
plants

Article

Intraspecific Variation in Nectar Chemistry and Its
Implications for Insect Visitors: The Case of the
Medicinal Plant, Polemonium caeruleum L.

Justyna Ryniewicz 1,*, Mateusz Skłodowski 1, Magdalena Chmur 2, Andrzej Bajguz 2 ,
Katarzyna Roguz 1 , Agata Roguz 3 and Marcin Zych 1,*

1 Botanic Garden, Faculty of Biology, University of Warsaw, 00-478 Warsaw, Poland;
m.sklodowski@biol.uw.edu.pl (M.S.); k.roguz@biol.uw.edu.pl (K.R.)

2 Department of Biology and Ecology of Plants, Faculty of Biology, University of Bialystok,
15-245 Bialystok, Poland; m.chmur@uwb.edu.pl (M.C.); abajguz@uwb.edu.pl (A.B.)

3 Feature Forest, Trzy Lipy 3, 80-172 Gdańsk, Poland; agata_roguz@o2.pl
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Abstract: Floral nectar, being a primary reward for insect visitors, is a key factor in shaping
plant–pollinator interactions. However, little is known about the variability in nectar traits, which
could potentially affect pollinators and the reproduction of the species. We investigated intraspecific
variation in nectar traits in 14 populations of a Red-listed plant, Polemonium caeruleum. Populations
varied in terms of the proportion of self-compatible and self-incompatible individuals, and insect
communities visiting flowers. Using HPLC, we determined the nectar sugar and amino acid (AA)
composition and concentration. We also recorded some basic habitat parameters, which could
influence nectar chemistry. In seven selected populations, we investigated the taxonomic composition
of the insects visiting flowers. Our observations revealed significant intraspecific variability in nectar
chemistry in P. caeruleum. Nectar production was male-biased, with male-phase flowers secreting
sucrose- and AA-rich nectar. An analysis revealed that variability in P. caeruleum nectar may be
slightly shaped by environmental factors. The studied nectar characters, especially sugars, had little
effect on insects visiting flowers. We argue that variation in nectar traits in this generalist plant is a
matter of random genetic drift or “adaptive wandering” rather than directional specialization and
adaptation in the most effective and abundant group of pollinators.

Keywords: nectar composition; pollination; reproductive ecology; variation in plant traits;
generalist species

1. Introduction

Nectar, being primarily a sugar solution, has been perceived as the most crucial floral food reward
for pollinators [1]. However, recent studies have demonstrated that because of the presence of many
non-sugar constituents, such as amino acids (AAs), phenolic compounds, or alkaloids, floral nectar
is much more than just food. Its functions extend beyond its relationships with pollinators [2–6].
Therefore, it should be regarded as a complicated multifunctional interface between plants, and
their mutualists and antagonists. Since nectar production is under pollinator-mediated selection,
parameters such as composition, volume, and sugar concentration may be highly variable between
plant species [1,7,8]. Earlier studies of nectar diversity have postulated that some nectar features,
such as sugar and AA profiles, are species-invariant [7,9–11], and some new analyses support a
rather conservative proportion of nectar components, that is sugars, between populations of the same
species (e.g., [12]). However, this notion seems to be the result of technical difficulties associated with
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early analytical methods [3,13] because many recent studies have reported variation in nectar traits
between populations, within populations, within one inflorescence, or even among sexual phases of
the same flower [8,12–20]. Such variations are mainly a consequence of environmental factors, such
as soil properties, air temperature, and sun exposure [1,2,8,13,21], and, according to the latest study,
microorganisms inhabiting nectar [22,23]. Importantly, the landscape-scale variability in floral rewards
may be correlated with habitat quality and may have a significant effect on the reproductive success
of a population [13,17,18,20]. Unfortunately, this variation in nectar constituents, especially in nectar
AAs, is still gravely understudied and poorly understood.

In our study, we chose Polemonium caeruleum L. (Polemoniaceae), which produces copious,
sucrose-dominant nectar that is rich in proline [24]. However, this information is based on the sampling
of a single population, and recently published data [25], and our observations suggest substantial
geographic variations in the breeding system and pollinator assemblages (dominance of bees vs. flies)
for this plant species. As recently reported, such differences also include spatial variation in the
bacterial microbiome in the nectar of P. caeruleum [26]. In the context of the aforementioned problems,
we expected differentiation during the study of nectar traits among 14 populations of P. caeruleum. We
also determined whether, and to what extent, nectar features are influenced by habitat, and whether
the observed variation in pollinator assemblages is associated with differences in nectar chemistry
among P. caeruleum populations, because many pollinators exhibit specific preferences for some of
the constituents [6,8,27]. Improving our knowledge concerning the biology, ecology, and intraspecific
diversity of this species increases the potential for more efficient protection.

2. Results

2.1. Sugars

The mean nectar sugar concentration for the investigated populations of P. caeruleum was
409.9 ± 344.8 µg/µL (range was from 145.72 to 1102.7 µg/µL per population), with significant differences
between the studied populations (Chi-square = 22.87, df = 13, p = 0.04) (Table 1). The main sugar
components detected in all study samples were sucrose, fructose, and glucose (with mean proportions,
respectively, of 42.1 ± 22.7%, 32.8 ± 14.4%, and 21.0 ± 7.1%). Maltose and lactose were also present
in most of the analyzed samples (characterized by mean proportions, respectively, of 2.5 ± 3.2 and
1.6 ± 2.1%). The proportions of detected sugars were highly variable among the studied populations,
with significant differences in sugar composition between populations for maltose (Chi-square = 24.71,
df = 13, p = 0.03). Considering the geographical distribution of populations, sucrose predominated in
northeastern Poland, whereas fructose predominated in the southern populations. However, these
differences were not significant (Figure 1). There were also no differences in sugar concentration
between the three designated geographical regions representing groups of studied populations
(Chi-square = 10.75, df = 2, p > 0.05).
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Table 1. Means of the total sugar and amino acid (AA) concentration, sucrose/hexose ratio (r), sugars, and AAs selected for the model, and essential AAs (EAAs) of
Polemonium caeruleum nectar for 14 studied populations. Pop (population); GLN (glutamine), GLU (glutamic acid), SER (serine), ILE (isoleucine), PHE (phenylalanine),
NVA (norvaline). Within a column, two values with a different letter are significantly different at p < 0.05; n = 2 for each population (except BOB, where n = 3).

Pop Total Sugar
[µg/µL]

Total AAs
[pmol/µL]

r = S/(F
+ G)

Fructose
[%]

Glucose
[%]

Sucrose
[%]

Maltose
[%]

Lactose
[%]

GLN
[%]

GLU
[%]

SER
[%] ILE [%] PHE

[%]
NVA
[%] % of EAAs

BIA 200.13
b 973.1 0.28 50.63 20.44 19.80 6.11

ab 3.02 10.26
defg

21.45
ab 5.17 2.01 4.82

bc 0.39 24.12
ab

BOB 157.94
b 252.6 0.20 49.14 26.60 15.12 6.61

a 2.53 5.32
g

16.95
bcd 11.37 2.40 3.20

cdef 0.20 16.36
bcde

CZL 145.72
b 110.2 0.74 36.50 18.94 41.05 1.94

ab 1.57 11.44
cdefg

10.73
de 8.51 2.43 6.93

ab 0.00 24.36
ab

DRO 479.81
ab 461.5 1.09 27.93 19.04 51.32 0.90

ab 0.81 17.25
abcde

12.64
cde 11.64 1.59 1.76

fg 0.33 10.25
de

KCZ 276.20
b 474.8 1.55 19.30 19.93 60.77 0.00

b 0.00 11.21
cdefg

11.74
cde 6.91 2.29 4.14

bcde 0.00 22.34
bc

KLE 201.58
b 216.3 1.86 20.25 14.77 64.98 0.00

b 0.00 24.02
abc

14.21
cde 8.52 1.86 2.43

def 1.05 16.42
bcde

KOP 266.10
b 117.7 0.66 33.92 22.22 37.23 3.46

ab 3.17 6.42
efg

18.61
abc 9.28 1.39 4.10

bcde 0.00 20.20
bcd

MAL 149.26
b 132.2 0.07 53.58 28.99 5.51 7.39

a 4.53 5.82
fg

14.37
cde 8.48 2.44 4.73

bcd 0.00 26.88
ab

ORZ 1060.51
a 328.8 1.03 26.32 23.00 50.68 0.00

b 0.00 30.45
ab

13.81
cde 5.32 2.31 4.01

bcde 1.19 16.42
bcde

ROS 522.12
ab 3416.3 0.63 35.73 20.02 34.87 4.50

ab 4.88 29.17
ab

23.34
a 10.79 0.47 0.81

g 0.17 8.38
e

SIE 527.58
ab 793.4 1.02 27.81 20.51 49.36 0.79

ab 1.53 15.88
bcdef

7.87
e 11.83 3.23 2.92

cdef 0.00 11.89
cde

SPN 290.64
b 133.2 0.72 30.95 26.55 41.33 0.75

ab 0.42 5.33
fg

8.17
e 9.19 2.95 3.62

cde 0.00 22.60
bc

WPN 484.96
ab 200.5 2.24 17.51 13.32 69.17 0.00

b 0.00 19.76
abcd

15.83
bcd 6.55 1.35 9.07

a 0.00 39.46
a

ZED 1102.71
a 823.1 1.61 21.97 16.19 61.43 0.38

ab 0.03 33.49
a

12.37
cde 10.60 1.76 2.43

efg 0.00 15.28
bcde

mean 409.9 ± 344.8 590.3 ± 1006 1.1 ±
0.9

32.8 ±
14.4

21.0 ±
7.1

42.1 ±
22.7

2.5 ±
3.2

1.6 ±
2.1

15.8 ±
10.4

14.5 ±
4.8

9.0 ±
3.1

2.0 ±
0.7

3.9 ±
2.2

0.2 ±
0.4 19.5 ± 8.5

p 0.043 ns 0.040 ns ns 0.023 0.025 ns 0.000 0.000 ns ns 0.000 ns 0.046
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Similar values of total sugar content (µg/µL) in nectar samples were observed during male and 
female sexual phases, however there were significant differences in individual sugar proportions 
between the two phases (Table 2). The percentage of glucose and sucrose, as well as the 
sucrose/hexose ratio, varied significantly (p-values were, respectively, 0.02, 0.04, and 0.03). In the 
male phase, during the early flowering stage, sucrose was dominant (with a mean proportion of 50.34 
± 22.3%), whereas in the later female phase, hexoses represented a higher percentage (with a mean 
proportion of 61.93 ± 18.05%). Only one population (MAL) was characterized by hexose dominance, 
wherein the above gender-biased proportions were reversed. 

 

Figure 1. Mean percentage of nectar sugars in populations of Polemonium caeruleum from three regions 
in Poland. The sample number for each region was, respectively, n = 18 for the northeastern (NE) 
populations, n = 7 for the northern (N) populations, and n = 4 for the southern (S) populations. The 
line in the middle of the box represents the median and the circle represents the mean. Boxes extend 
from the 5th to 95th percentiles. There were no significant differences in sugar percentages between 
regions (p > 0.05). 

Table 2. Nectar characteristics during male (M) and female (F) sexual phases of Polemonium caeruleum 
flowers. Total sugar and amino acid (AA) concentration, r (sucrose/hexose ratio), percentage of three 
main sugars (fructose, glucose, and sucrose), and essential amino acids (EAAs: phenylalanine, 
leucine, arginine, threonine, lysine, isoleucine, valine, methionine, histidine, and tryptophan). Data 
represent mean values for nectar obtained from flowers in male and female sexual phases, from 14 
populations ± SD, n = 15 for the male phase, n = 14 for the female phase. Significant differences 
between M and F sexual phases are marked with * at p < 0.05. 

Sex 
Phase 

Total Sugar 
[µg/µL] 

Total AAs 
[pmol/µL] 

r = S/(F + 
G) 

Fructose 
[%] 

Glucose 
[%] 

Sucrose 
[%] 

EAAs 
[%] 

M 400.9 ± 403.4 762.6 ± 1325 1.10 ± 0.5 * 
28.23 ± 

14.2 
17.96 ± 7.7 

* 
50.34 ± 
22.3 * 

17.70 
± 7.2 

F 419.7 ± 283.8 405.7 ± 467.4 0.73 ± 0.4 * 37.8 ± 13.4 
24.16 ± 4.7 

* 
33.23 ± 
20.2 * 

21.48 
± 9.5 

2.2. Amino Acids 

We detected 29 AAs in nectar samples of P. caeruleum (ranging from 19 to 27 AAs per 
population). The mean AA concentration was 590.3 ± 1006 pmol/µL (ranging from 110.2 to 3416.3 
pmol/µL; Supplementary Materials, Table S1). We did not detect significant differences in total AA 
concentration between populations (Chi-square = 20.50, df = 13, p > 0.05; Table 1). Among the detected 
AAs, all 20 protein AAs (PAAs) and nine non-protein AAs (NPAA) were present, with a mean 

Figure 1. Mean percentage of nectar sugars in populations of Polemonium caeruleum from three regions
in Poland. The sample number for each region was, respectively, n = 18 for the northeastern (NE)
populations, n = 7 for the northern (N) populations, and n = 4 for the southern (S) populations. The
line in the middle of the box represents the median and the circle represents the mean. Boxes extend
from the 5th to 95th percentiles. There were no significant differences in sugar percentages between
regions (p > 0.05).

Similar values of total sugar content (µg/µL) in nectar samples were observed during male and
female sexual phases, however there were significant differences in individual sugar proportions
between the two phases (Table 2). The percentage of glucose and sucrose, as well as the sucrose/hexose
ratio, varied significantly (p-values were, respectively, 0.02, 0.04, and 0.03). In the male phase, during the
early flowering stage, sucrose was dominant (with a mean proportion of 50.34 ± 22.3%), whereas in the
later female phase, hexoses represented a higher percentage (with a mean proportion of 61.93 ± 18.05%).
Only one population (MAL) was characterized by hexose dominance, wherein the above gender-biased
proportions were reversed.

Table 2. Nectar characteristics during male (M) and female (F) sexual phases of Polemonium caeruleum
flowers. Total sugar and amino acid (AA) concentration, r (sucrose/hexose ratio), percentage of three
main sugars (fructose, glucose, and sucrose), and essential amino acids (EAAs: phenylalanine, leucine,
arginine, threonine, lysine, isoleucine, valine, methionine, histidine, and tryptophan). Data represent
mean values for nectar obtained from flowers in male and female sexual phases, from 14 populations ±
SD, n = 15 for the male phase, n = 14 for the female phase. Significant differences between M and F
sexual phases are marked with * at p < 0.05.

Sex
Phase

Total Sugar
[µg/µL]

Total AAs
[pmol/µL]

r = S/(F +
G) Fructose [%] Glucose [%] Sucrose [%] EAAs [%]

M 400.9 ± 403.4 762.6 ± 1325 1.10 ± 0.5 * 28.23 ± 14.2 17.96 ± 7.7 * 50.34 ± 22.3 * 17.70 ± 7.2

F 419.7 ± 283.8 405.7 ± 467.4 0.73 ± 0.4 * 37.8 ± 13.4 24.16 ± 4.7 * 33.23 ± 20.2 * 21.48 ± 9.5

2.2. Amino Acids

We detected 29 AAs in nectar samples of P. caeruleum (ranging from 19 to 27 AAs per population).
The mean AA concentration was 590.3 ± 1006 pmol/µL (ranging from 110.2 to 3416.3 pmol/µL;
Supplementary Materials, Table S1). We did not detect significant differences in total AA concentration
between populations (Chi-square = 20.50, df = 13, p > 0.05; Table 1). Among the detected AAs, all
20 protein AAs (PAAs) and nine non-protein AAs (NPAA) were present, with a mean proportion of
48:11. Among PAAs, the highest percentage was noted for glutamine, (15.8 ± 10.4), glutamic acid
(14.5 ± 4.8), and serine (9.0 ± 3.1). Among NPAAs, the highest percentage was that of β-Alanine
(BALA; 8.1 ± 3.2%), β-aminobutyric acid (BABA; 4.7 ± 4.5%), and ornithine (3.1 ± 2.6). We determined
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the proportions of essential amino acids (EAAs) for honeybees (as well as other pollinators), which
were phenylalanine, leucine, arginine, threonine, lysine, isoleucine, valine, methionine, histidine, and
tryptophan [28,29]. All 10 EAAs were found in nectar samples, and phenylalanine had the highest
share of 3.9 ± 2.2% among them. The proportions of EAAs varied significantly between populations
(from 8.4% to 39.5%; F = 5.89, df = 13, p = 0.0007), with a mean value for all populations of 19.5 ± 8.5%
(Table 1). γ-aminobutyric acid (GABA) was the rarest AA, being present in only one population.
Proline, the AA characterized by the highest share in a previous study [24], was found in six populations
at a rather low proportion (mean of 1.7 ± 4.0%). Total AA concentration was almost two times higher
in the male than the female flowering phase (although this was not significant; p > 0.05; Table 2).

For the linear mixed models (LMM), we used the percentage of six AAs. Glutamine, glutamic
acid, and serine were selected because they had the highest proportion in nectar samples (means of
15.8 ± 10.4%, 14.5 ± 4.8%, and 9.0 ± 3.1%, respectively). Isoleucine, phenylalanine, and norvaline were
selected, using the RFE method, as having the strongest positive influence on the frequency of visits by
insects. For the AAs used in the LMM, there were significant differences between populations in three
out of six AAs: glutamine (F = 7.84, df = 13, p < 0.001), glutamic acid (F = 6.52, df = 13, p < 0.001), and
phenylalanine (F = 9.35, df = 13, p < 0.001).

When the geographic affinity of populations was studied (Figure 2), we found that the northeastern
populations were characterized by a higher percentage of glutamine than the northern and southern
populations (F = 9.15, df = 2, p = 0.001), whereas the proportions of other analyzed AAs were not
significantly different (p > 0.05). There were also no differences in AA concentrations between the
three regions (Chi-square = 9.24, df = 2, p > 0.05). Additionally, the SPN population, which in previous
years (unpublished data) was distinguished from other populations by the predominance of flies as
the main flower visitors, was characterized by the highest percentage of BABA, BALA, tyrosine, and
valine. NMDS analysis revealed that the proportions of detected sugars and AAs group by region are
significantly different (Figure 3).
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Figure 2. The mean percentage of AAs selected for the linear mixed models and proline (vital AA for
pollinators) in populations of Polemonium caeruleum from three regions in Poland. GLN (glutamine),
GLU (glutamic acid), SER (serine); ILE (isoleucine), PHE (phenylalanine), NVA (norvaline), and PRO
(proline). The sample number for each region was n = 18 for northeastern (NE) populations, n = 7 for
northern (n) populations, and n = 4 for southern (S) populations. The line in the middle of the box
represents the median and the circle represents the mean. Boxes extend from the 5th to 95th percentiles.
Means of AAs that varied significantly between regions are marked with different letters (p < 0.05).
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Figure 3. Non-metric multidimensional scaling (NMDS) results based on Bray–Curtis distances of
nectar component proportions (sugars and AAs) of Polemonium caeruleum during the male and female
flowering phase from 14 populations. Colors indicate groupings by regions, which are significantly
different: northern (N)—red, northeastern (NE)—blue, and southern (S)—green (F = 2.34, df = 2,
p = 0.04). Each sample is displayed as a square (for the male flowering phase) and a circle (for the
female flowering phase).

2.3. Biomass and Soil Analysis

We found significant differences between populations in total N (F = 4.83, df = 13, p = 0.003)
content in biomass, and Fe (F = 25.57, df = 13, p < 0.001) and Ca (F = 27.70, df = 13, p < 0.001) in soil
(see Supplementary Materials: Table S2).

The LMMs showed that the basic habitat parameters measured influenced nectar traits for only
three out of 13 analyzed nectar characters (Table 3). The total AA content was positively influenced by
Fe in the soil. There was a negative relationship between serine and Ca in the soil. Moreover, total K
content in biomass negatively affected the percentage of norvaline and serine in nectar, whereas total
P content in biomass positively influenced the percentage of norvaline and negatively affected the
percentage of serine in the nectar.
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Table 3. Results of the linear mixed models performed to examine the effect of biomass and soil nutrients on nectar characteristics of Polemonium caeruleum; TC
(total carbon), TN (total nitrogen), TK (total potassium), TP (total phosphorus); estimates, standard error. * 0.05 ≤ p < 0.1; ** 0.001 ≤ p < 0.05. AA (amino acids),
GLN (glutamine), GLU (glutamic acid), SER (serine), ILE (isoleucine), PHE (phenylalanine), and NVA (norvaline). The size of the population was included as a
random factor.

TC Biomass TN Biomass TK Biomass TP Biomass Ca Soil Fe Soil

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error

Total sugar [ug/uL] 57.406 50.168 −90.250 122.435 94.622 113.410 1872.687 991.600 −53.469 153.980 −12.357 49.731
Fructose [%] −0.555 2.693 0.781 5.976 4.048 6.006 16.026 48.742 3.136 7.387 −1.367 2.258
Glucose [%] −0.054 1.477 0.171 2.785 0.281 3.190 −7.378 22.373 3.744 3.344 −1.240 0.937
Sucrose [%] 0.274 4.007 −2.075 9.169 −7.747 8.977 −12.987 74.689 −7.099 11.394 2.320 3.542
Maltose [%] −0.00001 0.005 0.009 0.012 0.012 0.012 0.020 0.100 0.002 0.015 0.001 0.005
Lactose [%] −0.003 0.004 0.008 0.008 0.006 0.009 −0.061 0.068 −0.005 0.010 0.003 0.003

Total AAs [pmol/uL] −137.005 183.533 −357.063 366.971 −380.308 401.647 −2436.125 2978.642 −684.877 445.451 289.963 * 128.893
GLN [%] 0.006 0.014 0.017 0.034 −0.037 0.031 0.188 0.274 −0.055 0.043 0.023 0.014
GLU [%] −0.0003 0.006 −0.004 0.016 0.005 0.015 −0.111 0.131 −0.037 0.021 0.006 0.007
SER [%] −0.004 0.006 0.006 0.011 −0.026 * 0.013 −0.200 * 0.089 −0.028 * 0.013 0.007 0.004
PHE [%] −0.004 0.003 0.003 0.007 −0.001 0.007 −0.071 0.060 −0.005 0.009 −0.002 0.003
ILE [%] 0.0003 0.001 −0.001 0.003 −0.006 0.003 0.003 0.025 0.003 0.004 −0.002 0.001

NVA [%] −0.0003 0.0005 −0.001 0.001 −0.003 ** 0.001 0.022 * 0.010 −0.0003 0.002 −0.00004 0.001
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2.4. Taxonomic Composition and the Frequency of Insect Visits in the Selected Populations

We recorded 1835 insect visits to P. caeruleum flowers in seven studied populations, and the overall
visit frequency was 6.5 ± 6.2 visits per census (15 min) per inflorescence. We observed significant
differences in the frequency of visits between populations (Chi-square = 27.64, df = 6, p < 0.001;
Figure 4A), with the highest frequency in ORZ and the lowest in ZED. Flowers of P. caeruleum were most
often visited by insects represented by four taxonomic orders: Hymenoptera, Diptera, Lepidoptera,
and Coleoptera. However, representatives of the Hymenoptera order were the most abundant visitors
in all but one study population, and all included honeybees (Apis mellifera, 60.2% of visits), bumblebees
(17.3%), and solitary bees (9.7%) (Figure 4B). Some of the populations (BIA, ORZ, and ZED) were
strongly dominated by honeybee visits. Dipterans (Syrphidae and other flies) were the second most
abundant taxon after the order Hymenoptera and were responsible for 4.2% of all visits. The SPN
population was distinguished by the domination of insects by the order Diptera, whereas bees were
responsible for only 5.7% of all visits (Figure 4B).
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Means with various letters are different at p < 0.05. (B) Taxonomic diversity of insects visiting flowers.
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The noted frequency of visits was influenced by the presence of AAs in p. caeruleum nectar, with
different AAs influencing the recorded groups of visitors. The frequency of Syphidae and Lepidoptera
was negatively correlated with total AA concentration. We also detected several negative correlations
between a specific AA and pollinator group; for example, there was a negative correlation between
visits by Bombus spp. and tryptophan presence. According to our data, the highest number of
correlations with AAs was with Lepidoptera (Table 4).
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Table 4. Correlations between nectar traits and habitat parameters with variables that were not included
in the LMM models. TRP (tryptophan), LYS (lysine), NVA (norvaline), GLY (glycine), ALA (alanine),
BABA (β-alanine), TYR (tyrosine), AABA (α-aminobutyric acid), VAL (valine). Table contains only
significant results (p < 0.05).

Trait 1 Trait 2 r

Frequency of visits by Bombus spp.
TRP [%] −0.80

LYS [%] −0.79

Frequency of visits by A. mellifera NVA [%] 0.81

Frequency of visits by Syrphidae

glucose [%] 0.85

Total AAs [pmol/uL] −0.78

GLY [%] 0.85

Frequency of visits by Lepidoptera

glucose [%] 0.93

Total AAs [pmol/uL] −0.93

ALA [%] 0.92

BABA [%] 0.82

TYR [%] 0.85

AABA [%] −0.86

VAL [%] 0.85

3. Discussion

3.1. Nectar Sugars

The mean recorded sugar concentration in P. caeruleum nectar was 398.8 ± 345.9 µg/µL and it
varied significantly between populations. Similarly to other plant species, the nectar of P. caeruleum is
composed mainly of sucrose, fructose, and glucose [1,6,10,21]. Sucrose was the dominant carbohydrate
in the majority of the analyzed populations, followed by fructose and glucose. This agrees with
earlier results for P. caeruleum [24], as well as most of the other representatives of Polemoniaceae [30].
However, this situation was not universal because, in some of the studied populations (MAL, BIA),
the sucrose content was relatively low (from 5.5% to 20%). According to the classification of Baker
and Baker [7], the floral nectar of P. caeruleum in half of the study population was sucrose-dominant,
whereas the others were sucrose-rich, hexose-rich, and one was even hexose-dominant. Maltose and
lactose, which were not detected in earlier studies on P. caeruleum nectar [24], were also present in 10 of
the 14 study populations, reaching quite high concentrations in some populations. Despite differences
among the examined sugar traits between populations, we did not observe any trends for the three
designated geographical regions.

Considerable inter-population variability in nectar sugar concentration and composition has been
already reported for other plant species [13,14,31,32]; however, the knowledge concerning factors
shaping the variability of nectar sugars requires supplementation. Sugar content and composition can
be affected by nutrients in the habitat [33,34]; however, this study did not confirm such an influence, at
least where nectar sugars are concerned.

The sugar profile of P. caeruleum nectar may be highly attractive to a diversity of groups of potential
pollinators. The level of sugar concentration present in the nectar of P. caeruleum is close to the average
value characteristic for plants visited by bees and flies [1,35]. Moreover, bumblebees and honeybees,
the main visitors of P. caeruleum flowers, as well as other hymenopterans, butterflies, and moths, prefer
sucrose over fructose and glucose [28,29,35–37]. On the other hand, nectar in populations characterized
by higher proportions of hexoses over sucrose may be attractive to less specialized pollinator guilds, for
example, flies [21]. The presence of two disaccharides, maltose and lactose, which were not previously
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detected in P. caeruleum nectar, is quite a surprising result, because maltose and lactose are regarded
as less attractive and less nutritionally useful for pollinators [38]. To our knowledge, information
regarding their role is lacking, and these sugars are often overlooked in analyses.

The relationship between flower visitor assemblages and the nectar sugar profile has been
confirmed by other authors [31,39,40]; however, we did not find strong connections between nectar
sugar composition and concentration and the frequency of visits by a specific group of insects. Only the
percentage share of glucose was positively correlated with the two affected insect groups: butterflies
and hoverflies, with the latter being known for their preference for this sugar [21]. Little evidence of a
relationship between nectar sugar characteristics and the frequency of insect visits (as well as that of
a particular insect group) appeared to confirm the generalist pollination strategy of the investigated
species. Moreover, because P. caeruleum is characterized by a rather small number of ovules (mean
29 [24]), even less specialized pollinators (such as flies) may provide a sufficient amount of pollen for
adequate pollination. In this case, plant specialization for a particular taxonomic group of pollinators
may be an unprofitable strategy (see [12]). Furthermore, high fluctuations in the number of individuals
in P. caeruleum populations can lead to random variation, which may result in a high diversity of
nectar characteristics. The high fruiting level and sporadic pollen limitation in P. caeruleum populations
(Ryniewicz et al., unpublished data) may support this assumption.

Our results revealed significant differences in the proportion of sucrose and hexoses between floral
sexual phases of P. caeruleum; however, our results were the opposite of that previously reported [24].
In the female phase, the participation of sucrose significantly decreased, whereas participation of
both hexoses increased in comparison to the male phase. This could be caused by flower aging and
consequent hydrolysis of sucrose into hexoses [19,41–43]. Gender-biased nectar composition could
also be maintained by sexual selection or inbreeding avoidance, which is a common feature, especially
for plants with dichogamous or heterostylous flowers [44]. A male-biased sucrose share may be an
adaptation to enhance pollinator frequency to flowers because male fitness is most strongly limited by
access to mates [45].

3.2. Amino Acids

Our analysis revealed that the mean content of AAs in nectar samples was 590.3 ± 1006 pmol/µL
and it did not differ among populations. However, despite the lack of significant differences in AA
concentration, we found significant variation in nectar AA composition between study populations
(Table 1, Supplementary Materials Table S3), as has been presented for other plant species [12–14,20,46].
On the other hand, when considering the differences between the three designated geographical
regions, there were no observed trends in the AA profile, despite that the percentage share of glutamine
varied significantly.

As with sugars, the presence of AAs in floral nectar may be shaped by the availability of nutrients
in the habitat [42]. For example, it was shown that the total AA concentration might be influenced
by N in the soil [13,18,47]. However, according to our analyses, AA concentration was not affected
by N but by the Fe content in the soil. This element plays an important role in various physiological
and biochemical pathways [48]. Nonetheless, its influence on the concentration of AAs in floral nectar
has not been previously confirmed. Our results also revealed the effect of the studied macro- and
microelements on certain AAs, which opens a new field for further study.

The values representing the AA concentration in P. caeruleum nectar were similar to those of
sugars, and are regarded as preferred by flies (560 pmol/µL) and bees (620 pmol/µL) [10], the two
main insect orders visiting flowers of this plant. Most of the 29 AAs that were present in the nectar of
P. caeruleum often occur in the nectar of other plant species [13,15,42,49,50]. In addition to AAs common
in floral nectar, our analysis also revealed the presence of sarcosine, tryptophan, and norvaline, which
have been rarely reported in earlier analyses [20,50,51]. However, even the effect of well-known AAs
on pollinators is often not known. Among the AAs characterized by the highest percentage in the
nectar of P. caeruleum, glutamine is considered a beneficial addition to the energetically expensive
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process of flight in insects [47]. Glutamic acid and serine may influence the growth and reproduction
of insects [52], and glutamate (the anion of glutamic acid) plays an essential role in the nervous
system of insects in regards to learning and memory (reviewed in [53]). Isoleucine, phenylalanine, and
norvaline were selected for the LMM model as the most influential on the frequency of insect visits.
Isoleucine and phenylalanine belong to EAAs [54,55] and are among AAs that stimulate the sugar
cell receptors of insects [56]. Phenylalanine is also considered a phagostimulator for bees [57]. The
functions of norvaline, which have already been recorded in the nectar of some monocotyledons [20,50],
remain unclear.

Although non-protein AAs (NPAAs) often reach a high percentage among the AAs in floral nectar,
their ecological function is poorly understood. However, studies have shown that BALA, the most
common NPAA in our study, is abundant in the insect visual system [58], and can also be involved in
many behaviors influencing foraging, such as learning and memory [59].

Earlier studies conducted by Zych [24] revealed that the AA proline plays a pivotal role in insects,
including serving as an energy source, [60], and was characterized by the highest share among all AAs
present in the nectar of P. caeruleum. In contrast, according to our results, proline was present in nectar
collected from less than a half of the populations, only from male-phase flowers, and was characterized
by a rather low concentration (from 0 to 6.5%). Furthermore, proline was absent in samples obtained
from a population that was previously studied. This indicated high variability in nectar composition
in subsequent years.

According to Gijbels [13], the frequency of insects visiting flowers is affected not by the total
content of AAs, but by the presence and content of individual AAs. Considering the relationships
between nectar AA composition or concentration and the frequency of visits by a particular group
of insects, we reported several dependencies. The frequency of visits by bumblebees was negatively
affected by tryptophan and lysine. As already reported, tryptophan may be repellent for bees [42], and
to the best of our knowledge, this effect has not been described for lysine. Norvaline, a rarely detected
AA in floral nectar, had a positive effect on the frequency of visits by honeybees, and glycine (AA that
contributes to insect growth [52]) positively influenced the frequency of visits by hoverflies.

Our results also suggest the influence of certain AAs on the frequency of butterfly visits. This
parameter was positively correlated with the percentage of alanine, tyrosine, valine, and BABA and
negatively correlated with AABA. Of these amino acids, in the context of their effect on butterflies, the
most is known about tyrosine, which is the initial precursor for pigments among those insects [61].
Additionally, for both butterflies and hoverflies, we noted a negative relationship between the frequency
of visits to flowers and total AA concentration. Higher concentrations of AAs in nectar are especially
important for adult butterflies because it is the only source of nitrogen [62], however, these insects
were responsible for just over 1% of visits and rarely exhibited flower constancy [63]. Syrphids, on the
other hand, feed mainly on pollen [64].

Variation in nectar AA composition between populations of P. caeruleum, similar to that of sugars,
is more a matter of random changes than deliberate specialization and adaptation to the most effective
group of pollinators. However, a diverse AA composition and concentration may be an incentive for
visits by diverse groups of insects characterized by different AA preferences, because AAs contribute
to the taste of nectar [55,63] and its scent [65].

As in the case of sucrose, the mean AA concentration was almost two times greater during the
male than the female sexual stage, which is probably also associated with increasing the expenditure
of the plant on attractiveness during the male flower phase.

3.3. Other Factors that May Have Affected Nectar Properties and Mutualistic Interactions with Insects

In addition to the factors analyzed here, several other agents may affect the nectar characteristics, for
example, the microclimate specific for each population [14]. These factors include water availability [1],
ambient humidity [66], temperature, or sunlight exposure [15].
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Different weather conditions in populations localized in different Polish regions may probably
result in dissimilar effects on various nectar characteristics. For example, high ambient temperatures
during nectar collection in the two largest populations (ZED and ORZ) probably resulted in extremely
high sugar concentrations (above 1000 µg/µL). Nectar concentration is associated with high viscosity,
thus restricting its use by some insects, especially those with long tongues [1]. It may lower their
visitation rate, for example, the ZED population is characterized by the highest sugar content in nectar
and the lowest visitation rate. Finally, we observed that some floral visitors collected only pollen,
which could also affect the relationship between nectar characters and potential pollinators.

Besides weather conditions, population size could be one of the factors influencing the relationship
between nectar characters and insect visits. Fluctuations in subsequent years regarding the number
of flowering shoots in some of the studied populations also contributed to the random fixation of
nectar features.

Each of the study populations was characterized by different local conditions, affecting the
composition of assemblages of potential pollinators. This is associated with the food base, nesting
places, and other factors that may shape insect communities. The presence of apiaries in the vicinity of
most of the studied populations of P. caeruleum and the introduced honeybees largely shaped the share
and frequency of insect visits to flowers. Two populations localized in national parks (KOP and SPN)
were characterized by low or a lack of participation by honeybees among the floral visitors.

Insects visiting flowers are also among the factors that may affect the variability of studied nectar
traits between populations. They may influence nectar volume [41], concentration, and composition [31],
or may transfer microorganisms affecting nectar properties [23,67,68]. Bacteria and yeast inhabiting
nectar may influence sugar and AA composition, pH, volume, and emitted volatiles, modifying
plant–pollinator interactions [23,68–70]. Since we sampled nectar from flowers that were previously
available for pollinators, there is a high probability that microorganisms inhabited it. A study in which
two of the populations analyzed here were included demonstrated that bacterial communities in the
nectar of P. caeruleum varied between populations [26]. When considering the proportion of sugars
in the male and female flowering phases, the metabolic activity of microorganisms may increase the
hexose concentration in the female phase [43,71]. Microorganisms inhabiting nectar may also affect the
nectar AA profile. Vannette and Fukami [23] found that inoculation of wildflower nectar with bacterial
strains increased, whereas inoculation with yeast decreased AA concentration. Therefore, changes in
the AA profile in the nectar may also be the result of the activity of microorganisms; however, this
awaits further study.

Our analysis revealed the high differentiation of analyzed nectar traits between populations of
our model species. The measured habitat parameters, such as habitat fertility and soil properties,
that could influence nectar chemistry did not affect it to a high extent. The relatively small effect of
insects visiting flowers on nectar characters indicates that shaping them is a matter of random genetic
drift or “adaptive wandering” than directional specialization and adaptation in the most effective and
abundant group of pollinators.

4. Conclusions

In this study, we analyzed variations in nectar traits of a generalist plant, P. caeruleum, their causes,
and consequences. Our analyses revealed two sugars and 19 AAs that were not previously detected in
P. caeruleum nectar. Some of the investigated features of the nectar profile, including sugars and AAs,
are variable among 14 populations of our model plant. When considering three geographic regions, in
which the populations are clustered, analyses revealed that the proportions of detected sugars and AAs
group by region are significantly different. We also detected differences in sugar proportions during
the male and female sexual stages of flowering. The male phase is characterized by a significantly
higher proportion of sucrose, which may be an adaptation to enhance pollinator frequency on flowers.
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Our results indicate that the habitat may play a role in shaping nectar features. On the other hand,
analyzed nectar features had little effect on insects visiting flowers, which supports the hypothesis
that, regarding this species, nectar characteristics are a consequence of random genetic changes.

There is still a need to supplement knowledge concerning inter-population differences in nectar
characters, especially those involving generalist plant species. Studies on the biology of P. caeruleum,
including factors potentially affecting its reproductive success, are essential for proposing an effective
strategy for the protection of this species that disappears in Poland. Our results suggest that the
nectar of P. caeruleum may be influenced by macro- and microelements in the habitat, and it is highly
probable that intensive fertilization of land adjacent to populations may result in changes in nectar
composition, including an increase in the proportion of AAs repellent for pollinators. This, however,
awaits further study, which should also include other factors that may affect this floral reward, not
considered in this study (e.g., historical and environmental). Recommendations for the protection of P.
caeruleum populations should focus on habitat protection, as land drainage probably leads to lower
nectar production, consequently reducing its attractiveness to insects.

5. Materials and Methods

5.1. Plant Description

Polemonium caeruleum L. (Jacob’s ladder; Polemoniaceae) is a perennial, boreal herb usually
associated with wetlands and damp meadows in temperate regions of the Northern Hemisphere [72].
It is a medicinal plant containing many active substances, including those with antibacterial and
antitrypanosomal properties [73]. In Poland, the plant is included in the Polish Red Book of Plants
(VU category). Land-use change and water drainage [74] as well as a decrease in the number of
pollinators [24] have negatively affected the number and size of P. caeruleum populations in Poland.

Inflorescences of P. caeruleum consist of a few to over a dozen simultaneously opened flowers.
Campanulate flowers with light blue to violet corollas are usually protandrous and gather in a
corymbose inflorescence [75]. Nectar is secreted at the base of the ovary and accumulates in the
corolla tube where it is protected by hairs [76]. As reported for one of the Polish populations, nectar
is sucrose-dominant, proline-rich, and female-biased, as the female phase is characterized by higher
nectar production and concentration. The male phase is shorter than that of females and lasts on
average 1.7 ± 0.9 d vs. female 2.0 ± 0.8 d [24]. Additionally, nectar sugar concentration appears to be
highly variable with single flowers producing from 1.07 with a concentration of 16.5% [24] to 3.16 mg
of nectar per flower with a concentration of 41.8% [77].

The plant reproduces only by seeds [72] and is visited by a broad spectrum of insects collecting
nectar and pollen, indicating a generalist pollination system [24]. The most effective pollinators are
social bees, which are responsible for 70–91% of pollination [24,25]. Observations from Poland showed
that populations of P. caeruleum are characterized by a mixed-mating system [25], with plants producing
seeds via both self- and cross-fertilization.

5.2. Field Observations

We focused on 14 populations of P. caeruleum, across the entire Polish range for the species,
varying in size (both in terms of the number of individuals and occupied area), distribution, and
types of plant communities in their immediate vicinity (Figure 5; Supplementary Materials: Table S1).
Since our methodology required heavy equipment, in this study we included all Polish populations
of P. caeruleum known from the literature [78–81], and personal communications that were within
walking distance (≤2 km) from roads accessible by 4WD vehicles. In 2018, during the peak of the
flowering period (June in Poland), we investigated nectar properties and basic habitat parameters.
Due to the time constraints and that the flowering period in most of the study populations overlapped,
we analyzed the taxonomic composition and frequency of insects visiting flowers in seven populations.
We selected populations that were relatively close to each other and characterized by variable sizes.
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Additionally, we included the SPN population, distinguished from others by the predominance of flies
as the main flower visitors in previous study years (unpublished data). According to geographical
localization, populations were clustered in three regions, including the northern (BOB, SPN, and KCZ),
northeastern (WPN, ROS, KOP, ZED, SIE, BIA, ORZ, DRO, and KLE), and southern (MAL and CZL)
populations, in which the distance between populations was between 23 and 178 km.
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5.3. Nectar Sampling and Analysing

To analyze nectar sugar and AA concentration and composition, 24 h before nectar sampling in
each of the 14 populations, we randomly selected 10–20 inflorescences (depending on population size)
at full bloom and bagged them with fine nylon mesh (to prevent the removal of nectar by insects).
Samples were collected from all available flowers (usually several from one inflorescence), using a
pipette and sterile tips, and stored in Eppendorf tubes until further analysis. We collected nectar
separately from flowers in male (M) and female (F) sexual stages, which resulted in two samples
obtained from each population (except the BOB population, where we collected three samples: two for
male flowers and one for female flowers). Due to the small amount of nectar in a single P. caeruleum
flower, each sample consisted of nectar obtained from 20–30 flowers. After collection, nectar samples
were stored at 4 ◦C in a portable cooler until being moved to the lab, and then were frozen at −20 ◦C
and further analyzed. Nectar chemistry (sugar and AA content and composition) was analyzed using
high-performance liquid chromatography (HPLC) [50,82] at the University of Białystok.

Nectar samples were diluted with distilled water (for sugar analysis, 10 µL of nectar + 40 µL of
water and for AAs analysis, 10 µL of nectar and 10 µL of water). Samples were filtered through spin
columns using a 0.4 µm pore size membrane filter before injection, and the supernatant was loaded
into the insert and analyzed by HPLC. The samples were analyzed using an Agilent Technologies 1260
Infinity series system consisting of a 1260 Infinity Agilent Quaternary pump G1311B, a 1260 Infinity
Diode Array Detector (DAD) G1315D, a 1260 Infinity Fluorescence Detector (FLD) G1321B, a 1260
Infinity ALS G1329B Automated Sample Injector, a 1290 Infinity Autosampler Thermostat G1330B,
and an 1290 Infinity TCC G1316C thermostatted column oven. The system was controlled using the
Agilent OpenLab ChemStation software.

For sugar analysis, we used a Zorbax Carbohydrate Analysis Column (4.6 mm × 250 mm, 5 µm).
A 10 µL aliquot sample or standard solution was injected. The separation was conducted at 30 ◦C
with a mobile phase comprising acetonitrile/water (70:30, v/v) at a flow rate of 1.4 mL/min. The
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analytical data were integrated using the Agilent OpenLab CDS ChemStation software for liquid
chromatography (LC) systems. Sugars (glucose, fructose, sucrose, maltose, and lactose) were identified
based on comparisons of peak areas obtained for the collected samples with those of the reference
solutions [82].

The analysis of AAs in 10 µL aliquots of nectar collected from flowers was performed by
gradient HPLC using an Agilent Zorbax Eclipse Plus C18 (4.6 × 150 mm, 5 µm) column with a
guard. The extracts containing primary and secondary AAs were pre-column-derivatized with
the o-phthalaldehyde (OPA) and 9-fluorenylmethyl chloroformate (FMOC) reagents. An injector
program was used for the derivatization. Following the derivatization, a mixture of each sample was
injected into a pre-equilibrated column operating at 40 ◦C. The primary (OPA-derivatized) AAs were
monitored at 388 nm by DAD, whereas the secondary (FMOC-derivatized) AAs were monitored by
FLD at an excitation wavelength of 266 nm and an emission wavelength of 305 nm. Mobile phase A
was 40 mM NaH2PO4 (pH 7.8, adjusted using 10 M NaOH solution), whereas mobile phase B was
acetonitrile/methanol/water (45:45:10. v/v/v). The following gradient profile was observed: 0–5 min,
0–10% B; 5–25 min, 10–40.5% B, 25–30 min, 40.5–63% B; 30–35 min, 63–82% B; 35–37 min, 82–100 B;
37–39 min, 100% B; 39–40 min, 100% B; and 40–43 min, 0% B. A flow rate of 1 mL/min was used [20].

5.4. Soil Samples Collection and Analysis

In each population, two samples of soil with a volume of 0.5 dm3 were collected. Samples were
taken from a depth of over 5 cm in randomly chosen points within the population borders, oven-dried
at 50 ◦C, ground manually with a mortar, and sieved (<0.25 mm sieve). Analyses of calcium (Ca) and
iron (Fe) in soils (good indicators of soil acidity, weathering processes, and soil anoxia) were performed
after mineralization in 10 mL of 65% HNO3 (Ultranal) in a SpeedWave 8212JN microwave mineralizer.
Measurements were performed using an atomic absorption spectrometer contrAA 700.

5.5. Biomass Sample Collection and Analysis

Since biomass parameters are a good predictor of environmental resources, we assessed habitat
quality (fertility) by collecting two samples of plant biomass from a randomly selected 0.25 m2 area
within the population borders (according to Kotowski and van Diggelen [83]). Biomass samples were
oven-dried at 50 ◦C and pulverized in an automatic mill. In biomass samples, nitrogen (N), phosphorus
(P), potassium (K), and carbon (C) contents were measured as follows: total N and total C with a
Thermo Scientific Flash2000 CHNS/O Analyzer; total P using a San++ Continuous Flow Analyzer after
mineralization in HNO3; and total K extracted with ammonium acetate and measured with a flame
atomic absorption spectrometer.

5.6. Insect Visitors

To determine the taxonomic composition and frequency of insects visiting flowers, we applied
the method of Zych [24], that is, we randomly chose a patch of flowering plants, usually consisting
of 2–5 shoots in full bloom. Then, using digital cameras (HC-VX870; Panasonic Corporation), which
were set on a tripod approximately 1.0–1.5 m from the plants, we recorded insects visiting flowers
for 15 min on the chosen patches (if possible for each recording, we chose a different patch). In each
of the selected populations, we made 12 recordings of insect activity for at least 2 d between 10.00
and 16.00 (during the highest activity period of insects). In the laboratory, recorded insects visiting
flowers were analyzed for the number of visits to flowers and classified into one of the eight following
groups: (i) Apis mellifera, (ii) Bombus spp., (iii) solitary bees, (iv) Syrphidae, (v) Diptera, (vi) Lepidoptera,
(vii) Coleoptera, and (viii) other. The frequency of insect visits was calculated per census (15 min) and
converted using the number of inflorescences in a recorded patch.
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5.7. Data Analysis

For each population, we determined the total concentration of AAs, percentage of individual
detected amino acids, proportions of non-protein amino acids (NPAAs), protein amino acids (PAAs),
and essential amino acids (EAAs) for honeybees (as well as other pollinators): phenylalanine, leucine,
arginine, threonine, lysine, isoleucine, valine, methionine, histidine, and tryptophan [28,29].

We used R.3.5.3 and Statistica 13.3 for statistical analyses. Before statistical tests, the data were
checked for normality (Shapiro–Wilk test), and if necessary, data were log- or square root-transformed
to a normal distribution. To determine the differences between populations and regions, into which
the populations were clustered according to their geographical localization, we applied a one-way
ANOVA or Kruskal–Wallis ANOVA (for data not normally distributed). This analysis was performed
to determine the differences in nectar traits (total sugars and AA concentration, sugar ratios (r), the
percentage of sugars, AAs selected for linear mixed models, essential AAs (EAAs), the content of
elements in soil and biomass, and the frequency of insects visiting flowers). A one-way ANOVA
was applied to determine differences in the percentage share of glucose, fructose, sucrose, glutamine,
glutamic acid, serine, phenylanine, isoleucine, EAAs, and sugar ratios as well as N, P, K, Fe, and Ca
content. The Kruskal–Wallis ANOVA was applied to determine differences in total sugar and AA
concentration, percentage of maltose, lactose, norvaline, and the frequency of insect visits as well
as C content. Then, a pairwise t-test was used to calculate pairwise comparisons between group
levels with the Benjamini–Hochberg correction for multiple testing. A p-value < 0.05 was considered
statistically significant.

To establish the significant differences between nectar samples collected from flowers in
different sexual phases, a t-test (Student’s t-test) was used to determine sugar ratios (r) and EAA
percentage, whereas the non-parametic U-Mann–Whitney test was used to determine total sugar and
AA concentration.

We visualized how the three regions were clustered in relation to the nectar composition (AA
and sugar percentage) by non-metric multidimensional scaling (NMDS) based on the Bray–Curtis
distances, using the R package vegan function “metaMDS”. The significance of separation was tested
using the permutational multivariate analysis of variance (PERMANOVA).

To examine the effect of soil conditions and biomass parameters on nectar characteristics, we
built linear mixed models (LMM) using the R package caret. To reduce the dimensions of the AA
dataset, recursive feature elimination (RFE) was performed [84]. The RFE worked by recursively
removing AAs and building a model on those that remained. The model accuracy was used to identify
which AAs contributed the most to the prediction of the frequency of insect visits. We chose six AAs,
which may be the most important to P. caeruleum ecology, from which three were characterized by the
highest percentage, and three had the highest influence on the frequency of insect visits. Sugar and
AA concentrations, all sugars, and selected AA proportions were used as the dependent variables.
Variables expressed as relative proportions were arcsine transformed to meet the model assumptions.
Total P, C, K, N, Fe, and Ca of each population were added as fixed factors in these models. The
population was included as a random factor (Table 3). For this model, we used the percentage content
(proportion) of AAs and sugars to reduce problems regarding concentration changes caused by variable
weather conditions and because, as suggested, the composition was much less variable than the
concentrations [14,15,39].

Correlations between nectar traits and habitat parameters that were not included in the LMM
models, such as population size and frequency of insect visits (including individual taxa), were
calculated using Spearman’s correlation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/10/1297/s1,
Table S1: Sizes and distribution of investigated populations of Polemonium caeruleum, Table S2: Mean content of
elements selected for analysis in soil and biomass, Table S3: Percentage composition of amino acids (AAs) in the
nectar of Polemonium caeruleum.
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50. Roguz, K.; Bajguz, A.; Chmur, M.; Gołębiewska, A.; Roguz, A.; Zych, M. Diversity of nectar amino acids in

the Fritillaria (Liliaceae) genus: Ecological and evolutionary implications. Sci. Rep. 2019, 23. [CrossRef]
[PubMed]

51. Carter, C.; Shafir, S.; Yehonatan, L.; Palmer, R.G.; Thornburg, R. A novel role for proline in plant floral nectars.
Naturwissenschaften 2006, 93, 72–79. [CrossRef]

52. Dadd, R.H. Insect Nutrition: Current Developments and Metabolic Implications. Annu. Rev. Entomol. 1973,
18, 381–420. [CrossRef]

53. Mustard, J.A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod. Plant. Interact.
2020, 14, 151–159. [CrossRef]

54. De Groot, A.P. Protein and Amino Acis Requirements of the Honeybee (Apis mellifera L.). Physiol. Comp.
Oecol. 1953, 8, 192–194.

55. Stabler, D.; Paoli, P.P.; Nicolson, S.W.; Wright, G.A. Nutrient balancing of the adult worker bumblebee
(Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 2015, 218, 793–802.
[CrossRef]

56. Shiraishi, A.; Kuwabara, M. The effects of amino acids on the labellar hair chemosensory cells of the fly. J.
Gen. Physiol. 1970, 56, 768–782. [CrossRef] [PubMed]

57. Inouye, D.W.; Waller, G.D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking
floral nectars. Ecology 1984, 65, 618–625. [CrossRef]

58. Borycz, J.; Borycz, J.A.; Edwards, T.N.; Boulianne, G.L.; Meinertzhagen, I.A. The metabolism of histamine in
the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp.
Biol. 2012, 215, 1399–1411. [CrossRef] [PubMed]

59. Hammer, M.; Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections
of octopamine in honeybees. Learn. Mem. 1998, 5, 146–156. [CrossRef] [PubMed]

60. Micheu, S.; Crailsheim, K.; Leonhard, B. Importance of proline and other amino acids during honeybee flight
(Apis mellifera carnica POLLMANN). Amino Acids 2000, 17, 189–198. [CrossRef]

61. Zhang, L.; Martin, A.; Perry, M.W.; van der Burg, K.R.L.; Matsuoka, Y.; Monteiro, A.; Reed, R.D. Genetic
basis of melanin pigmentation in butterfly wings. Genetics 2017, 205, 1537–1550. [CrossRef]

62. Hall, J.P.W.; Willmott, K.R. Patterns of feeding behaviour in adult male riodinid butterflies and their
relationship to morphology and ecology. Biol. J. Linn. Soc. 2000, 69, 1–23. [CrossRef]

63. Pohl, N.B.; Van Wyk, J.; Campbell, D.R. Butterflies show flower color preferences but not constancy in
foraging at four plant species. Ecol. Entomol. 2011, 36, 290–300. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0176865
http://dx.doi.org/10.1007/s00606-002-0275-0
http://dx.doi.org/10.1111/j.2006.0030-1299.14487.x
http://dx.doi.org/10.1016/j.flora.2011.02.003
http://dx.doi.org/10.1007/s00606-014-1152-3
http://dx.doi.org/10.1663/0006-8101(2006)72[179:TEOGNP]2.0.CO;2
http://dx.doi.org/10.1034/j.1600-0706.2002.980322.x
http://dx.doi.org/10.1034/j.1600-0706.2001.920112.x
http://dx.doi.org/10.7831/ras.3.1
http://dx.doi.org/10.1146/annurev.en.28.010183.002203
http://dx.doi.org/10.1038/s41598-019-51170-4
http://www.ncbi.nlm.nih.gov/pubmed/31645686
http://dx.doi.org/10.1007/s00114-005-0062-1
http://dx.doi.org/10.1146/annurev.en.18.010173.002121
http://dx.doi.org/10.1007/s11829-020-09743-y
http://dx.doi.org/10.1242/jeb.114249
http://dx.doi.org/10.1085/jgp.56.6.768
http://www.ncbi.nlm.nih.gov/pubmed/5483106
http://dx.doi.org/10.2307/1941424
http://dx.doi.org/10.1242/jeb.060699
http://www.ncbi.nlm.nih.gov/pubmed/22442379
http://dx.doi.org/10.1101/lm.5.1.146
http://www.ncbi.nlm.nih.gov/pubmed/10454379
http://dx.doi.org/10.1007/s007260050014
http://dx.doi.org/10.1534/genetics.116.196451
http://dx.doi.org/10.1111/j.1095-8312.2000.tb01666.x
http://dx.doi.org/10.1111/j.1365-2311.2011.01271.x


Plants 2020, 9, 1297 20 of 20

64. Gilbert, F.S. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar
and pollen in some common urban species. Ecol. Entomol. 1981, 6, 245–262. [CrossRef]

65. Raguso, R.A. Why are some floral nectars scented? Ecology 2004, 85, 1486–1494. [CrossRef]
66. Bertsch, A. Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in

individual flowers and the optimal foraging theory. Oecologia 1983, 59, 40–48. [CrossRef] [PubMed]
67. Vannette, R.L.; Gauthier, M.P.L.; Fukami, T. Nectar bacteria, but not yeast, weaken a plant - Pollinator

mutualism. Proc. R. Soc. B Biol. Sci. 2013, 280. [CrossRef] [PubMed]
68. Lenaerts, M.; Pozo, M.I.; Wäckers, F.; Van den Ende, W.; Jacquemyn, H.; Lievens, B. Impact of microbial

communities on floral nectar chemistry: Potential implications for biological control of pest insects. Basic
Appl. Ecol. 2016, 17, 189–198. [CrossRef]

69. Rering, C.C.; Beck, J.J.; Hall, G.W.; McCartney, M.M.; Vannette, R.L. Nectar-inhabiting microorganisms
influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. 2018, 220,
750–759. [CrossRef] [PubMed]

70. Burdon, R.C.F.; Junker, R.R.; Scofield, D.G.; Parachnowitsch, A.L. Bacteria colonising Penstemon digitalis
show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool.
Chemoecology 2018, 28, 11–19. [CrossRef] [PubMed]

71. Freeman, C.E.; Wilken, D.H. Variation in Nectar Sugar Composition at the Intraplant Level in Ipomopsis
longiflora (Polemoniaceae). Am. J. Bot. 1987, 74, 1681–1689. [CrossRef]

72. Pigott, C.D. Polemonium Caeruleum L. J. Ecol. 1958, 46, 507–525. [CrossRef]
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Małogoszczy (Wyżyna Małopolska). Fragm. Florist. Geobot. Pol. 2010, 17, 245–252.
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