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Abstract: CONSTANS (CO) and CONSTANS-like (COL) genes play important roles in coalescing
signals from photoperiod and temperature pathways. However, the mechanism of CO and COLs
involved in regulating the developmental stage transition and photoperiod/temperature senescing
remains unclear. In this study, we identified a COL ortholog gene from the Taiwan native orchid
Phalaenopsis aphrodite. The Phalaenopsis aphrodite CONSTANS-like 1 (PaCOL1) belongs to the B-box
protein family and functions in the nucleus and cytosol. Expression profile analysis of Phalaenopsis
aphrodite revealed that PaCOL1 was significantly expressed in leaves, but its accumulation was
repressed during environmental temperature shifts. We found a differential profile for PaCOL1
accumulation, with peak accumulation at late afternoon and at the middle of the night. Arabidopsis with
PaCOL1 overexpression showed earlier flowering under short-day (SD) conditions (8 h/23 ◦C light and
16 h/23 ◦C dark) but similar flowering time under long-day (LD) conditions (16 h/23 ◦C light and 8 h/23
◦C dark). Transcriptome sequencing revealed several genes upregulated in PaCOL1-overexpressing
Arabidopsis plants that were previously involved in flowering regulation of the photoperiod pathway.
Yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) analysis
revealed that PaCOL1 could interact with a crucial clock-associated regulator, AtCCA1, and a
flowering repressor, AtFLC. Furthermore, expressing PaCOL1 in cca1.lhy partially reversed the mutant
flowering time under photoperiod treatment, which confirms the role of PaCOL1 function in the
rhythmic associated factors for modulating flowering.

Keywords: BiFC; biological clocks; circadian rhythms; CONSTANS; floral transition; Phalaenopsis
aphrodite; photoperiodism; Y2H

1. Introduction

Throughout their life span, plants are constantly exposed to changing environmental conditions.
The sessile plants have to develop multitudinous strategies to survive the environmental challenges.
The intimations of transition from vegetative to reproductive growth are determinant in the life cycle
of plants. To ensure the inception of flowering at the correct time, plants have to coalesce a diverse
range of external and internal signals [1]. The photoperiod oscillator, ambient temperature, gibberellic
acid, vernalization, and autonomous/aging pathways are the main factors involved in the transition of
plants from the vegetative to reproductive stage [2–5].

The use of genetic approaches and functional analyses has identified several key moderators in
the complex signal regulatory network in Arabidopsis thaliana; most of these moderators belong to the
regulatory protein family [6,7]. Among the regulatory protein families, B-box (BBX) proteins are a
group of transcription factors with one or more B-box domains that can be stabilized by binding to zinc
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ions [8]. The CONSTANS (CO), CONSTANS-like (COL), TIMING of CAB1 (TOC) motif is a common
conserved domain in BBX proteins [9]. These proteins are involved in protein–protein modulation and
gene regulation [10–14].

Overall, 32 Arabidopsis BBX proteins [15], 30 rice BBX proteins [16], 29 tomato BBX proteins [17],
and 25 pear BBX proteins [18] have been identified, with diverse functions. According to the structural
characteristics of their conserved domains and phylogenetic comparisons, plant BBX proteins may be
classified into five groups: groups 1 and 2 have two tandem B-boxes plus a CCT motif; group 3 has a
B-box plus a CCT motif; group 4 has two B-boxes; and group 5 has only one B-box [19,20]. In Arabidopsis,
the BBX proteins are well known for their functions in regulating plant growth, seed germination,
seedling photo-morphogenesis, and shade avoidance, acting as antistressors to biotic/abiotic stresses
and sensing the light as well as circadian signaling changes [20,21]. CONSTANS (CO; also named
AtBBX1), the best-characterized BBX protein, is a master integrator for the flowering regulation
pathway by mediating the input signals of temperature and light to control flowering time in A.
thaliana under long-day (LD) conditions [15,22]. AtBBX1 associates with the nuclear factor Y subunit B
(NF-YB)/nuclear factor Y subunit C (NF-YC) dimer to form a trimer complex via a CCT motif-dependent
interaction, which then binds the promoter of FLOWERING LOCUS T (FT) to trigger gene expression
and flowering [23]. In contrast, a rice CO homolog, heading date 1 (Hd1/OsBBX18), represses flowering
under LD conditions but accelerates it under short-day (SD) conditions by modulating the expression of
Hd3a, a rice FT homolog [24–26]. Further studies indicated that phosphorylation by a rice casein kinase
II α subunit (CK2α), Hd6, modulates the LD floral suppression of the Hd1-dependent pathway [27].
However, Arabidopsis CK2α subunit triple mutants showed reduced FT expression and delayed
flowering under LD conditions [28]. Thus, some basic components of the genetic network modulating
flowering are conserved in Arabidopsis and rice, but their functions have diverged and show completely
different flowering responses [29].

CONSTANS-like (COL) proteins also have divergent functions in flowering regulation in
Arabidopsis and other plants [21,30]. COL proteins form a homomultimer or associate with
other proteins including other BBXs to modulate flowering time with distinct mechanisms [31,32].
AtCOL3/AtBBX4-AtBBX32 dimers control flowering time via binding the promoter of the florigen
FT gene [33,34]. However, COLs can function as a negative regulator in controlling flowering time.
Overexpression of AtCOL9/BBX7 in Arabidopsis could delay flowering time under LD conditions
by providing a feedback effect on CO and FT expression [30]. A similar downregulation of rice
florigen genes Hd3a and RFT1 was identified in late-flowering OsCOL9 and OsCOL10 transgenic
rice plants [21,35]. COLs play significant roles in photoperiodic flowering in many plants, but their
functions remain unknown in non-model systems.

The Orchidaceae, one of the two largest families of flowering plants, have about 28,000 species
with flowers that are often colorful and scented. Phalaenopsis is a monopodial orchid with a high
market value. Phalaenopsis aphrodite subsp. formosana (P. aphrodite), one of the white flower species of
moth orchid native to Taiwan, is usually used to investigate the mechanism for flowering regulation
and floral organ development of Phalaenopsis [36,37]. Recent studies indicated that P. aphrodite FT1
(PaFT1), an Arabidopsis FT ortholog, interacted with PaFD, a bZIP transcription factor and abundant
in developing inflorescence, to promote flowering by integrating signals from ambient temperatures
suitable for floral induction [38,39]. Gain- and loss-of-function analyses indicated that P. aphrodite
LEAFY (PaLFY), an Arabidopsis LFY ortholog, might function in heading time or floral organ identity
gene expression in Arabidopsis, rice, and orchids [40]. In Oncidium orchid, a perennial epiphytic plant
with importance for the floriculture industry in Taiwan, high temperatures induced cytosolic ascorbate
peroxidase 1 (OgcytAPX1) expression to reduce H2O2 accumulation and ascorbate redox ratio, which
caused the transition from the vegetative to the reproductive stage [41]. However, the floral inductive
pathways at the genetics level are still unclear.

We used rapid amplification of cDNA ends-PCR (RACE-PCR) and genomic walking strategies
with CCT motif-specific degenerated primers to isolate a COL gene, PaCOL1, from floral buds of P.
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aphrodite (mRNA/CDS GeneBank accession no: FJ810423/ACY95395.1; promoter GeneBank accession
no: HM068557; Figure S1A). PaCOL1 was the first member of the BBX family identified in the
native P. aphrodite (diploid). Biochemical and molecular analyses revealed that PaCOL1, a nuclear
localized protein, could interact with specific transcription factors involved in sensing day length and
temperature-alteration signals. Ectopic overexpression analyses revealed that PaCOL1 could function
in mediating flowering time in Arabidopsis plants.

2. Results

2.1. PaCOL1 Encodes a COL Protein

The genomic DNA (gDNA) of PaCOL1 is 945 bp, which splices into a 744-bp sense RNA product and
encodes a protein with 247 amino acids of 27.9 kDa (Figure S1B). From the deduced amino acid sequence,
we identified one B-box zinc finger domain near the N-terminal region and one CCT motif at the
C-terminal region (Figure S1C,D). Also, the CCT motif included a putative nuclear localization sequence
(NLS). Multiple sequence alignment was carried out with the Clustal Omega program with default
parameters in the European Bioinformatics Institute toolbox (https://www.ebi.ac.uk/Tools/msa/clustalo/)
(Figure 1A). The results revealed PaCOL1 with 69–78% and 60–81% similarity to Arabidopsis COL
proteins and other plant COL proteins, respectively (Figure 1B). To investigate the evolutionary
relationship among plant COLs, we constructed a phylogenetic tree by using the Mega6 software
(http://megasoftware.net/) and unweighted pair-group method with arithmetic means (UPGMA)
method. Phylogenetic tree analysis with other COL/BBX proteins from Arabidopsis, rape, sesame, rice,
corn, grass, barley, darnel, and orchid revealed the sequence association as three major clades in the
evolution (Figure 1C). The members of the PaCOL1 clade share a B-box domain and a CCT motif,
which suggests that PaCOL1 shared the same sequence structures as the group 3 B-box protein family
in Arabidopsis and rice.
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Figure 1. (A) Alignment of PaCOL1 and other plant COLs based on deduced amino acid sequences. 
The multiple sequence alignment of CONSTANS/CONSTANS-like proteins from Arabidopsis thaliana 
(BBX1/AtCO, Q39057), Brassica napus (BnCOL, AAP42647.1), Oryza sativa (OsBBX18/OsHd1/OsA, 
Q9FDX8.1), Sesamum indicum (SiCOL2, XP_011099077.1), Hordeum vulgare (HvCO1, Q8L448), Zea mays 
(ZmHd1, ABW82153.1), and Phalaenopsis aphrodite (PaCOL1; ACY95395.1). The consensus amino acids 
are labeled as ”﹡” and similar amino acids as “:” or “.” under the sequence. (B)Similarity analysis 
between PaCOL1 and orthologs. (C) Phylogenetic analysis of PaCOL1, Arabidopsis BBX proteins, and 
orthologs in other species by using MEGA6. The protein sequences include A. thaliana (BBX1-17), B. 
napus (COL and COA1), Sesamum indicum L. (SiCOL1 and SiCOL2), O. sativa (OsBBX8, OsBBX9, 
OsBBX10, OsBBX18, OsBBX26, OxBBX27), Z. mays (ZmHd1), Brachypodium distachyon (BdHd1), H. 
vulgare (HvCO1 and VRN2), Lolium ternulentum (LtCO), Phalaenopsis hybrid (PhalCOL), and P. 

Figure 1. (A) Alignment of PaCOL1 and other plant COLs based on deduced amino acid sequences.
The multiple sequence alignment of CONSTANS/CONSTANS-like proteins from Arabidopsis thaliana
(BBX1/AtCO, Q39057), Brassica napus (BnCOL, AAP42647.1), Oryza sativa (OsBBX18/OsHd1/OsA,
Q9FDX8.1), Sesamum indicum (SiCOL2, XP_011099077.1), Hordeum vulgare (HvCO1, Q8L448), Zea mays
(ZmHd1, ABW82153.1), and Phalaenopsis aphrodite (PaCOL1; ACY95395.1). The consensus amino acids
are labeled as ”*” and similar amino acids as “:” or “.” under the sequence. (B) Similarity analysis
between PaCOL1 and orthologs. (C) Phylogenetic analysis of PaCOL1, Arabidopsis BBX proteins, and
orthologs in other species by using MEGA6. The protein sequences include A. thaliana (BBX1-17),
B. napus (COL and COA1), Sesamum indicum L. (SiCOL1 and SiCOL2), O. sativa (OsBBX8, OsBBX9,
OsBBX10, OsBBX18, OsBBX26, OxBBX27), Z. mays (ZmHd1), Brachypodium distachyon (BdHd1), H.
vulgare (HvCO1 and VRN2), Lolium ternulentum (LtCO), Phalaenopsis hybrid (PhalCOL), and P. aphrodite
(PaCOL1). Scale bar represents the evolutionary distance. B1 and B2, B-box domain. VP, VP motif.
CCT, CCT domain.
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2.2. Subcellular Analysis of PaCOL1 Protein

To determine the subcellular localization of PaCOL1, the corresponding coding sequence was
genetically fused with green fluorescence protein (GFP) in transient expression vectors. Recombinant
constructs were expressed in onion epidermal cells by using particle bombardment and transient
expression assay. The vector containing eIF4AIII [42] was used as a marker to indicate the nucleus
region or even nuclear body. The full length of PaCOL1 protein localized in the nucleus (Figure 2). In
addition, we analyzed the cellular localization of PaCOL1 protein without a B-box domain (deletion
of amino acid residues 6–52; PaCOL1∆B) or CCT motif (deletion of amino acid residues 177–221;
PaCOL1∆C). PaCOL1∆B was still localized in the nucleus, but PaCOL1∆C localized in the cytoplasm
and nucleus. We further confirmed the cellular localization of PaCOL1, PaCOL1∆B, and PaCOL1∆C in
protoplasts from P. aphrodite seedling root cells (Figure S2). Thus, PaCOL1 may function in the nucleus.
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Figure 2. Subcellular localization of PaCOL1 full length, PaCOL1∆B, and PaCOL1∆C in onion epidermal
cells. The fluorescent signal was examined at 20 h after bombardment. As controls, GFP expression
vector and eIF4AIII-RFP fusion protein were used as indicators. Cell nuclei are indicated by an arrow.
Scale bar = 200 µm.

2.3. Expression Profiles of PaCOL1

To investigate the function of PaCOL1 in P. aphrodite, we tested expression profiles in vegetative
and reproductive tissues. Under normal growth conditions (12 h/23 ◦C light and 12 h/23 ◦C dark,
58.39 W/m2), PaCOL1 transcripts were significantly expressed in buds, floral stems, and leaves but
were less accumulated in flowers and roots (Figure 3A). Leaves are important for sensing light and
temperatures. In Arabidopsis, AtBBX1/CO was synthesized in leaf cells, followed induced florigen
production, and translocated to shoot apical for floral induction [14,22]. The orchid market often
uses low ambient temperatures (i.e., 12 h/23 ◦C light and 12 h/18 ◦C dark for four weeks) for floral
bud induction [43]. Thus, we examined the expression levels of PaCOL1 of mature P. aphrodite plants
with floral bud induction or high temperature treatment (12 h/32 ◦C light and 12 h/23 ◦C dark). We
found that PaCOL1 transcript level in leaves was significantly decreased after floral bud induction
(Figure 3BII) but recovered to a high level when the plants returned to normal growth conditions
(Figure 3BIII). In contrast, PaCOL1 level in leaves did not increase when plants were transferred to high
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temperature treatment followed by floral bud induction treatment (Figure 3BIV). PaCOL1 transcript
levels did not differ in roots and stems of P. aphrodite plants during treatments.
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Figure 3. Expression profiles of PaCOL1 in P. aphrodite. (A) RT-PCR analysis of PaCOL1 in tissues of
flowering plants grown under 12 h/23 ◦C light and 12 h/23 ◦C dark. Top, the image of electrophoresis.
Middle, the signal intensity was quantified by ImageJ software. Data are mean ± SE from three
independent experiments (three plants in each test). Bottom, rRNA quality control. (B) RT-PCR analysis
of PaCOL1 in tissues of mature plants grown under 12 h/23 ◦C light and 12 h/23 ◦C dark for four
weeks followed by the indicated treatment. Data are mean ± SE expression relative to that of PaACT9
from three independent experiments. (C) Immunoblot analysis of PaCOL1. The protein samples were
collected at the indicated time; 120 µg protein was loaded in each lane and immunoblotting involved
the PaCOL1 antibody. Zeitgeber time: ZT. Data are mean ± SE expression from three independent
biological experiments. WB, Western blot. CBS, Coomassie blue staining.
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The expression profiles of COL genes from many plants are often differentially regulated by light
and exhibit a diurnal rhythm [44–46]. Next, we investigated the daily expression pattern of PaCOL1
protein. On immunostaining with PaCOL1 antibody (Figure S3), PaCOL1 protein (~28 kDa) was clearly
detected from late afternoon to the middle of the night (Figure 3C). These results revealed that PaCOL1
protein differentially accumulated in P. aphrodite under 12 h light/12 h dark conditions.

2.4. Overexpression of PaCOL1 in Arabidopsis Conferred SD Floral Inductivity

To further investigate the roles of PaCOL1, we developed transgenic A. thaliana overexpressing
PaCOL1 in ecotype Col-0 plants. We used T3 homozygous transgenic lines COL1-ox, COL1∆B-ox, and
COL1∆C-ox constitutively expressing PaCOL1, PaCOL1∆B, and PaCOL1∆C, respectively, for further
study. We measured and compared plant height, leaf morphology, and flowering time between wild
type (WT) and transgenic plants. Flowering time was calculated as the number of rosette leaves when
the bolt was at 1 cm length. Under LD conditions (16 h/23 ◦C light and 8 h/23 ◦C dark), plant height
and leaf size did not differ among WT, COL1-ox, COL1∆B-ox, and COL1∆C-ox plants. In contrast,
COL1∆B-ox plants flowered significantly later than the WT, with no difference in flowering time
between COL1-ox as well as COL1∆C-ox plants and the WT (Figure 4A). Under SD conditions (8 h/23
◦C light and 16 h/23 ◦C dark), COL1-ox plants had smaller size rosette leaves, necrosis symptoms
on rosette leaves, and more branches on the major floral stem as compared with the WT (Figure S4).
In addition, COL1-ox and COL1∆B-ox plants showed an early-flowering phenotype (18% and 24%
decrease in number of rosette leaves, respectively) as compared with WT plants, whereas the flowering
time of COL1∆C-ox plants was similar to that of the WT (Figure 4A and Figure S4).

To further evaluate the abundance of target mRNAs mediated by PaCOL1 and unravel the
molecular mechanism regulated by this gene, we analyzed transcriptome of shoot apex from 40-day-old
SD-grown transgenic plants with the Illumina HiSeq 4000 platform (Novogene, Hong Kong). After
filtering, we obtained more than 42,000,000 clean reads (Figure 4B). Relative fold change was calculated
by comparing the RNA sequencing (RNAseq) data for COL1-ox1 and WT plants grown under
SD conditions, with relative change of ≥2-fold considered significantly different. We identified
1370 upregulated and 1269 downregulated genes in COL1-ox1 versus WT plants (Table S1). On
Gene Ontology (GO) analysis (http://geneontology.org/), the genes upregulated in COL1-ox1 were
classified into 22 groups (Figure 4C). For annotated genes (n = 234) involved in the developmental
process, we found 48 (3% in upregulated dataset) corresponding to the flower-development–associated
process (Figure 4D). In addition, we found 78 upregulated genes including MYBs, MADS-box
proteins, bZIPs, ATPases, helicases, ubiquitination enzymes (UEs), and zinc-finger proteins as
putative flowering-regulation candidate genes [47–50]. Thus, PaCOL1 may affect transcript levels of
flowering-related Arabidopsis genes under SD conditions.

Furthermore, we used qRT-PCR to investigate the expression of AtCCA1 (At2G46830), AtCO,
AtSVP (At2G22540), AtSOC1 (At2G45660), AtFLC (At5G10140), AtAGL24 (At4G24540), and AtTSF
(At4g20370), which are important floral modulator genes but were not found in RNAseq data. Under SD
conditions, the expression of AtCO was higher in 40-day-old COL1-ox1, COL1∆B-ox1, and COL1∆C-ox1
plants than in the WT, whereas the expression of AtCCA1, AtFLC, AtSOC1, AtSVP, and AtAGL24 genes
was nearly equal in WT and transgenic plants (Figure 4E). In addition, we found the expression of CDF1
(At5G62430), a repressor of CO, was decreased in COL1-ox1 transgenic plants but the accumulation of
MAF5 (At5G65080), an FLC-like gene, was slightly increased in COL1-ox1 transgenic plants. A similar
expression level of TFL1 (At5G03840), an antagonist of FT, was found in WT and transgenic plants. We
hardly detected the accumulation levels of AtTSF transcripts in this assay (data not shown). We also
found no difference in accumulation of NFYB2 (At5g47640) and NFYC3 (At1g54830) transcripts, the
positive regulators for flowering under LD conditions. Of note, GI (At1G22770), involved in regulation
of circadian rhythm and photoperiodic flowering, was shown to upregulate in the RNAseq dataset
but to downregulate in qRT-PCR analysis. Our results suggest that ectopic expression of PaCOL1 in
Arabidopsis may disturb the circadian output gene expressions.

http://geneontology.org/
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Figure 4. Phenotype analysis of PaCOL1 and two truncated transgenic lines. (A) Flowering time of 
WT, COL1-ox, COL1ΔB-ox, and COL1ΔC-ox plants grown under long-day (LD) and short-day (SD) 
conditions. Rosette leaf number (RLN) was counted and compared. Data are mean ± SE from three 
independent experiments (30 plants in each test). *P < 0.05 compared with Col-0 wild type. 
(B)Transcriptome analysis of WT and COL1-ox1 plants. Total RNA was extracted from 40-day-old 
plants grown under SD for RNAseq analysis. (C) Gene Ontology analysis of upregulated genes in 22 
functional groups. (D) Classification of flowering-related genes in developmental process. (E) Real-
time PCR analysis of Arabidopsis AtCCA1, AtCO, AtSVP, AtSOC1, AtFLC, AtAGL24, AtGI, AtCDF1, 
AtTFL1, AtMAF5, AtNF-YB2, and AtNF-YC3 in 40-day-old WT and COL1-ox1 grown under SD 
conditions. Data are mean ± SE expression relative to that of AtTUB from three independent 
experiments (10 plants in each test). **P < 0.01 compared with the WT. The primers PaCOL1-F and 
PaCOL1-R were used to check fragments of PaCOL1, PaCOL1∆B, and PaCOL1∆C in Arabidopsis 
transgenic plants and the products were 750 bp, 603 bp, and 630 bp, respectively. The products were 
identified by sequencing. 
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Figure 4. Phenotype analysis of PaCOL1 and two truncated transgenic lines. (A) Flowering time
of WT, COL1-ox, COL1∆B-ox, and COL1∆C-ox plants grown under long-day (LD) and short-day
(SD) conditions. Rosette leaf number (RLN) was counted and compared. Data are mean ± SE from
three independent experiments (30 plants in each test). * P < 0.05 compared with Col-0 wild type.
(B) Transcriptome analysis of WT and COL1-ox1 plants. Total RNA was extracted from 40-day-old
plants grown under SD for RNAseq analysis. (C) Gene Ontology analysis of upregulated genes in 22
functional groups. (D) Classification of flowering-related genes in developmental process. (E) Real-time
PCR analysis of Arabidopsis AtCCA1, AtCO, AtSVP, AtSOC1, AtFLC, AtAGL24, AtGI, AtCDF1, AtTFL1,
AtMAF5, AtNF-YB2, and AtNF-YC3 in 40-day-old WT and COL1-ox1 grown under SD conditions.
Data are mean ± SE expression relative to that of AtTUB from three independent experiments (10 plants
in each test). ** P < 0.01 compared with the WT. The primers PaCOL1-F and PaCOL1-R were used
to check fragments of PaCOL1, PaCOL1∆B, and PaCOL1∆C in Arabidopsis transgenic plants and the
products were 750 bp, 603 bp, and 630 bp, respectively. The products were identified by sequencing.

2.5. PaCOL1 Can Interact with AtCCA1 and AtFLC

The interaction between PaCOL1 and other proteins was predicted by using the STRING v 11
online program [51]. The results suggest a possible link between PaCOL1 and AtCCA1/AtLFY, BBXs,
or transcriptional factors in clock control in Arabidopsis (Figure 5A). We thus used yeast two-hybrid
(Y2H) analysis to examine the protein–protein physiological interaction between PaCOL1 and AtSOC1,
AtSVP, AtFLC, and AtCCA1. Hybrid yeast cells containing PaCOL1 with AtCCA1 and AtFLC could
survive on triple amino acid dropout selection medium (Figure 5B and Figure S5). In addition, two
truncated PaCOL1 proteins, PaCOL1∆B and PaCOL1∆C, could interact with AtFLC and AtCCA1,
which was confirmed by using the quanta dropout medium (Figure 5C). We did not find an interaction
between PaCOL1 and AtSOC1 or AtSVP (Figure 5B).

Furthermore, we used bimolecular fluorescence complementation (BiFC) analysis to examine the
PaCOL1–AtCCA1 and PaCOL1–AtFLC interactions in onion epidermal cells and orchid protoplast cells.
PaCOL1, PaCOL1∆B, and PaCOL1∆C interacted with AtFLC (Figure 5D). In addition, we detected
AtCCA1 interacting with PaCOL1, PaCOL1∆B, and PaCOL1∆C (Figure 5E). We observed the yellow
fluorescence protein (YFP) fluorescent signal for all combinations tested in the nucleus. We did not
detect any YFP fluorescence in the combination of PaCOL1 with AtSVP and AtSOC1 (data not shown).
No interactions of PaCOL1 or AtFLC with vector only were observed (Figure 5F). In addition, for
co-transfection of the PaCOL1 full length fused with each half of the YFP gene, we observed the YFP
florescent signal in orchid protoplasts, but there were no signals in YFPC-PaCOL1∆B/YFPN-PaCOL1∆B,
YFPC-PaCOL1∆C/YFPN-PaCOL1∆C, or YFPC/PaCOL1-YFPN (Figure S6), which suggests that PaCOL1
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protein may form dimers for their physiological functions. Thus our Y2H and BiFC results suggest
specific domain(s) other than the B-box domain and CCT motif for the interaction of PaCOL1 with
AtCCA1 and AtFLC.
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Figure 5. Identification of PaCOL1 and candidate protein interactions. (A) Analysis using STRING
software for the candidate proteins that interacted with PaCOL1. (B) Y2H assay of the interaction
between PaCOL1 with AtFLC and AtCCA1. The pGBKT7-53 and pGADT7-T interaction was a positive
control. The empty vector interaction was a negative control. (C) Y2H assay of the interaction between
PaCOL1 truncated proteins (PaCOL1∆B and PaCOL1∆C) and AtFLC and AtCCA1, respectively. (D)
BiFC assay of the interaction between PaCOL1 and truncated proteins (PaCOL1∆B and PaCOL1∆C)
and AtFLC. (E) BiFC assay of the interaction between PaCOL1 and truncated proteins (PaCOL1∆B and
PaCOL1∆C) and AtCCA1. (F) The interactions of YFPC-PaCOL1 with YFPN or YFPC with YFPN-AtFLC
were used for control. eIF4AIII-RFP protein was used as a nucleus indicator. N indicates the nucleus.



Plants 2020, 9, 68 11 of 20

2.6. PaCOL1 Partially Complemented cca1.lhy Mutant Flowering Time under SD Conditions

AtCCA1 and its paralog late elongated hypocotyl (LHY) are important oscillators in Arabidopsis [52].
We obtained a cca1.lhy double mutant (CS9812), showing photoperiod-insensitive early flowering under
LD and SD conditions and lost rhythms in clock-controlled gene transcription under constant light [53,
54], from The Arabidopsis Information Resource (TAIR) (https://www.arabidopsis.org/). We used the
mutant to investigate whether PaCOL1 and AtCCA1 have functional redundancy because of their
interaction. COL1-ox1, COL1-ox2, COL1∆B-ox1, COL1∆B-ox2, COL1∆C-ox1, and COL1∆C-ox2 plants
were individually crossed with cca1.lhy double mutant. Lines cca1.lhy/COL1-ox1, cca1.lhy/COL1-ox2,
cca1.lhy/COL1∆B-ox1, cca1.lhy/COL1∆B-ox2, cca1.lhy/COL1∆C-ox1, and cca1.lhy/COL1∆C-ox2 were
obtained for further analysis. Among the double mutants, cca1.lhy/COL1∆C-ox1 plants exhibited
increased number of axillary branches but had similar rosette leaf numbers as cca1.lhy/COL1∆C-ox2
plants under LD and SD conditions. Thus we calculated the number of rosette leaves for analyzing
flowering time of the six double mutants under LD and SD treatments. As compared with cca1.lhy
plants, cca1.lhy/COL1-ox and cca1.lhy/COL1∆B-ox plants flowered significantly later under LD and SD
conditions (Figure 6). In contrast, the flowering time of cca1.lhy/COL1∆C-ox and cca1.lhy plants was
similar under LD conditions, and cca1.lhy/COL1∆C-ox1 showed a late-flowering phenotype under
SD conditions. PaCOL1 may partially compensate for the loss of CCA1 and LHY function during the
regulation of flowering time. Using crossing methods, the PaCOL1 gene was also introduced into three
early flowering mutants, bbx5 (SALK_149180C, Col-0 background; group-1 BBX), bbx6 (SALK_096361,
Col-0 background; group-1 BBX), and bbx8 (SALK_061961C, Col-0 background; group-2 BBX), and
a late flowering mutant ft (CS185, Ler-0 background) under LD. However, there was no significant
difference in flowering time between progenies and parental lines (Figure S7).Plants 2020, 9, x FOR PEER REVIEW 12 of 20 
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Figure 6. Complementation analysis of ccal.lhy double mutant transformed with PaCOL1. Flowering
time of cca1.lhy, cca1.lhy/COL1-ox1, cca1.lhy/COL1-ox2, ccal1lhy/COL1∆B-ox1, cca1.lhy/COL1∆B-ox2,
cca1.lhy/COL1∆C-ox1, and cca1.lhy/COL1∆C-ox2 plants grown under LD and SD conditions. The
cca1.lhy/Col-0 hybrid progenies grown under SD conditions were used as control. Rosette leaf numbers
(RLN) were counted and compared. Data are mean ± SE from three independent experiments (25
plants in each test). ”**” means P-value <0.01 compared with the cca1.lhy double mutant.
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3. Discussion

Flowering is a seasonal response that involves distinct signaling pathways. BBX proteins have
positive or negative effects on the complex regulation of flowering [31–33]. Under SD conditions,
overexpression of OsBBX27/OsCO3 in rice had opposing roles in the expression of FT homologs (Hd3a
and FT-like) and resulted in a late-flowering phenotype [55]. Expression of SiCOL1, SiCOL2, CO
homologs of sesame, enhanced FT expression in transgenic Arabidopsis but could repress the expression
of FT homologous genes in sesame under LD conditions [56]. With knowledge of the conserved
sequence of the B-box domain and CCT motif, we screened an orchid COL protein from P. aphrodite,
PaCOL1, which contains a B-box domain and a CCT motif (Figure 1A). Recently, PaCOL1 was reported
in the Orchidstra database open source (http://orchidstra2.abrc.sinica.edu.tw/orchidstra2/index.php)
as the CONSTANS-like 1 gene (accession no. PATC130360) [57]. Phylogenetic tree analysis of BBXs
indicated that PaCOL1 and some group-3 COL proteins of rice and Arabidopsis are in the same clade
(Figure 1C), but have little physiological research for group-3 BBX proteins. Our subcellular analysis
agreed that the CCT motif is important for PaCOL1 localization to the nucleus (Figure 2 and Figure S2).
CCT-initiated nuclear localization has been found necessary for the BBX24 protein function in light
signaling [58]. From our research, PaCOL1 may function as an integrator for flowering by modulating
the input signals of the diurnal rhythmic and stress-induced pathways in P. aphrodite. Also, our results
suggest that PaCOL1 may be involved in the plant development (Figure 6). However, these require
further investigation.

The circadian clock is an approximately 24 h biological oscillator, which generally enables
organisms to adjust their physiological activities corresponding to the external light/dark cycles by
expecting daily environmental changes. Expression profile analysis of PaCOL1 revealed suppressed
PaCOL1 accumulation in leaves during the temperature shift (Figure 3B). On immunoblotting analysis,
PaCOL1 protein accumulation showed a differential profile, with a peak during late afternoon and at
the middle of the night in P. aphrodite (Figure 3C).

Vernalization is a key role for many plants to adapt to a temperature cue for flowering and
germinating under suitable conditions [59,60]. VRN2 and its orthologs, with high conserved sequences
during evolution, are often repressors of flowering in monocot cereals under LD conditions [61].
In this study, continuous expression of PaCOL1 in Arabidopsis plants caused early flowering under
noninductive SD conditions. However, WT and transgenic plants with a long period of cold temperature
during seed imbibition (Figure S8A) or seedling stage (Figure S8B) showed similar flowering time under
SD conditions. Therefore, PaCOL1 may not participate directly in the cold-induced flowering regulatory
pathway. From our RNAseq results, we found that the expression of PaCOL1 could upregulate (≥2-fold
increase) genes for the flowering regulatory network in Arabidopsis under SD conditions (Table S1).
Among these genes, ATPases, helicases, DEAD-box proteins, WDRs, SETs, and PHD proteins are
involved in chromatin-associated transcriptional regulation [62–64]; MADS-box proteins, MYBs, AP2s,
C2H2 zinc finger proteins, bZIPs, ABI3s, bHLHs, UEs, hydrolases, and IQ domain proteins (IQDs) are
important for the transition from the vegetative to reproductive stage [38,48,65,66]. Expression of an
IQD gene in Arabidopsis may stimulate floral transition by activating AtCO [67]. Our real-time PCR
results revealed an increased AtCO transcript level in transgenic Arabidopsis overexpressing PaCOL1
variants under SD conditions (Figure 4E). The expression of circadian clock output gene GI or CDF also
interfered. Thus, PaCOL1 may function in the photoperiodic flowering control pathway in Arabidopsis.

The circadian network is conserved in higher plants [68]. Plants adapt to diurnal changes with
regulation via a number of negative and positive feedback loops. CCA1, a key clock-associated
modulator in Arabidopsis, functions with LHY in a negative feedback loop. Light transiently induces
CCA1 and LHY transcription, with the peak at dawn [69,70]. CCA1 and LHY proteins, MYB transcription
factors, repress the expression of the evening-expressed gene Timing of Cab expression 1 (TOC1) by
directly binding to the TOC1 promoter. Synergistic functioning of CCA1 and LHY to TOC1 forms a
negative feedback loop in the plant circadian regulation network [71,72]. In the early morning, CCA1
and LHY transiently increased Pseudo-response regulator 7 (PRR7) and PRR9 expression [73]; however,
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the PRR5, PRR7, and PRR9 protein complex repressed CCA1 and LHY transcription, which resulted in
another negative feedback loop to each other [74,75].

Using Y2H and BiFC analysis, we identified that PaCOL1 and its truncated forms were able to
interact with AtCCA1 and AtFLC in the nucleus (Figure 5). In addition, our complementary test revealed
that expression of PaCOL1 in the cca1.lhy mutant partially rescued the flowering time of the mutants
under LD and SD conditions (Figure 6). However, PaCOL1, CCA1, and LHY show much divergence
in amino acid sequence. Using the NetPhos 3.1 server (http://www.cbs.dtu.dk/services/NetPhos/) to
predict the eukaryotic protein phosphorylation sites, we identified a PaCOL1 16-amino acid region
with a serine phosphorylation site showing similarity with a conserved domain for phosphorylation
activity of AtCCA1 [76]. Also, we found similar regions in AtBBX1, OsHd1, and HvCO1 (Figure S9).
Phosphorylation of the conserved amino acids in CCA1 and LHY was necessary for their stability to
control flowering time [27,76]. However, we need further study to identify the role of the 16-amino acid
region. In addition, AtCCA1 is a master regulator of reactive oxygen species (ROS) homeostasis [77],
so PaCOL1 may also be involved in the ROS response induced by light length or temperature shifting.

Floral transition is an important stage for plants to overcome environmental challenges to survive.
FT-related genes are crucial for accelerated flowering under LD conditions [78,79] and are important to
accelerate flowering in some plants under SD or stress conditions [38,47,80]. Thus, PaCOL1 may play a
key role in the photo-rhythmical flowering pathways in P. aphrodite. Of note, deletion of the CCT motif
or B-box domain did not lose the interaction between PaCOL1 and AtCCA1 and AtFLC (Figure 5),
whereas expression of PaCOL1∆C could not affect the flowering time of Arabidopsis plants under SD
conditions (Figures 4A and 6). Hence, PaCOL1 might interact with these two flowering modulators via
other specific domain(s) although CCT motif and B-box domain are well known for protein–protein
interaction in BBX proteins. Identification of the specific region needs further study.

4. Materials and Methods

4.1. Plant Materials

P. aphrodite (diploid) was grown in the culture room under a 12 h light/12 h dark (23 ± 1 ◦C) cycle.
The plants at five-leaf stage (mature stage) were used for bolting induction. The bolting induction plants
were cultured in an incubator under 23 ◦C/18 ◦C (day/night) oscillation with about 100 µmolm−2s−1

light for four weeks. After bolting induction, the plants were grown in a 12 h light/12 h dark (23 ± 1 ◦C)
culture room. The leaves for PCR amplification/protein extraction were collected from independent
plants with at least three biological replicates for each sampling and analysis.

A. thaliana ecotype Col-0 was used as the wild type (WT). The cca1.lhy mutant in the Wassilewskija
(Ws) background was obtained from The Arabidopsis Information Resource (TAIR) (https://www.
arabidopsis.org/). Arabidopsis plants were grown at 23 ◦C in a 16 h light/8- h dark (LD) or 8 h light/16 h
dark (SD) cycle in a growth chamber with 100 µmolm−2s−1 light and 60% relative humidity. Arabidopsis
seeds were sterilized with 1.2% bleach and sown on half-strength Murashige and Skoog (1/2 MS)
medium containing 1% sucrose (w/v), 0.8% agar (w/v), buffered to pH 5.7 with 25 µg/mL hygromycin
for homozygous transgenic line selection. Flowering time was determined as the number of rosette
leaves when the bolt was at 1 cm length.

4.2. RT-PCR and qRT-PCR

Transcript levels in different tissues were analyzed by RT-PCR. Total RNA was extracted as
described [81]. The first-strand cDNA was synthesized from 2 µg total RNA in a 20 µL reaction
volume with use of the SuperScriptIII First-Strand Synthesis system(Invitrogen, Thermo Scientific,
Waltham, MA, USA). RNA and cDNA were quantified by using a spectrophotometer (NanoDrop 1000,
Thermo Scientific, Waltham, MA, USA). PCR amplification conditions were 27 cycles of 30 s at 95
◦C, 30 s at 55 ◦C, and 50 s at 68 ◦C, then 5 min at 68 ◦C. Primers used for analyzing gene expression
levels were designed with the use of Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) and are shown in
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https://www.arabidopsis.org/
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Table S2. DNA from 15 µL of each PCR reaction underwent 1.2% (w/v) agarose gel electrophoresis.
ImageJ (http://rsbweb.nih.gov/ij/) was used to quantify the ethidium-bromide-stained DNA bands. The
expression of Phalaenopsis actin9 (PaACT9) and Arabidopsis β-tubulin (AtTUB) was the internal control.

qRT-PCR involved using the iCycler-iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA) and KAPA SYBR FAST qPCR Master Mix (2x) Kit (KAPA Biosystem, Wilmington,
MA, U.S.A.) with the primer sequences listed in Table S2. qRT-PCR reaction involved 20 ng cDNA
with each set of primers and the KAPA SYBR FAST qPCR buffer Master Mix. PCR cycling included
an initial step at 95 ◦C for 5 min, then 40 cycles of 10 s at 95 ◦C, 30 s at 55 ◦C, and 20 s at 68 ◦C. The
comparative CT method was used to measure the relative amount of each sample. The expression of
PaACT9 was the internal control.

4.3. Preparation of DNA Constructs and Transformation

The DNA fragment of CaMV35S-Nos with cloning sites for XbaI/BamHI/KpnI was cut from
pBI121 shuttle vector and subcloned into pCAMBIA1301. Then, the XbaI/BamHI fragments of PaCOL1,
PaCOL1∆B, and PaCOL1∆C were separately cloned into the vector in the sense orientation downstream
of the CaMV35S promoter to generate the overexpression vectors pCOL1-ox, pCOL1∆B-ox, and
pCOL1∆C-ox. Sequences for all primers are in Table S2. All constructs were verified by sequencing
analysis. The recombinant vectors were transferred to Agrobacteria (GV3101) and used to transform
Arabidopsis by the floral-dip technique [82]. Transformed Arabidopsis seedlings were selected as
described [81]. Homozygous T2 transgenic plants were selected by growth of the T3 generations on
1/2 MS medium containing 50 mg/l hygromycin, 1% sucrose (w/v), and 0.8% agar. T3 transgenic seeds
derived from homozygous T2 transgenic plants were used for subsequent tests.

Transgenic plants COL1-ox1, COL1-ox2, COL1∆B-ox1, COL1∆B-ox2, COL1∆C-ox1, and
COL1∆C-ox2 were selected to cross with the cca1.lhy mutant. F2 lines cca1.lhy/COL1-ox1,
cca1.lhy/COL1-ox2, cca1.lhy/COL1∆B-ox1, cca1.lhy/COL1∆B-ox2, cca1.lhy/COL1∆C-ox1, and
cca1.lhy/COL1∆C-ox2 were obtained to produce the F3 generation, which was used for analyzing
flowering time.

4.4. Subcellular Localization Assays

Fragments of PaCOL1, PaCOL1∆B, and PaCOL1∆C were PCR-amplified with the primers listed
in Table S2. PCR products were individually fused upstream of the GFP at the XbaI/BamHI sites
in the p326GFP vector (35S::GFP) [83], which resulted in constructs under control of the CaMV35S
promoter. The plasmids were transiently expressed in onion epidermal cells by particle bombardment
as described [81] and further confirmed in orchid protoplast cells by PEG transfection [84]. A helium
biolistic particle-delivery system (model PDS-1000, Bio-Rad, Hercules, CA, USA) was used for particle
bombardment. In total, 5 µg recombinant plasmid DNA was used per transformation, and all target
materials were bombarded twice. The bombarded onion epidermal cells were recovered at 25 ◦C in the
dark for at least four hours. The samples were observed by using an Olympus U-LH 100 HG inverted
fluorescence microscope.

4.5. Yeast Two-Hybrid (Y2H) Analysis

For Y2H assay, the bait DNA fragments PaCOL1, PaCOL1∆B, and PaCOL1∆C were PCR-amplified
and cloned into the pGBKT7 expression vector (Clontech, Mountain View, CA, USA). The prey DNA
fragments AtFLC, AtSVP, AtSOC1, AtCCA1, PaAPX, and PaFT were PCR-amplified and cloned into
the pGADT7 expression vector (Clontech, Mountain View, CA, USA). All constructs were verified
by sequencing analysis. The bait and prey recombinant vectors were transformed into yeast strain
Y2HGold and Y187, respectively. Yeast mating and selection were performed according to the
manufacturer’s protocols.

http://rsbweb.nih.gov/ij/
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4.6. Bimolecular Fluorescence Complementation Analysis (BiFC) Assay

For BiFC, the DNA fragments PaCOL1, PaCOL1∆B, PaCOL1∆C, AtCCA1, and AtFLC
were introduced into pSAT5-DEST-cEYFP (pE3130) and pSAT4-DEST-nEYFP (pE3136) and
pSAT4(A)-DEST-nEYFP (pE3134) and pSAT5(A)-DEST-cEYFP (pE3132) by using the recombination
Gateway system (Thermo Fisher Scientific, Waltham, MA, USA). The recombinant constructs in pairs
were cobombarded into onion epidermal cells by using a helium biolistic particle-delivery system
(model PDS-1000, Bio-Rad, Hercules, CA, USA). Fluorescent signals were examined under an Olympus
U-LH 100 HG inverted fluorescence microscope.

4.7. Transcriptome Sequencing

Total RNA was extracted from the shoot apex of 40-day-old Arabidopsis plants grown under SD
conditions with sampling at ZT7 as described [81]. The RNA sequencing library was constructed
by using the TruSeq PE Cluster kit (Illumina, Santiago, CA, USA) according to the manufacturer’s
instructions. Transcriptome sequencing and assembly involved an Illumina HiSeq 4000 platform
(Novogene, Hong Kong, China).

4.8. Electrophoresis and Immunoblotting Analysis

The orchid protein extraction buffer contained 2% CTAB, 2% PVP40, 100 mM Tris (pH 8.0), 25
mM EDTA (pH 8.0), 68.8 mM spermidine, 1 mM PMSF, and 1 mM DTT, 1D SDS-PAGE involved using
12.5% (w/v) polyacrylamide gels as described [85]. To generate an antibody against PaCOL1, a DNA
construct encoding the 126th to 247th amino acids of PaCOL1 was prepared by PCR and subcloned
into the BamHI site of the pMAL-c5X expression vector (New England Biolabs, Ipswich, MA, USA)
to produce maltose binding protein (MBP) fusion proteins. The MBP fusion proteins were purified
according to the manufacturer’s protocols and used to raise a rabbit polyclonal antiserum by LTK
BioLaboratories, Taoyuan, Taiwan. The immunoblotting was performed with anti-PaCOL1 antibodies
as described [85]. The proteins were quantified by using Bradford assay [86].

4.9. Statistical Analysis

Data are shown as mean ± SE from three independent experiments. Statistical differences
were analyzed by Duncan’s multiple range test or Student’s t test. P < 0.05 was considered
statistically significant.

5. Conclusions

We identified a BBX protein, PaCOL1, as an important regulator for flowering in Arabidopsis
transgenic plants. PaCOL1 interacted and functioned with CCA1 and LHY in the diurnal rhythmic
pathway for flowering. Thus, PaCOL1 plays an important role in integrating signals from photoperiod
and stress pathways for flowering in Arabidopsis. PaCOL1 may be a good candidate for understanding
the signaling pathways for flowering in orchids.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/68/s1,
Figure S1: Gene structure of PaCOL1, Figure S2: Subcellular localization of PaCOL1 and two truncated mutant
proteins in orchid protoplasts visualized by fluorescence microscopy, Figure S3: Fusion protein purification and
identification for antibody production, Figure S4: The phenotypes of PaCOL1 transgenic plants and the WT, Figure
S5: The negative control tests of AtSOC1 and AtFLC with PaCOL1 were grown on double dropout (-Trp -Leu)
medium, Figure S6: Interactions of PaCOL1, PaCOL1∆B, and PaCOL1∆C in orchid petal protoplasts visualized
by fluorescence microscopy, Figure S7: The complementary tests of PaCOL1, PaCOL1∆B, and PaCOL1∆C
overexpression in mutant lines under LD condition, Figure S8: Cold treatment of transgenic Arabidopsis plants at
seed imbibition and seedling stage, Figure S9: Phosphorylation site prediction of PaCOL1 and AtCCA1, OsHd1,
HvCO1, and AtBBX1,Table S1: Genes showing significant differential expression between the wild type (WT) and
COL-ox1 Arabidopsis. Table S2: Oligonucleotides used in this study.
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