

where Y was AGB of the same species and other species, X was PC of the species i, i was the dominant
species (i = 1, 2, 3), b is a constant.

AGB of community was predicated by formula 2 as following:

Y = a1X1 + a2X2 + · · ·+ aiXi + b (2)

where Y was AGB of the community, i was the dominant species or accompanying species (i = 1, 2, 3, 4,
5, 6), respectively.

The predictive equation can be validated by formula 3, 4 and 5 as following:

RS =
[(∑

yi −
∑

ŷi
)
/
∑

ŷi
]
× 100% (3)

RMA =
1
N
×

∑
i

∣∣∣yi − ŷi
∣∣∣∣∣∣ŷi

∣∣∣ × 100% (4)

PA =

1−
tα

√∑
i(yi − ŷi)

2

ŷi
√

NN− T

× 100% (5)

where N was number of samples, yi was the measured value of AGB, ŷi was the estimated value of
AGB, tα was confidence interval.

2.4. Statistical Analysis

SPSS 19.0 was used to regress, test, and validate the equations. Through a non-parametric test
(K-S test), the data was found to generally follow a normal distribution. The relationship between
PH, CD, or PC of three dominant species and AGB of the same species or other species were analyzed
by bivariate correlation (Pearson bilateral test) one by one, and if p < 0.05, GI of this species was
used to establish the predictive equation. Population and community AGB prediction models were
established by the the hybrid model (Generalized linearity). The difference of the slope between linear
equations was tested by analyzing (comparing mean values) to identify the variation rate of AGB in
the horizontal and vertical directions among different species.
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3. Results

3.1. Regression and Validation of Predictive Equations for Population AGB

3.1.1. AGB Predictive Equations and Accuracy Test for the Same Species

PC of three dominant species, A. capillaris, S. bungeana, and L. davurica, could predict AGB of
themselves, respectively (Table 2). Among the four kinds of equations, linear one had the largest R2 and
the highest fitting degree, which explained over half variation of AGB. AGB of dominant species rose
with an increase in PC. To a certain extent, the slope of linear equation reflects the spatial occupancy of
species, and the order of three dominant species was L. davurica > A. capillaris > S. bungeana (p = 0.000).

Table 2. Regressive equations of the product of plant height (PH) and canopy diameter (CD) (PC) of
dominant species predicting AGB of the same species.

Species Regressive Equation R2 p F Sample Size

L. davurica

Y = 0.0033x + 0.5354 0.6222 0.000 5.615 76
Y = 0.1079x0.4442 0.3712 0.000 5.615 76

Y = −4E − 06x2 + 0.0043x + 0.4849 0.4233 0.000 5.615 76
Y = 0.3422ln(x)− 0.6821 0.3106 0.000 5.615 76

A. capillaris

Y = 0.0024x + 0.9838 0.5594 0.000 1.529 76
Y = 0.3352x0.2768 0.3621 0.000 1.529 76

Y = −3E − 06x2 + 0.0035x + 0.9048 0.4442 0.000 1.529 76
Y = 0.335ln(x) − 0.3056 0.3507 0.000 1.529 76

S. bungeana
Y = 0.0022x + 0.6248 0.5766 0.000 7.213 76

Y = −6E − 06x2 + 0.0049x + 0.3881 0.4544 0.000 7.213 76
Y = 0.41ln(x) − 1.0215 0.5126 0.000 7.213 76

38 data of no grazing paddocks and 51 of rotational grazing paddocks were substituted into the
predictive equations, respectively (Table 3). PC of three dominant species predicted their own AGB at
the level of p = 0.000, all of RMA and RS were less than 30% and 10%, respectively, and PA was above
83% (Table 3). All of these fell within the allowable error range, which indicated that prediction of
PC to AGB of the same species was not affected by different managements of grassland, including no
grazing and rotational grazing, and the predictive equations had good accuracy and stability.

Table 3. Accuracy test of predictive equations under two managements of grassland.

Grassland
Management

Dominant
Species

Sample
Size

Standard
Error R2 p F PA

(%)
RMA
(%)

RS
(%)

No grazing
L. davurica 38 0.31 0.814 0.000 8.898 88.26 12.94 2.74
A. capillaris 38 0.15 0.894 0.000 3.957 94.14 6.21 −3.42
S. bungeana 38 0.31 0.907 0.000 4.503 93.47 7.35 2.36

Rotationalgrazing
L. davurica 51 0.22 0.780 0.000 2.950 84.25 12.81 4.1
A. capillaris 51 0.12 0.765 0.000 1.831 83.36 10.88 −9.17
S. bungeana 51 0.14 0.807 0.000 3.715 87.54 7.17 −4.35

3.1.2. Predictive Equations and Accuracy Test for AGB of Other Species

The optimal predictive equations were linear (Table 4). PH of L. davurica as independent variable
had the highest R2 (0.8847) for AGB of C. hederacea, and PC of A. capillaris had the lowest R2 (0.6629)
for AGB of G. verna. At least 66% variation of AGB can be explained for seven species by GI of
dominant species. PH of L. davurica, a dominant species of Legumes, could predict AGB of Legumes,
Liliaceae and Convolaceae. PH of S. bungeana, a dominant species of Gramineae, could predict AGB of
Gramineae. AGB of Legumes, Compositae and Gramineae could be predicted by PC of A. capillaris,
a dominant species of Compositae.



Plants 2020, 9, 1314 6 of 11

Table 4. Regression equations of GI of three dominant species predicting the AGB of other species.

Independent Variable
Predicted
Species

Regression Equation R2 p Sample
SizeIndex Dominant

Species

PH

S. bungeana O. racemosa Y = 0.1337x − 0.5734 0.6958 0.000 68
A. capillaris L. secalinus Y = 0.1038x − 0.3787 0.6762 0.000 72
L. davurica A. polyrhizum Y = 0.0933x − 0.3998 0.6609 0.000 51
L. davurica H. gmelinii Y = 0.0985x − 0.2896 0.8169 0.000 74
L. davurica C. hederacea Y = 0.0031x − 0.0146 0.8207 0.000 68
L. davurica O. racemosa Y = 0.0104x − 0.4065 0.7408 0.000 50

PC

A. capillaris L. secalinus Y = 0.0028x + 0.0075 0.8847 0.000 71
A. capillaris I. chinense Y = 0.0038x − 0.1941 0.7471 0.000 61
A. capillaris H. gmelinii Y = 0.0021x + 0.2491 0.7364 0.000 54
A. capillaris G. verna Y = 0.0017x − 0.0773 0.6629 0.000 59

GI data of both no grazing paddocks and grazing paddocks were substituted into predictive
equations of other species, and the validations of equations were significant at the level of p = 0.000
(Table 5). RMA changed from -32.16% to 29.81%, which were less than 30%, and all RS were less than
10%, which were within the allowable error range of a model. The predictive accuracy of thirteen
equations varied between 80% and 90%, while that of five equations varied from 70% to 80%, and that
of two equations was over 90%. It identified that predictive equations were not affected by no grazing
or rotational grazing, and had enough accuracy and adaptation.

Table 5. Accuracy test of predictive equations under two managements of grassland.

Index Dominant
Species Other Species Sample

Size
Standard
Error R2 p RMA% RS% PA%

No
grazing

PH

S. bungeana O. racemosa 38 0.63 0.886 0.000 12.92 −31.92 88.9
A. capillaris L. secalinus 38 0.34 0.742 0.000 21.82 9.72 79.5
L. davurica A. polyrhizum 38 0.43 0.824 0.000 23.44 −16.55 86.3
L. davurica H. gmelinii 38 0.33 0.799 0.000 18.03 5.57 83.6
L. davurica C. hederacea 38 0.16 0.460 0.000 5.93 −9.51 73.2
L. davurica O. racemosa 38 0.30 0.808 0.000 17.62 −14.92 81.9

PC

A. capillaris L. secalinus 38 0.27 0.913 0.000 15.00 8.58 85.7
A. capillaris I. chinense 38 0.16 0.472 0.000 17.23 4.87 73.1
A. capillaris H. gmelinii 38 0.34 0.807 0.000 16.83 −14.86 84.6
A. capillaris G. verna 38 0.19 0.859 0.000 18.49 −16.22 87.4

Rotational
grazing

PH

S. bungeana O. racemosa 51 0.24 0.842 0.000 13.98 2.35 84.6
A. capillaris L. secalinus 44 0.27 0.654 0.000 17.80 9.29 77.5
L. davurica A. polyrhizum 49 0.47 0.902 0.000 −32.16 4.73 93.1
L. davurica H. gmelinii 48 0.16 0.589 0.000 −5.64 −6.05 76.8
L. davurica C. hederacea 49 0.06 0.736 0.000 27.45 8.99 87.4
L. davurica O. racemosa 43 0.15 0.918 0.000 −20.57 6.82 93.6

PC

A. capillaris L. secalinus 50 0.12 0.874 0.000 10.26 11.53 89.4
A. capillaris I. chinense 51 0.22 0.637 0.000 13.66 3.08 82.0
A. capillaris H. gmelinii 48 0.18 0.817 0.000 25.36 −7.08 87.7
A. capillaris G. verna 50 0.25 0.684 0.000 29.81 −4.18 81.4

3.2. Predictive Equations and Validation for AGB of Community

3.2.1. Establishment of AGB Predictive Equations of Community

As number of species increased from three to six, R2 of the predictive equations gradually increased
from 0.662 to 0.835 (Table 6). Number of species increased by 1, and the R2 of equations averagely
increased by 0.0576 (p = 0.000). That GI of six species commonly predicted AGB of community could
be explained 83.5% variation.
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Table 6. Regressive equations of PC of representative species predicting AGB of community.

Regression Equation R2 F P

Y = −9.24 + 1.83PC1 + 1.291PC2 + 0.695PC3 0.662 41.621 0.000
Y = 21.293 + 0.093PC1 + 0.109PC2 + 0.062PC3 − 0.03PC4 0.697 29.152 0.000

Y = 8.939 + 0.068PC3 + 0.151PC2+0.086PC1 + 0.125PC4 − 0.149PC5 0.770 30.122 0.000
Y = 17.177 + 0.084PC1 + 0.151PC2 + 0.055PC3 + 0.136PC4 − 0.147PC5 − 0.135PC6 0.835 28.174 0.000

Note: 1 L. davurica, 2 A. capillaris, 3 S. bungeana, 4 H. altaicu, 5 P. bifurca, 6 P. multifida.

3.2.2. Validation of Predictive Equations for AGB of Community

The estimated values and the measured values were significantly correlated each other at the level
of p = 0.000 under two managements of grassland (Figure 2). Under no grazing, the estimated values
were closer to the measured values than that under rotational grazing. Because the estimated values
could be calibrated by regressive equations between themselves and the measured values under both
conditions, the predictive equations were not affected by different grassland managements.

Figure 2. Validation of predictive equations for AGB of community under no grazing (left) and
rotational grazing (right).

4. Discussion

4.1. PC of Dominant Species Predicting AGB of the Same Species

Despite that GI of all species in alpine meadow were measured to establish the predictive model
on the Qinghai-Tibet Plateau [34], the present study only measured GI of dominant species and the
accuracy and stability of the prediction equation are not affected or even higher. Compared with that
AGB of grasslands was predicted by canopy surface height [35], the present method was not affected
by different managements of grassland, and had higher accuracy and stability [36].

4.2. GI of Dominant Species Predicting AGB of Other Species

PC of dominant species could predict AGB of other species well, and in this respect, the interspecific
interactions between dominant species and other species were positive and the growth of different
species were mutual benefit (Table 5), which was different from that the phenomenon of intraspecific
facilitation that mainly occurred in greenhouse [37]. Maybe because water was one of the main limiting
factors in semiarid regions, plant growth was more sensitive to precipitation and thereby AGB of
different species synchronously increased or decreased with change of precipitation. The predictive
equations had high accuracy and stability under different managements of grassland because the
environmental change was possibly similar to all species and respondence of dominant species were
the most sensitive [38]. Therefore, dominant species was reasonable to predict AGB of other species.
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4.3. GI of Major Species Predicting AGB of Community

Dominant species contributed most of the biomass to community, and had a greater impact on the
ecological process of community than other species [39,40]. AGB of the six representative species (three
dominant species and three major accompanying species) accounted for 72% of whole community
in present study (Table 1), and therefore, their PC were reasonable to predict AGB of community.
Moreover, while using GI of three to five dominant species and major accompanying species to predict
community AGB, the accuracy and PA of predictive equations were lower than prediction of six
representative species (Table 6). Normally, toxic species were dominant in the degraded grassland,
which seldomly were ingested by grazing livestock, and overgrazing altered the environmental factors
of grassland far severely than proper grazing [41]. Thereby, predictive equations might need to be
modified by the degradation degree of grassland especially under overgrazing, which had took place
in about 70% of global grassland in varying degrees [42].

4.4. Advantages and Problems of AGB Predictions

Based on a study from 2001 to 2020, the cost of time and labor, and capital input was 1/15, 1/9,
and 1/51 of the quadrat sampling method in our study site, respectively (Table 7). The larger the
sample size, the more significant the advantage was. Predictive equations were benefit to field study
especially in small plots, such as nitrogen addition, warming, precipitation reduction, increased rain or
in long-term study. Moreover, remote sensing and UAV technology had been developed to measure
plant GI [43–45], and thereby could be potentially integrated with the predictive modeling to reduce
labor intensity and improve monitoring efficiency. However, due to the difference of precipitation,
air temperature, soil, and social environment in different sites [46–48], AGB predictive equations of
typical steppe should be calibrated before being applied to other types of grassland.

Table 7. Comparison between quadrat method and Modeling method

Item Quadrat Method Modeling

Duration (day) 15 1
Labor (capita) 9 1

Process GI measurement, cutting, carrying, drying, weighting, calculation GI measurement, calculation
Capital input ($) 4776 94

Note: The capital input was calculated on 165 1 × 1 m and the labor cost was daily $22 per capita

5. Conclusions

GI of dominant species was suitable to predict the AGB of the same species and other species.
The predictive equation based on GI of three dominant species and three major accompanying species
was the optimal for AGB of community in a typical steppe, and the predictive error could also
be calibrated by the relationship equations between the observed value and the estimated value.
Predictive method of AGB was of great benefit to field study because saving labor and improve
efficiency. In the future, accuracy and stability of our predictive equations need to be validated under
more managements of grassland and more types of grassland, and following concept of the present
study, plant frequency, density, tiller number, growth point density of representative species should be
utilized to predict AGB of population and community as well.
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