- Supporting information to Teixeira et al., Functional diversity and invasive species
 influence soil fertility in experimental grasslands
- 3

4 Supporting Information may be also found in the online version of this article:

5

6 List of figures:

Figure S1: Effects of functional dispersion on *Solidago* plants emergence and aboveground biomass. Figure (**a**) shows *S. gigantea* emergence, while (**b**) represents results for *S. gigantea* biomass varying according to the functional dispersion index. Aboveground biomass was collected at the end of the experiment (16 weeks), while emergence was evaluated during the second week of the experimental period for each one of the communities, invaded or not. For the dependent variables, F-values are presented in the text (*** $p \le 0.001$; ** $p \le 0.01$; * $p \le$ 0.05; . $p \le 0.10$; ns p > 0.10).

Figure S2: Functional classification for a set of 54 grassland plant species by trait similarity
into three functional groups.

Figure S3: Regression analysis for the functional dispersion and functional redundancy
indexes [1,2]. The figures show the functional dispersion index (a) and the functional
redundancy index (b) according to the number of functional groups composing the
experimental communities and the correlation between functional dispersion and functional
redundancy (c).

21 List of tables:

Table S1: Functional trait characteristics for each functional group. Values of quantitative
 functional traits represent mean (±SD).

24 Table S2: Functional trait characteristics of the native species occurring in the mesocosm communities used for the calculation of the functional dispersion index. Zero (0) and 1 values 25 represent the presence/absence of categorical functional traits. Quantitative functional traits 26 are represented by mean values for each species. Species relative abundances were 27 determined by multiplying the 3 g m⁻² of native species sown (i.e. 0.48 g of seeds which 28 means, approximately, 0.054 g for each one of the native species present) by its mean seed 29 mass to obtain the number of seeds per native species. Mean seed mass information (given in 30 mg) was obtained from BiolFlor database [3,4]. For the species Buphthalmum salicifolium L. 31 32 we used the thousand seed mass obtained from Rieger-Hofmann GmbH (Catalogue 2016/2017) to calculate the mean seed mass. 33

34 Supplementary File 1: Functional diversity and biotic resistance

35 *S1.1. Functional dispersion effects on Solidago plants emergence and aboveground biomass*

Although no statistical differences were found (F= 0.3, df = 8, p > 0.05 for *Solidago* biomass; and F= 0.4, df = 8, p > 0.05 for emergence of *Solidago* plants), emergence of *Solidago gigantea* showed a slightly negative tendency when in communities with higher functional dispersion. However, such effects were not strong enough to affect invasive plants emergence rates by competition (Fig. S1).

Figure S1: Effects of functional dispersion on *Solidago* plants emergence and aboveground biomass. Figure (a) shows *S. gigantea* biomass, while (b) represents results for *S. gigantea* emergence varying according to the functional dispersion index. Aboveground biomass was collected at the end of the experiment (16 weeks), while emergence was evaluated during the second week of the experimental period for each one of the communities, invaded or not. For

the dependent variables, F-values are presented in the text (*** $p \le 0.001$; ** $p \le 0.01$; * $p \le 0.01$; * $p \le 0.01$; NS p > 0.10).

49

50 Supplementary File 2: Material and methods extended

51 S2.1. Plant species and functional traits selection

Solidago gigantea (Asteraceae) was used as a model species, given that is known to be 52 problematic in disturbed areas such as roadsides and newly re-vegetated areas [5]. Seeds from 53 S. gigantea were collected from seven (clonal) stands along River Isar near Freising, southern 54 Germany (48°24'N, 11°41'E). Before the experiment, the seeds were tested for viability 55 under controlled conditions consisting in an 8 h night at 12 °C and a 16 h day at 20 °C and 56 57 resulting in a germination success of $73.6 \pm 4.5\%$. The experimental pool of native species was based on a set of 54 native grassland species occurring with a frequency $\geq 10\%$ in a 58 dataset comprising more than 100 surveys of calcareous grasslands in the agricultural 59 landscape north of Munich, Germany [6]. The native seed material was obtained from the 60 local seed producer Johann Krimmer (Pulling, Germany). 61

Functional group classification was performed using trait information for the set of 54 native grassland species (Table S1, Fig. S2). For doing so, eight traits were found to be suitable proxies for species dispersal, establishment success, growth, persistence and competitive ability [7–9], i.e. specific leaf area (SLA), leaf dry matter, life form, shoot morphology, morphology of vegetative organs, canopy height at maturity, seed mass and longevity (Table S1, Fig. S2). This was done, because SLA, canopy height at maturity and seed mass are correlated with invasiveness [10], and several traits are correlated to

69	competition among plant species, i.e. SLA, seed mass and canopy height at maturity. We
70	collected the functional traits information from the BiolFlor [3,4] and LEDA databases [11].

72 S2.2. Functional groups clustering

73 Statistical analyses for the functional grouping were performed using Infostat software [12]. Previous to clustering analysis, all non-numerical functional traits were transformed into 74 75 dummy variables (binary values). Subsequently, the trait information was converted to 76 continuous values using a principal coordinate analysis using Jaccard's distance measure and saving the first five principal coordinates [13]. Based on the collected data for all functional 77 78 traits, a cluster analysis was conducted using Gower's similarity coefficient among species 79 and Ward as the linkage method [14,15]. The classification of all species led to three statistically different functional groups (Fig. S2). 80

To prove that clusters were significantly different, a multivariate analysis of variances was performed with the same variables. Null hypothesis of equal vector means was rejected (F = 13.6, p < 0.0001) and mean vector comparisons showed significant differences among the clusters (Table S1). Finally, we calculated functional dispersion and redundancy indexes [1,2] to check for the functional dissimilarity in our experimental communities (Appendix S2, Fig. S3).

	Functional group		
Functional traits	FG 1	FG 2	FG 3
Longevity	Perennial	<u>Perennial</u> + biannual + annual	Perennial
Life form	<u>Hemicryptophytes</u> , geophytes, chamaephytes	<u>Hemicryptophytes</u>	<u>Hemicryptophytes</u> , chamaephytes
Shoot morphology	<u>Hemi-rosette</u> , erosulate	<u>Hemi-rosette</u>	<u>Erosulate</u> , rosette
Root morphology	<u>Runner</u> , rhizome, tuft, pleicorm	<u>Pleiocorm,</u> runner	<u>Pleiocorm</u> , rhizome, runner
Seed mass (g)	1.60 ± 1.72	2.44 ± 1.64	1.97 ± 3.27
Canopy height (m)	0.37 ± 0.18	0.33 ± 0.22	0.27 ± 0.19
SLA (mm ⁻² mg ⁻¹)	22.6 ± 9.2	21.5 ± 7.2	23.2 ± 6.0
Dry leaf mass (mg g ⁻¹)*	268 ± 78 ^b	240 ± 44 ^{b,a}	203 ± 52ª

87 **Table S1:** Functional trait characteristics for each functional group. Values of quantitative functional traits represent mean (±SD).

B8 Dry leaf mass was the only quantitative trait to significantly differ among communities (ANOVA test; F = 5.34; $p \le 0.05$). Values with a

89 common letter are not significantly different (p > 0.05).

91 Figure S2: Functional classification for a set of 54 grassland plant species by trait similarity into three functional groups.

92 *S2.3. Composition of the plant communities*

93 One functional group

94 Replica 1 = FG1

Nr	Species	Family	FG
1	Prunella vulgaris	Lamiaceae	1
2	Plantago media	Plantaginaceae	1
3	Helianthemum nummularium	Cistaceae	1
4	Genista tinctoria	Fabaceae	1
5	Asperula cynanchica	Rubiaceae	1
6	Veronica chamaedrys	Scrophulariaceae	1
7	Lotus corniculatus	Fabaceae	1
8	Hieracium pilosella	Asteraceae	1
9	Vicia cracca	Fabaceae	1

95 $Replica \ 2 = FG2$

Nr	Species	Family	FG
1	Anthyllis vulneraria	Fabaceae	2
2	Campanula rotundifolia	Campanulaceae	2
3	Centaurea jacea	Asteraceae	2
4	Hippocrepis comosa	Fabaceae	2
5	Medicago lupulina	Fabaceae	2
6	Peucedanum oreoselinum	Apiaceae	2
7	Pimpinella saxifraga	Apiaceae	2
8	Trifolium pratense	Fabaceae	2
9	Sanguisorba minor	Rosaceae	2

96 Replica 3 = FG3

Nr	Species	Family	FG
1	Betonica officinalis	Lamiaceae	3
2	Poa angustifolia	Poaceae	3
3	Festuca rubra	Poaceae	3
4	Agrimonia eupatoria	Rosaceae	3
5	Prunella grandiflora	Lamiceae	3
6	Helictotrichon pubescens	Poaceae	3
7	Agrostis capillaris	Poaceae	3
8	Achillea millefolium	Asteraceae	3
9	Potentilla tabernaemontani	Rosaceae	3

Replica 4 = *FG3*

Nr	Species	Family	FG
1	Helictotrichon pubescens	Poaceae	3
2	Dactylis glomerata	Poaceae	3
3	Agrostis capillaris	Poaceae	3
4	Anthericum ramosum	Anthericaceae	3
5	Potentilla tabernaemontani	Rosaceae	3
6	Helictotrichon pratense	Poaceae	3
7	Brachypodium pinnatum	Poaceae	3
8	Festuca rubra	Poaceae	3
9	Buphthalmum salicifolium	Asteraceae	3

99 Replica 5 = FG 1

Nr	Species	Family	FG
1	Teucrium montanum	Plantaginaceae	1
2	Helianthemum nummularium	Cistaceae	1
3	Galium album	Rubiaceae	1
4	Asperula cynanchica	Rubiaceae	1
5	Genista tinctoria	Fabaceae	1
6	Linum perenne	Linaceae	1
7	Vicia cracca	Fabaceae	1
8	Prunella vulgaris	Lamiaceae	1
9	Veronica chamaedrys	Scrophulariaceae	1

101 Two functional groups

Replica 1 = FG 1 + FG 3

Nr	Species	Family	FG
1	Leontodon incanus	Asteraceae	1
2	Achillea millefolium	Asteraceae	3
3	Linum perenne	Linaceae	1
4	Plantago media	Plantaginaceae	1
5	Brachypodium pinnatum	Poaceae	3
6	Lotus corniculatus	Fabaceae	1
7	Genista tinctoria	Fabaceae	1
8	Festuca ovina	Poaceae	3
9	Bromus erectus	Poaceae	3

Replica 2 = FG I + FG 3

Nr	Species	Family	FG
1	Helictotrichon pubescens	Poaceae	3
2	Teucrium montanum	Plantaginaceae	1
3	Agrostis capillaris	Poaceae	3
4	Veronica chamaedrys	Scrophulariaceae	1
5	Hieracium pilosella	Asteraceae	1
6	Genista tinctoria	Fabaceae	1
7	Prunella grandiflora	Lamiceae	3
8	Vicia cracca	Fabaceae	1
9	Brachypodium pinnatum	Poaceae	3

 $Replica \ 3 = FGl + FG2$

Nr	Species	Family	FG
1	Veronica chamaedrys	Scrophulariaceae	1
2	Sanguisorba minor	Rosaceae	2
3	Clinopodium vulgare	Lamiaceae	1
4	Teucrium montanum	Plantaginaceae	1
5	Lotus corniculatus	Fabaceae	1
6	Medicago lupulina	Fabaceae	2
7	Anthyllis vulneraria	Fabaceae	2
8	Leontodon incanus	Asteraceae	1
9	Trifolium pratense	Fabaceae	2

106 Replica 4 = FG2 + FG3

Nr	Species	Family	FG
1	Helictotrichon pratense	Poaceae	3
2	Anthyllis vulneraria	Fabaceae	2
3	Achillea millefolium	Asteraceae	3
4	Prunella grandiflora	Lamiceae	3
5	Medicago lupulina	Fabaceae	2
6	Sanguisorba minor	Rosaceae	2
7	Trifolium pratense	Fabaceae	2
8	Festuca ovina	Poaceae	3
9	Bromus erectus	Poaceae	3

Replica 5 = FG 1 + FG 2

Nr	Species	Family	FG
1	Sanguisorba minor	Rosaceae	2
2	Genista tinctoria	Fabaceae	1
3	Asperula cynanchica	Rubiaceae	1
4	Clinopodium vulgare	Lamiaceae	1
5	Peucedanum oreoselinum	Apiaceae	2
6	Linum perenne	Linaceae	1
7	Prunella vulgaris	Lamiaceae	1
8	Pimpinella saxifraga	Apiaceae	2
9	Anthyllis vulneraria	Fabaceae	2

109 Three functional groups

Replica 1 = FG 1 + FG 2 + FG 3

Nr	Species	Family	FG
1	Festuca rubra	Poaceae	3
2	Dactylis glomerata	Poaceae	3
3	Poa angustifolia	Poaceae	3
4	Hippocrepis comosa	Fabaceae	2
5	Campanula rotundifolia	Campanulaceae	2
6	Medicago lupulina	Fabaceae	2
7	Leontodon incanus	Asteraceae	1
8	Hieracium pilosella	Asteraceae	1
9	Teucrium montanum	Plantaginaceae	1

Replica 2 = FG 1 + FG 2 + FG 3

Nr	Species	Family	FG
1	Festuca rubra	Poaceae	3
2	Poa angustifolia	Poaceae	3
3	Centaurea scabiosa	Asteraceae	3
4	Sanguisorba minor	Rosaceae	2
5	Pimpinella saxifraga	Apiaceae	2
6	Anthyllis vulneraria	Fabaceae	2
7	Asperula cynanchica	Rubiaceae	1
8	Lotus corniculatus	Fabaceae	1
9	Vicia cracca	Fabaceae	1

Replica 3 = FG 1 + FG 2 + FG 3

Nr	Species	Family	FG
1	Centaurea scabiosa	Asteraceae	3
2	Dactylis glomerata	Poaceae	3
3	Potentilla tabernaemontani	Rosaceae	3
4	Medicago lupulina	Fabaceae	2
5	Campanula rotundifolia	Campanulaceae	2
6	Anthyllis vulneraria	Fabaceae	2
7	Galium album	Rubiaceae	1
8	Leontodon incanus	Asteraceae	1
9	Helianthemum nummularium	Cistaceae	1

Replica 4 = FG 1 + FG 2 + FG 3

Nr	Species	Family	FG
1	Betonica officinalis	Lamiaceae	3
2	Potentilla tabernaemontani	Rosaceae	3
3	Poa angustifolia	Poaceae	3
4	Trifolium pratense	Fabaceae	2
5	Sanguisorba minor	Rosaceae	2
6	Anthyllis vulneraria	Fabaceae	2
7	Galium album	Fabaceae	1
8	Teucrium montanum	Plantaginaceae	1
9	Leontodon incanus	Asteraceae	1

Replica 5 = FG I + FG 2 + FG 3

Nr	Species	Family	FG
1	Festuca ovina	Poaceae	3
2	Brachypodium pinnatum	Poaceae	3
3	Agrostis capillaris	Poaceae	3
4	Campanula rotundifolia	Campanulaceae	2
5	Pimpinella saxifraga	Apiaceae	2
6	Centaurea jacea	Asteraceae	2
7	Leontodon incanus	Asteraceae	1
8	Genista tinctoria	Fabaceae	1
9	Prunella vulgaris	Lamiceae	1

We calculated two indexes of functional diversity: i. The functional dispersion 118 119 (Fdis) index using the dbFD function in the FD package in R [1], and ii. the functional redundancy (Fred) index using the R function called 'uniqueness' [2]. For calculating 120 121 the indexes, we used plant traits obtained from the BiolFlor [3,4] and LEDA databases 122 [11] as presented in Table S2. Both measures can be calculated including categorical and numerical traits and provide opposite insights on the how functional diversity is 123 distributed amongst our experimental communities. As previously described, Fdis 124 125 represents the mean distance in the multidimensional trait space comparing the values of individual species to the value of all species. In other words, Fdis indicates the degree in 126 127 which plant species occupy the multidimensional trait space. Fdis can correct for different abundances among species, thus controlling possible effects of more abundant 128 species. Another important aspect is that Fdis is not affected by the species richness 129 values in different communities [1]. 130

On the other hand, Fred represents the similarities amongst species composing a 131 given community in terms of their functional traits and, consequently, their 132 133 performances. Since ecosystem functioning under stressful conditions (e.g. invasions) would require the occurrence of species with similar performances, we can expect Fred 134 to be an important component of diversity ensuring ecosystem functions over time [2]. 135 136 However, despite high values of Fred can indicate that ecosystem functioning would be less affected by species loss, it can also occur when there is a weak relationship between 137 species richness and functions [16]. 138

139	Afterwards, we correlated these functional diversity indexes to the number of
140	functional groups resulting from the cluster analysis based on plant traits using a linear
141	model. We also correlated (using the same type of linear model) the Fdis and Fred
142	indexes to check if they were positively or negatively correlated (Fig. S3). The number
143	of functional groups was log-transformed prior to the analysis to fulfill the linear model
144	assumptions. This analysis showed that both functional diversity indexes were
145	significantly correlated to the levels of functional diversity determined by the cluster
146	analysis using plant traits (Fig. S3). Fdis significantly increased with the number of
147	functional groups composing the plant communities ($R^2 = 0.41$, $p \le 0.01$, Fig. S3a),
148	while the Fred index decreased with the number of functional groups in our
149	experimental communities ($R^2 = 0.45$, $p \le 0.01$, Fig. S3b). Finally, a negative
150	correlation was found between the indexes, indicating that both measures represent
151	opposite aspects of functional diversity and that one cannot maximize them at the same
152	time when trying to restore a given plant community ($R^2 = 0.99$, $p \le 0.001$, Fig. S3c).

Table S2: Functional traits characteristics of the native species occurring in our experimental communities used for the calculation of the functional dispersion index. Zero (0) and 1 values represent the presence/absence of categorical functional traits. Quantitative functional traits are represented by mean values for each species. Species relative abundances were determined by multiplying the 3 g m⁻² of native species sown (i.e. 0.48 g of seeds which means, approximately, 0.054 g for each one of the native species present in our communities) by its mean seed mass to obtain the number of seeds per native species. Mean seed mass information (mg) was obtained from BiolFlor database [3,4]. For the species *Buphthalmum salicifolium* L. we used the thousand seed mass obtained from Rieger-Hofmann GmbH (Catalogue 2016/2017) to calculate the mean seed mass.

Native grasslands species	seed mass	cannopy height	life long perennial	life long biannual	life long annual	life form hemicryptophytes	life form geophytes	life form chamaephytes	life form hph	root morphology rhizome	root morphology runner	root morphology pleiocorm	root morphology tuft	shoot morphology hemi-rosette	shoot morphology rosette	shoot morphology erosulate	non- legume	legume	grass	sla	dry leaf mass
Achillea millefolium	0.13	0.3955	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	19.475	185.5
Agrimonia eupatoria	3.61	0.3	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	17.85	339.5
Agrostis capillaris	0.07	0.25	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	33.2	263
Anthericum ramosum	3.81	0.2875	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	23.51	161.45
Anthyllis vulneraria	3.31	0.2	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	1	0	18.85	170
Asperula cynanchica	0.97	0.2375	1	0	0	1	0	0	0	0	0	1	0	0	0	1	1	0	0	28.06	329.32
Betonica officinalis	1.39	0.375	1	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	25.45	227.705
Brachypodium pinnatum	3.38	0.6	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	27.33	397
Briza media	0.35	0.165	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	25.85	295.57
Bromus erectus	4.59	0.5	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	20.725	353
Buphthalmum salicifolium	0.46	0.35	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	25.72	181.45
Campanula rapunculoides	0.11	0.375	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	54.74	135.545
Campanula rotundifolia	0.07	0.19	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	36.7	255.5
Carex flacca	0.95	0.275	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	15	332.095
Centaurea jacea	1.53	0.85	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	15.65	219.59
Centaurea scabiosa	6.17	0.825	1	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	18.45	197
Clinopodium vulgare	0.45	0.425	1	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	23.6	258

Dactylis glomerata	0.9	0.454	1	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	31.75	212
Festuca ovina	0.33	0.1525	1	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	19.29	309.74
Festuca rubra	0.79	0.45	1	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	17	273
Filipendula vulgaris	0.72	0.35	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	13	295
Galium album	0.53	0.45	1	0	0	1	0	0	0	0	1	1	0	0	0	1	1	0	0	24.09	162.37
Galium verum	0.57	0.425	1	0	0	1	0	0	0	0	1	1	0	0	0	1	1	0	0	22.25	227
Genista tinctoria	3.86	0.45	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	16.17	248
Helianthemum nummularium	1.08	0.1155	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	14.5	237.5
Helictotrichon pratense	3.11	0.65	1	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	9.85	318
Helictotrichon pubescens	1.91	0.6	1	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	21.3	264
Hieracium pilosella	0.15	0.06	1	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	24.29	188
Hippocrepis comosa	3.9	0.14	1	0	0	1	0	0	0	0	1	1	0	1	0	0	0	1	0	15.75	235.66
Leontodon hispidus	0.99	0.235	1	0	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	22.17	143.64
Leontodon incanus	1.4	0.1	1	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	21.36	157.22
Linum perenne	2.18	0.45	1	0	0	1	0	0	0	0	0	1	0	0	0	1	1	0	0	25.88	200.98
Lotus corniculatus	1.46	0.2	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	29.5	158
Luzula campestris	0.74	0.27	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	24.85	245.74
Medicago lupulina	1.76	0.325	1	1	1	1	0	0	0	0	0	1	0	1	0	0	0	1	0	29.2	196
Peucedanum oreoselinum	3.83	0.5	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	16.27	259.32
Pimpinella saxifraga	1.13	0.3	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	17.12	285.5
Plantago lanceolata	1.8	0.15	1	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	16.82	140.605
Plantago media	0.36	0.05	1	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	18.7	137
Poa angustifolia	0.21	0.36	1	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	15.55	424.5
Potentilla tabernaemontani	0.63	0.1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	16.75	315
Prunella grandiflora	0.78	0.1325	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	20.11	174.37
Prunella vulgaris	0.7	0.145	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	33.01	165
Sanguisorba minor	5.08	0.2	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	22	313.96
Securigera varia	5.4	0.425	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	32.9	168.33
Teucrium montanum	0.91	0.2	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	17.93	264.12
Thymus praecox	0.15	0.07	1	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	0	14.82	234
Trifolium pratense	1.36	0.275	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	1	0	21.5	225.13

Veronica chamaedrys	0.19	0.25	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	32.21	215.38
Vicia cracca	14.29	0.75	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	22.04	219.49

160

Figure S3: Regression analysis for the functional dispersion and functional redundancy indexes [1,2]. The figures show the functional dispersion
 index (a) and the functional redundancy index (b) according to the number of functional groups composing the experimental communities and

163 the correlation between functional dispersion and functional redundancy (c).

REFERENCES

165	1.	Laliberté, E.; Legendre, P. A distance-based framework for measuring functional
166		diversity from multiple traits. <i>Ecology</i> 2010 , <i>91</i> , 299–305, doi:10.1890/08-2244.1.
167	2.	Ricotta, C.; Bello, F. de; Moretti, M.; Caccianiga, M.; Cerabolini, B.E.L.; Pavoine,
168		S. Measuring the functional redundancy of biological communities: a quantitative
169		guide. Methods Ecol. Evol. 2016, 7, 1386–1395, doi:10.1111/2041-210X.12604.
170	3.	Klotz, S. BIOLFLOR - eine Datenbank mit biologisch-ökologischen Merkmalen zur
171		Flora von Deutschland; BfN-Schriftenvertrieb im Landwirtschaftsverl.: Münster,
172		2002, ISBN 378433508X.
173	4.	Kühn, I.; Durka, W.; Klotz, S. BiolFlor - a new plant-trait database as a tool for
174		plant invasion ecology. Diversity and Distributions 2004, 10, 363–365,
175		doi:10.1111/j.1366-9516.2004.00106.x.
176	5.	Kowarik, I.; Boye, P. Biologische Invasionen. Neophyten und Neozoen in
177		Mitteleuropa; Ulmer: Stuttgart, 2003, ISBN 3800139243.
178	6.	Conradi, T.; Kollmann, J. Species pools and environmental sorting control different
179		aspects of plant diversity and functional trait composition in recovering grasslands.
180		J. Ecol. 2016, 104, 1314–1325, doi:10.1111/1365-2745.12617.
181	7.	Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich,
182		D.E.; Reich, P.B.; Steege, H.t.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A
183		handbook of protocols for standardised and easy measurement of plant functional
184		traits worldwide. Aust. J. Bot. 2003, 51, 335, doi:10.1071/BT02124.

185	8.	Funk, J.L.; Cleland, E.E.; Suding, K.N.; Zavaleta, E.S. Restoration through
186		reassembly: plant traits and invasion resistance. Trends Ecol. Evol. 2008, 23, 695-
187		703, doi:10.1016/j.tree.2008.07.013.
188	9.	Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant Ecological
189		Strategies: Some Leading Dimensions of Variation Between Species. Annu. Rev.
190		Ecol. Syst. 2002, 33, 125–159, doi:10.1146/annurev.ecolsys.33.010802.150452.
191	10.	Hamilton, M.A.; Murray, B.R.; Cadotte, M.W.; Hose, G.C.; Baker, A.C.; Harris,
192		C.J.; Licari, D. Life-history correlates of plant invasiveness at regional and
193		continental scales. Ecol. Lett. 2005, 8, 1066-1074, doi:10.1111/j.1461-
194		0248.2005.00809.x.
195	11.	Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.;
196		Sonnenschein, M.; Poschlod, P.; van Groenendael, J.M.; Klimeš, L.; Klimešová, J.;
197		et al. The LEDA Traitbase: a database of life-history traits of the Northwest
198		European flora. J. Ecol. 2008, 96, 1266–1274, doi:10.1111/j.1365-
199		2745.2008.01430.x.
200	12.	Di-Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C.
201		(2013). InfoStat versión 2013. in F. d. C. A. InfoStat Group, Universidad Nacional
202		de Córdoba, Argentina
203	13.	Pla, L.; Casanoves, F.; Di Rienzo, J. Quantifying Functional Biodiversity; The
204		Author(s): Dordrecht, 2012, ISBN 9789400726475.
205	14.	Podani, J. Extending Gower's general coefficient of similarity to ordinal characters.

TAXON **1999**, *48*, 331–340, doi:10.2307/1224438.

207	15.	Rostagno, C.M.; Defossé, G.E.; del Valle, H.F. Postfire Vegetation Dynamics in
208		Three Rangelands of Northeastern Patagonia, Argentina. Rangeland Ecology &
209		Management 2006, 59, 163-170, doi:10.2111/05-020R1.1.
210	16.	Cardinale, B.J.; Srivastava, D.S.; Duffy, J.E.; Wright, J.P.; Downing, A.L.;
211		Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic
212		groups and ecosystems. Nature 2006, 443, 989–992, doi:10.1038/nature05202.