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Abstract: Over the last several decades, plants have been developed as a platform for the production of
useful recombinant proteins due to a number of advantages, including rapid production and scalability,
the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods
used to produce target proteins are divided into stable and transient systems depending on applications
that use whole plants or minimally processed forms. In the early stages of research, stable expression
systems were mostly used; however, in recent years, transient expression systems have been preferred.
The production of the plant itself, which produces recombinant proteins, is currently divided into two
major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such
regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various
aspects of each system will be discussed in this review, which focuses mainly on practical examples
and commercially feasible approaches.

Keywords: molecular farming; plant-derived protein; recombinant protein; expression system;
production system

1. Introduction

The first reports of the production of mammalian proteins in plants appeared in the late 1980s,
and from then on the concept of “plant molecular farming” has referred to harnessing the potential of
plants as biological factories. The concept of molecular farming or “biopharming” was introduced
by Fisher et al. [1,2] to describe “the production of recombinant proteins in plants.” During the early
period, the targets of interest (TOI) in this field were mainly recombinant macromolecules, such as
blood proteins, vaccines, and antibodies; in addition, cosmetic raw materials and medical therapeutics
are now within reach. This review focuses mainly on useful biopharmaceuticals, such as vaccine
antigens, antibodies, and industrial enzymes.

Traditional platforms for large-scale production of biopharmaceuticals, based on the bacterium
Escherichia coli, yeast species, and insect or mammalian cell systems, have been well established
and improved over time. The choice of expression/production platform depends not only on an
investigator’s need, but also on the final purpose and function of the target biopharmaceuticals.
Complex therapeutic proteins, which must be properly folded or processed to achieve the desired
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degree of biological activity, are produced in yeast or mammalian cell systems rather than in prokaryotes.
The biggest concerns in mammalian cell cultures are the high operating costs of scaling up and potential
contamination by animal-borne viruses or virions. In light of such concerns, a plant-based production
system is a good alternative for producing specific recombinant proteins. Recently, this issue was
highlighted when Chinese hamster ovary cells in the production facility for Cerezyme®—which
is used for treatment of Gaucher disease—were infected with calicivirus. The US Food and Drug
Administration (USFDA) quickly authorized Protalix in Israel to undertake commercial production of
Elelyso, which was developed in carrot cell culture. More importantly, Elelyso is a good candidate for
“biobetter” because, unlike Cerezyme®, it harbors terminal mannose residues capable of binding to
microphage receptor and so does not require enzyme digestion to cleave inappropriately glycosylated
proteins following protein harvest.

In here, we review recent advances in plant-based biopharmaceuticals expression platforms
and strategies, and on plant biomass production in different facilities (Figure 1). The expression
methods used to produce target proteins are categorized as “stable” and “transient” and depend
on applications that use whole or minimally processed plants or plant parts. Each type of
system can be further subdivided: techniques involving Agrobacterium-mediated transformation or
particle-bombardment-enabled stable transformation of the nucleus or chloroplast, whereas transient
expression may be achieved by using a plant virus or by infiltration by Agrobacterium [3,4]. Currently,
production of plant biomass expressing the TOI involves two major approaches: open-field cultivation
and closed-indoor systems. The open-field simply refers to an outdoor plantation. Because it uses
existing agricultural facilities, it is easy to scale-up and its economic benefits can be highlighted.
The latter encompasses regimes as greenhouses, plant buildings including vertical farming units,
cell bioreactors, and hydroponic systems. Many aspects of each system will be discussed in this review,
which focuses mainly on practical examples and commercially feasible approaches.
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2. Production Systems of Target Proteins of Interests

2.1. A “Stable” Expression Platform Using Agrobacterium-Mediated Transformation

The advantages of a “stable” transgenic plant system include high scale-up capacity, unique
glycosylation patterns, low risk from animal-borne contaminants, and inexpensive storage costs [5],
and it also avoids the need for refrigerated transportation over long distances through local cultivation.
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To produce valuable recombinant proteins by stable expression system, a lot of plant species, such as
tobacco, rice, potato, tomato, and lettuce, have been reported to date (Table 2). Such plants may be
grouped into leaf-based and seed-based species. Leafy plants such as lettuce, are used as production
platforms with moderately high expression levels: yields of 0.24% [6] and 0.13% [7] have been reported.
Leafy non-food crops, such as varieties of tobacco with low nicotine and low alkaloid levels or alfalfa,
are particularly suitable hosts because they are perennial plants with high biomass production [8].
Recombinant proteins may be expressed specifically in storage organs or seeds of species such as rice,
corn, and potato. Seed or storage-based production platforms are economically viable because they
provide almost unlimited capacity, and, due to seed dormancy and storage properties, production
of recombinant protein by extraction and purification may be decoupled from crop production [9].
In particular, in terms of downstreaming process, the advantages of seeds having fewer phenolic
compounds that may disrupt or strongly deteriorate column resin should be underlined. Previous
studies used rice subjected to microprojectile-mediated transformation to produce synthetic human
lactoferrin and lysozyme; these proteins made up 0.5% flour weight (25% of total soluble protein
(TSP)) and 0.6% of brown rice weight (45% TSP), respectively [10,11]. Unless seed and storage organs
are targeted, plants with high water contents (such as tomato and lettuce) are more suitable for
molecular farming than dry-tissue plants due to the ease with which proteins are extracted from their
tissues [12–14]. For instance, thymosin-a1 is easily extracted from tomato fruits with yields of up to
6 µg/g fresh weight [15].

Stable transgenic plants that produce recombinant protein can be generated via two methods:
nuclear transformation and plastid transformation (Table 1). Most of the studies mentioned above
used stable nuclear transformation; however, expressing recombinant antigens in plant chloroplasts
has several advantages, including high levels of expression (up to 72% TSP) [16], extremely high
stability [17], and the possibility of open cultivation due to maternal inheritance in most crops [18].
Plastid-based vaccines against many infectious diseases have been developed using plant lines
expressing Mycobacterium tuberculosis vaccine antigens [19–21], Vibrio cholerae non-toxin B subunit [22],
Bacillus anthracis protective antigen [23], Yersinia pestis F1-V antigen [24], and Poliomyelitis (polio VP1)
vaccine antigen [25]. Expression levels ranged from 4% to 18% TSP [26]. It is considered a limitation
that chloroplast transformation has been reported only in some plant species, including lettuce [27].
In addition, the fact that the technology has not reached the commercial field means more research
is required.

An enormous advantage of using edible plants in such ways is that their tissues can be consumed
safely; moreover, oral delivery may induce mucosal immune responses. Although most recent
commercial recombinant proteins are produced using transient expression systems, the original
concept of producing oral vaccines from transgenic plants containing protein antigens remains viable.
Development of representative oral vaccines can be illustrated by the following examples. In 2005,
Tanavala et al. [28] conducted a human clinical trial to evaluate the immunogenicity of potato-derived
HBsAg and concluded that orally-delivered plant-derived vaccines would help improve global
immunization rates. Diseases prevented by mucosal immunity are an important candidate for
treatment using oral vaccines. From this perspective, the prefix Muco in the name MucoRice seems
to be of great significance. MucoRice-CTB and MucoRice-ARP1 comprise an antigen derived from
cholera toxin B (CTB) and the variable domain of a rotavirus-specific lambda heavy-chain antibody
fragment, respectively, which accumulate in the storage organelles of rice seeds. Both of these vaccines
protect against disease by inducing both mucosal and systemic immunity [29,30].

Potential weaknesses of orally-delivered plant-based recombinant proteins include difficulties
in controlling dosage and variable dosage consistency, which may differ from fruit to fruit, plant to
plant, and generation to generation. Here are two cases for solving these problems. Protalix Co. uses
lyophilized carrot cells containing either anti-TNF or glucocerebrosidase for oral delivery, whereas
Interberry, which expresses canine interferon-α, is administered in the form of dried strawberry fruit
within dog feed [60].
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Table 1. Summarizing the advantages and disadvantages of plant expression systems.

Expression System Advantages Disadvantages
Production System of Target Proteins

Nuclear stable transformation

- High scale-up capacity
- Unique glycosylation pattern
- Low risk from animal-borne contaminants
- Inexpensive storage costs
- Applied and reported in many plant species

- Dosage control and dose consistency of
orally-delivered plant-based recombinant proteins

- Limitations of economic aspects of plant biomass
production including TOI

Plastid stable transformation

- High levels of expression
- Very high stability
- Potential open cultivation by maternal inheritance

- Lack of research for commercial applications
- Limitation of vaccines production in only some

plant species

Transient expression

- Efficient, time-saving, and widely accepted strategy for
producing large amounts of recombinant protein

- Induce gene expression in a very short time (3 h–6 days)
- High levels of expression: potential production of Gram levels.
- Economic efficiency and commercialization of

recombinant proteins

- Effect of biomass on plant density, growth area,
and leaf position

- Yield changes in recombinant protein yields by
various factors

Plant Biomass Production Systems

Open field cultivation

- Low infrastructure cost
- Rapid production capacity expansion
- The most realistic option for large-scale production

- Potential risk of cross-pollination
- Very strict guidelines governing cultivation of

transgenic plants
- Need to address GMO regulatory requirements

and public concerns

Closed culture

- Fast and efficient growth by optimized growth conditions
- Cost-effectiveness and rapid scale-up
- Significantly improved plant quality in a controlled environment
- high productivity with multi-layer shelves, a high planting

density, and a short production period
- Easy control of plant development
- Prevention the potential hazards of pollen or seed spread
- Possible to grow transgenic plants expressing transgenes

- Various important factors affecting
suspension culture

- Possibility of contamination when subculturing in
a bioreactor culture system

- Limitations of large-scale production (over
250,000 L) expansion in bioreactor culture systems

- Low commercial application of
therapeutic products
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Table 2. Published studies on production systems of target proteins.

Expression System Host Plant Protein Yield Target Material Binary Vector/
Agrobacterium Strain Ref.

Agrobacterium-mediated
transformation

Lettuce 0.24%(w/w, TSP) cholera toxin B
subunit (CTB) Cotyledons pMYO114/LBA4404 [6]

Lettuce 0.13%(w/w, TSP) pro-insulin (Pins) Cotyledons pCAMINS/LBA4404 [7]

Tomato 6 ug/g fresh weight thymosin α1 Cotyledons/hypocotyls PG-pRD12-4×Tα1/EHA105 [15]

Tobacco 4% of TSP TBAg-ELP Leaf disk pCB301/C58C1 [19]

Carrot 0.056% of TSP ESAT6 Zygotic embryos pBI121/- [21]

Carrot 0.002% of TSP CFP10 Zygotic embryos pBI121/- [21]

Potato 8.5 µg/g FW HBsAg Leaf disk pHB114/LBA4404 [28]

Rice 0.15% of seed weight CTB Seed pGPTV-35S-HPT/LBA4404 [29]

Rice 11.9% of total protein ARP1 Seed pZH2Bik45G1B/- [30]

Microprojectile-mediated
transformation

Rice 0.6% (w/w, 45% of TSP) Glutelin1 (Gt-1) Embryogenic callus pAPI134/- [10]

Rice 0.5% (w/w, 25% of TSP) hLF Embryogenic callus pCRGT1/- [11]

Lettuce >72% of TSP CTB-Pins Plastid pBSSK+/- [16]

Tobacco >70% of TSP plyGBS Plastid pRB95/- [17]

Tobacco - EPSPS Plastid pZS-RD/- [18]

Tobacco 7.5% of TSP CTB Plastid pLsDV/- [20]

Lettuce 0.75% of TP CTB Plastid pLsDV/- [20]

Tobacco 4.1% of TSP CTB Plastid pLD-CtV2/- [22]

Tobacco 14.2% of TSP Protective antigen Plastid pLD-ctv/- [23]

Tobacco 3.68% of TSP F1-V Plastid pLDS-F1V/- [24]

Tobacco 4–5% of total leaf protein CTB-VP1 Plastid pGEM-T/- [25]
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Table 2. Cont.

Expression System Host Plant Protein Yield Target Material Binary Vector/
Agrobacterium Strain Ref.

Cell and tissue culture

Tobacco 0.25 ug/mg protein Human serum
albumin (HSA) Leaf disc pMOG18/GV2260 [31]

Sunflower 0.02% of hGH transcripts human growth
hormone (hGH) Callus pRK290/A208 [32]

Rice 10% of TSP α-1-antitrypsin Callus pAPI73/- [33]

Rice 242.8 mg/kg FW mAb Callus pUN1390/EHA105 [34]

Rice 699.79 ng/g FW Interferon-gamma Callus pBS3S/LBA4404 [35]

Tobacco 185.48 pg/g FW rhEPO Hairy root pK7WG2D/A. rhizogenes [36]

Rice 76.5 mg/L HSA Callus pBluescript SKII+/EHA105 [37]

Rice 15 mg/L Trypsin Callus pMYT111/LBA4404 [38]

Rice 31.4 mg/L
human cytotoxic

T-lymphocyte antigen
4-immunoglobulin

Callus pMYN409/- [39]

Rice 45 mg/L HSA Callus pA3HSA/EHA105 [40]

Rice 73 mg/g cells

human
granulocyte-macrophage

colony stimulating
factor

Callus pMYN24/- [41]

Rice 57 mg/L hGH Callus pMYN449/- [42]

Rice 19 mg/L rhVEGF165 Callus pMYD171/- [43]

Rice 17.3 mg/L FimA mAb Callus pMYV657/- [44]

Rice 18 mg/L human pepsinogen C Callus pMYD213/- [45]

Tobacco 11% of TSP Elastin-like
polypeptides (ELPs) Leaves pCaMterX/EHA105 [46]

Tobacco 6.42 mg/kg FW ELPs BY-2 cells pCaMterX/EHA105 [47]

Tobacco - Zein -derived
peptides Leaves pC2300/EHA105 [48]

Tobacco - Zein -derived
peptides Leaves pBin19/EHA105 [49]

Tobacco 0.30 ± 0.018 g/L Hydrophobins BY-2 cells pCaMterX/EHA105 [50]

Tobacco 5.0 mg/g FW Hydrophobins-GFP BY-2 cells pCaMterX/EHA105 [51]

Tobacco 0.2% of TSP ELP/HFBI Leaves pCaMterX/- [52]
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Table 2. Cont.

Expression System Host Plant Protein Yield Target Material Binary Vector/
Agrobacterium Strain Ref.

Transient expression system

Tobacco 0.5 mg/g FW mAb Leaves pBY/LBA4404 [53]

Tobacco 1.0 mg/g FW BMVCP/CMVCP/MRFVCP Leaves pBYR2fp/GV3101 [54]

Tobacco >1.0 mg/g FW Hemagglutinin (HA) Leaves pNM216/GV3101::pMP90 [55]

Tobacco 846 ug/g FW Hemagglutinin (HA) Leaves pNM216/GV3101::pMP90 [56]

Tobacco 215 ug/g fresh mass Hemagglutinin (HA) Leaves pNM216/GV3101::pMP90 [57]

Tobacco 2.0 ug/mg TSP rhEPO Leaves pEG101/EHA105 [58]

Tobacco 226.9 µg/g FW human glutamic acid
decarboxylase Leaves pK7WG2/EHA105 [59]
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Despite the merits of transgenic plant-based expression systems, there are still limitations.
Mainly, these are related to economic aspects rather than to technical aspects and they are
important factors that determine investment by companies working in this field. For example,
economic production of plant biomass containing the TOI is the key to commercialization. To overcome
these limitations, most production platforms for plant-based recombinant proteins are moving to
transient expression systems.

2.2. Cell Cultures in “Stable” Systems

Since the first report of albumin production in tobacco cell suspension culture [31], human
therapeutic proteins, antigens, scFv, antibodies, and reporter proteins have been introduced to and
produced in various plant-derived cell suspension cultures [61]. Use of callus cells to produce a
chimeric gene encoding human growth hormone was first reported in sunflower callus tissue [32];
many different types of callus culture have since been developed [62]. Such systems have several
advantages, including rapid growth, protein consistency with the use of controlled bioreactors under a
contained environment, fewer issues with pathogen contamination involving viral or bacterial toxins,
and the ability to address regulatory and environmental concerns regarding the potential release of
genetically modified organisms (GMOs) linked to whole-plant systems. In addition, extracting and
purifying protein from cell cultures is simpler, more convenient, and more cost-effective than from
whole plants, especially when the product is secreted into the culture medium.

Species such as Nicotiana tabacum, N. benthamiana, Oryza sativa, and Daucus carota are used most
frequently for development of suspension cultures. Recombinant alpha-1-antitrypsin (rAAT) with
a secretion signal sequence and sugar starvation-inducible promoter showed the highest rate of
production (100–247 mg/L) of transgenic proteins expressed in rice cell suspension culture [33]. Chen et
al. reported that bevacizumab, a humanized monoclonal antibody (mAb) targeting vascular endothelial
growth factor, produced via a rice callus cell system had similar biological activity, and therefore,
might be used in the future as a cost-effective biosimilar treatment [34]. Inducing secretion of target
recombinant proteins into the culture medium is a good method for increasing yield or enabling easy
harvest and purification. Furthermore, secretion of target protein by cells into the medium is the best
choice when production is scaled-up in bioreactors. The signal peptide of α-amylase was used to
ensure secretion of recombinant protein by cells [35]. The ER signal peptide facilitated expression and
secretion of intracellular rhEPO from hairy root cultures of tobacco (N. tabacum), resulting in a yield
of up to 66.75 ng/g TSP [36]. In many cases [37–39], the promoter and signal peptide from the rice
α-amylase gene have been used to develop a two-step process (increasing cell number and maintaining
cell viability/activity in the first step and then producing recombinant protein in the second step),
resulting in high production of secreted proteins. Although this system has some strengths, it increases
both the cost of the process (as it is more labor-intensive) and the risk of contamination when changing
the medium. Liu et al. scaled-up production by using a more convenient method based on an air-lift
bioreactor, which requires no change of medium [40]. They demonstrated a 6-fold increase in the yield
of recombinant HAS using the two-step process.

The approval by the USFDA of a recombinant vaccine against Newcastle disease virus produced
in non-nicotinic transgenic tobacco cell cultures was a monumental event in the development of plant
cell culture as a bioproduction platform [63]. Since then, the commercial success of Elelyso, the first
recombinant pharmaceutical protein for human use produced in plant cells, has proven the value of this
approach [64]. D. carota, the original species used by Protalix Biotherapeutics, is now the most famous
plant species for production of pharmaceuticals, with ten vaccines, against measles, hepatitis B virus
(HBV), human immunodeficiency virus, Y. pestis, Chlamydia trachomatis, M. tuberculosis, enterotoxigenic
E. coli, Corynebacterium diphtheria/Clostridium tetani/Bordetella pertussis, and Helicobacter pylori, awaiting
completion of development [65].

Rice is one of the most popular plants for the establishment of cell lines in suspension culture. Rice
cell suspension cultures may overcome the problem of low expression levels by using the rice α-amylase
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3D promoter system. The α-amylase 3D promoter, which is activated by sugar starvation [66], is one
of the most widely used metabolite-regulated promoters; indeed, it is used in rice cell suspension
cultures to produce various recombinant proteins such as hGM-CSF [41], human growth hormone [42],
human VEGF165 [43], FimA mAb [44], bovine trypsin [38], and human pepsinogen C [45].

Plant cell cultures combine the safety of plants with the benefits of a controlled fermenter-based
process in a contained cultivation system. A significant issue for plant-based biopharmaceutical
manufacturing platforms is the requirement for compatibility with good manufacturing practice
(GMP); this is because it is difficult to constrain the entire production chain to a clean-room when
using whole plants. The original GMP criteria applied to clinical products produced in bacteria or
mammalian cells can be applied directly to plant cells in a bioreactor, but it should be noted that the
regulations for biopharmaceuticals produced in whole plants must be changed considerably [67].

To increase the purification efficiency of recombinant proteins produced in plant callus suspension
cultures, various tags have been added to appropriate sites within the expression vectors. These include
elastin-like polypeptides [46,47], zein-derived peptides [48,49], and hydrophobins [50]. The main
characteristic of these tags is that they stabilize the fusion partner and enable accumulation of the
fusion protein in discrete storage structures, thereby increasing the yield of the recombinant protein.
Expression of green fluorescent protein–hydrophobin fusion (GFP–HFB) proteins increased 2-fold (in
comparison with free GFP) upon both transient expressions in N. benthamiana leaves [51] and stable
expression in tobacco plants [52]. Moreover, a large-scale tobacco BY-2 suspension cell culture increased
the yield of a GFP–HFB fusion protein by 3-fold, with good purity and up to 60% recovery [50].

Despite the economic and technical benefits of molecular farming, public and regulatory
concerns about containment of GMOs have hindered its widespread adoption, especially in Europe.
The European Union has implemented the strictest legislation governing the use of GMOs and
GMO-derived products [68] due to concerns about their long-term environmental burden and biosafety.
Therefore, the recent trend for the fourth industrial revolution is for transient expression technology to
be used in agriculture as a substitute for the creation of new varieties of GMOs [69].

2.3. Transient Expression Systems

In the late 1990s, transient expression systems in intact or virally infected plants were considered
primarily as a means of checking whether the vector or target protein was expressed, and a means
of determining the function of the recombinant protein. Expression would then be moved into a
stable transgenic plant system and scaled-up [2]. When the development of edible vaccines that used
either the whole or part of a plant proved problematic, various alternative systems were suggested.
Transient gene expression is an efficient, time-saving, and widely accepted strategy for producing
large amounts of recombinant protein. The advantages of these systems have been well known for the
last few decades, and transient gene expression can be detected within a very short time (between
3 h and 6 days). For this reason, many researchers and commercial applications have found transient
expression to be a powerful tool. Recent studies describe methodologies that produce milligrams to
grams of recombinant protein using a very strong viral replicon vector system [53,54].

Plant culture for transient expression is usually divided into two stages, the pre-inoculation and
post-inoculation processes, which require different optimal environments. Cultivation conditions,
such as the nutrient composition of the culture medium before agro-infiltration [55] and dehydration
of plant material after agro-infiltration [70], are key factors. Changing environmental conditions
at appropriate times during each stage may be required to obtain a high yield [56]; a high-nitrate
nutrient solution during the pre-inoculation state results in high recombinant protein content [55].
Very recently, interest in the surrounding environment has extended beyond research into the plant
itself [57,58,71]. Nitrate-enriched fertilizers that enable plant growth [55], immediate desiccation after
agro-infiltration [56], and slightly lower plant density [57], are critical factors for improving plant
biomass. Plant density, the number of plants per unit growth area, and the effect of leaf position
affect harvested biomass, and are therefore, important factors for achieving economically feasible
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production [57]. Removal of residual water from a bacterial suspension on detached leaves significantly
affects the yield of recombinant hemagglutinin (HA) protein, and recovery from detached leaves in a
transient over-expression system is comparable with that from intact leaves [56].

Merlin et al. [59] compared the yields of optimized target proteins after downstream processing in
three different plant expression systems and reported that the highest yields of an optimized variant
protein were achieved in a transient expression system using the MagnICON vector. They hypothesized
that a significant increase in the yield of the TOI could be achieved using transient expression.

3. Plant Biomass Production Systems

Since the 1990s, many foreign genes related to vaccine antigens, antibodies, and therapeutic
proteins have been introduced into plant genomes, resulting in high-value transgenic plants. Different
types of production systems for various plant-based recombinant proteins have been reviewed above.
This next section will review and discuss two different approaches to cultivating plant itself expressing
various recombinant proteins: open-field cultivation and closed culture systems.

3.1. Open-Field Cultivation

Molecular pharming of entire plants involves genetic engineering to insert genes encoding
useful pharmaceuticals. The open-field approach does not require expensive infrastructure for
plant production and allows purification capacity to be quickly scaled to meet demand, meaning
costs of the whole process are greatly reduced. When cultivating any given species in the field,
however, the potential risk of cross-pollination must be considered. Rice, wheat, and peas are
all self-pollinating plants, but the residual risk of out-crossing to wild relatives still needs to be
assessed [72]. Tobacco plants are favored for the production of biopharmaceuticals due to their fast
growth, rapid reproduction, maintenance of genetic stability, and non-feed crops [73,74]. Although
tobacco species are cross-pollinating, harvesting the plants prior to flowering can prevent or minimize
the risk of contamination.

Devos et al. [75] demonstrated that to minimize vertical gene flow from GM oilseed rape to
wild-type plants in the field, critical practical measures, including the use of certified seed, separation
of fields, harvesting the crop at the correct developmental stage, control of self-seeding in subsequent
crops, and accurate record-keeping, are required. These proposed items are supported by the important
cases described below.

Chicken egg-white avidin was developed by ProdiGene and marketed by Sigma-Aldrich (product
number A8706) for use as a diagnostic reagent. Despite the use of a stable expression system,
transgenic maize seeds produced very high yields of over 2% [76]. Reports suggest that compared
with conventional extraction from eggs, this method provided a 10-fold saving in the cost of starting
materials. The transgenic maize was planted in a greenhouse or in open fields for trait analysis
and maintained by out-crossing and segregation of the T1 through T4 generation. However, when
the transgenic crop was grown and harvested in a field trial in Nebraska, some of the GM kernels
remained on the ground and germinated the following year in the same field in which soybeans were
subsequently grown. In another case involving the same company, GM pharma corn grown in Iowa
was cross-pollinated by crops grown nearby [77], resulting in wholesale destruction of potentially
contaminated plants.

These incidents had a negative effect on future research. Afterwards, an increase in public
opposition to GM crops producing pharmaceutical components led to stronger regulation and
withdrawal of investment by big biotech companies such as Monsanto. Due to the very strict guidelines
governing cultivation of plants expressing foreign genes of interest, which are referred to as living
modified organisms, there are no examples of “approved” cultivation of transgenic plants producing
pharmaceutical proteins anywhere in the world; this is because the number of permits for field trials of
such crops issued by the USFDA dropped sharply after 2000.
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A positive case of a seed-based platform in open-field cultivation is one developed by SemBioSys
Genetics Inc. Safflower seed-based recombinant insulin produced at levels >1% of total seed protein,
was tested successfully in human clinical trials, and bioequivalence to commercial insulin was
demonstrated [78]. Open-field growth is one of the most realistic options for large-scale production of
transgenic seed crops. In 2008, cultivation of safflower was scaled-up to 1 tonne of seed per acre and
then subjected to a pilot scale process; advanced technology now allows production of up to 2–4 kg of
recombinant protein per hectare, depending on the molecular mass of the target protein.

When plant-made pharmaceuticals produced via molecular farming enter the commercial market,
their production needs to meet regulatory requirements and address public concerns regarding
containment of transgenic crops [79]. Best management practices to reduce seed-mediated gene flow
and environment contamination by pollen transmission have been published [80]. Two recent articles
indicate that the incidence of pollen transmission ranges from 0.00024% to 0.0087% [81,82].

After approval by the USFDA Animal and Plant Health Inspection Service, tobacco plants
producing biologically effective interferon-α2b (IFN-α2b) for treatment of hepatitis C infection were
grown over an area of approximately 0.26 acres [83]. Expression levels reached 20% of TSP, but only
about 87.2 g of IFN-α2b was generated after a single harvest of tobacco plants grown in the field; this
was because harvesting biomass is performed by taking the young leaves of premature flowering plants.
Thus, a chloroplast-based production system is considered to be a suitable method for cultivation in
the field, due to advantages such as minimizing transmission of transgenes via pollen spread.

Ventria Bioscience (www.ventria.com) used field-grown rice to produce human lactoferrin [11]
and lysozyme [10] for treatment of acute diarrhea and dehydration. A randomized, double-blind,
controlled trial of a rice-based oral rehydration solution containing these two biopharmaceuticals
was conducted in children and the results demonstrated beneficial effects [84]. Also, it was reported
recently that VEN120, the trade name for recombinant human lactoferrin derived from rice, reduces
inflammation, and promotes immune self-tolerance [85].

3.2. Closed Culture Systems

Due to issues with field cultivation of GMO, most transgenic plants grown for molecular pharming
are cultivated in “closed systems” (a simplified term for “closed plant production system”). The various
categories of closed culture system are discussed in detail below. Such systems have been widely used
in Japan for commercial purposes since 2002 [86]. Kozai pointed out several advantages of closed
systems: first, rapid and efficient growth due to optimized growth conditions; second, the significantly
higher quality of plants due to uniform pest control, an environment free of insects, pathogens, and
weather disturbances; third, higher productivity achieved by using multi-layered shelves, a high
planting density, and a shorter production period; and, lastly, easier control of plant development.

Farran et al. [87] harvested 4.2 mg of recombinant histidine-tagged human cardiotrophin (rhCT-1)
from a single plantlet grown for 20 days in a walk-in room; they calculated yields of up to 2.5 kg rhCT-1
per unit of a commercial-type closed system per year. Furthermore, it was suggested that yields of
3.2 kg rhCT-1 would be possible by increasing the harvesting frequency once per week. This would
generate an amount of protein that far exceeds the amount required worldwide.

In conclusion, a confined or closed system involving transient agro-infiltration is an
environmentally friendly method of producing recombinant proteins, which even in seeding plants
avoids the potential hazards of pollen or seed spread.

3.2.1. Greenhouse Systems

A greenhouse is an example of an “open plant production system” (simplified to “open system”).
It is less well controlled than a closed system because exchange of heat energy, CO2, and water
may occur between its interior and the external environment [86]. The advantage of a greenhouse
plant production system over open-field production is a higher biomass yield due to technological
improvements that have, over the past two decades, resulted in a 15-fold increase in productivity [88,89].

www.ventria.com
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Greenhouses can be designed to function as containment facilities that prevent escape of transgenes [74];
they also maximize protein productivity by optimizing conditions for plant growth, development,
and accumulation of nutritional compounds. Controlled environments provide an opportunity to
increase production of “value-added” crops containing high concentrations of phytochemicals, such as
lycopene in tomato [90]. In addition, stable transgenic plants produced by Agrobacterium-mediated
transformation are usually grown in containment systems such as greenhouses. An efficient biomass
production system for transgenic lettuce harboring HBV surface antigens for use as anti-HBV oral
vaccines [91] and transgenic tobacco producing an anti-HBsAg plantibody [92] was developed in a
year-round cropping greenhouse to optimize product processing; this was a step towards manufacture
of a standardized oral vaccine with reliable efficacy. In general, these transgenic plants were seeded
initially in indoor floating beds and then transferred to greenhouses for further growth. In other cases,
seeds of transgenic Petit Havana tobacco plants expressing IFN-α2b were propagated in a greenhouse
suitable for field transplantation [83].

Fraunhofer IME, a leading German company working in this field, grows transgenic tobacco
plants expressing P2G12 [93] (used in phase I progress trials) according to GMP guidelines in a
specialized containment greenhouse in Aachen. ORF Genetics (http://www.orfgenetics.com/) produces
endotoxin-free growth factors and cytokines in barley grains grown in their own geothermal high-tech
greenhouse [94]. Up to 130,000 bio-engineered barley plants at a time may be grown for 90 days; these
plants are a remarkable source of commercialized products, such as BioeffectTM EGF and ISOKINETM.

Greenhouses are one of the most promising systems for large-scale production of biomaterials in
plants as they provide a compromise between capital investment and ease of scale-up.

3.2.2. Bioreactor Culture Systems

Suspension culture systems have a long history, having been used since 1902 [95]. They are
employed widely in the plant biotechnology field as a convenient tool for large-scale production of
recombinant proteins, secondary metabolites, and other pharmaceutical ingredients [96]. Conditions
are controlled easily, which enables more consistent yields; moreover, secretion of target materials into
the medium makes it possible to simplify the procedure and reduce costs, thereby providing significant
advantages over methods based on extracting and purifying target material from plant cells. Due
to these advantages, many cases of plant suspension culture have been reported; proteins produced
using this method include the HN protein of Newcastle disease virus, human glucocerebrosidase,
recombinant α-galactosidase-A, and anti-tumor necrosis factor antibodies [96]. To optimize important
factors that affect suspension culture, one must consider selection of the host plant, the type of plant
material (e.g., callus or hairy root), media components, and the bioreactor type and operating method.
These considerations are similar to those for well-characterized production systems based on microbial
or mammalian cells [97].

Bioreactor operations are critical for the successful development of large-scale production
processes [61]. There are several types of bioreactor, including air-lift reactors, bubble column
reactors, membrane reactors, rotating drum reactors, single-use bubble column reactors, stirred tank
reactors, wave reactors, wave and undertow reactors, and bench-top bioreactors [98]. Overall, their
volumetric productivity ranges from 4.5–7.7 mg/L [99] to 100–247 mg/L [33]. Temporary immersion
bioreactors, which immerse biomass in liquid media periodically, are amenable to scaled-up automated
micropropagation of large quantities of shoot biomass under standardized conditions [100]. Using this
system, fragment C of tetanus toxin accumulated to about 95 mg/L (8% TSP) [101], and outer surface
protein A of Borrelia burgdorferi (OspA) gave a yield of 108 mg/L (7.6% TSP) [102]. An air-lift type
bioreactor (130 L) is another efficient system used to produce recombinant proteins such as the B subunit
of E. coli heat-labile toxin, which accumulated to 0.36% TSP in Siberian ginseng somatic embryos [103].
When expression of tomato bifunctional nuclease1 was compared between N. benthamiana and BY-2
cell suspension cultures, the suspension culture showed stable maintenance with lower expression
than in N. benthamiana [104]. The most impressive achievement to date from a cell culture system using

http://www.orfgenetics.com/
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a tank bioreactor is the first plant-produced commercial therapeutic protein, produced in carrot cells
grown in a flexible polyethylene disposable bioreactor (www.protalix.com).

This system is easy to use, requires a low initial capital investment, and can be scaled-up
cost-effectively. NBM, a Korean venture company operating in the field of molecular farming,
has adopted the flexible polyethylene disposable bioreactor to express recombinant protein in
rice cells due to the easy control of culture conditions, rapid growth, and upscaling potential.
Recombinant proteins are secreted into the culture medium, thereby simplifying isolation and
purification of the products (www.nbms.co.kr). NBM has launched serum-free, animal component-free,
and endotoxin-free INNOkine and INNOzyme products for generation of stem cell-related growth
factors, bioreagents, cosmetic ingredients, and cosmetics.

However, this system also has disadvantages. A typical problem is management of contamination
when subculturing. Using bioreactors for plant cell or hairy root culture requires cultivation techniques
similar to those used for mammalian cell culture systems, which involve sterilization; therefore, it is
difficult to expand such systems to very-large-scale production of 250,000 L or more [105]. Although
the set-up phase is shorter for suspension cultures than for stable transgenic plants, the scale-up and
maintenance of very-large-scale production require specialized equipment and intensive labor [72].
Estimates of costs of the two systems suggest that 1 kg of grain costs about US $0.20 to produce, but the
total production costs of 1 kg of plant biomass in a laboratory-scale reactor are about US $200 when
labor, special equipment, and consumables are considered.

Recently, the biomanufacturing industry has widely accepted disposable bioreactor systems
such as wave-mixed bioreactors or stirred tank reactors for plant cell cultures as an alternative
to the stainless steel bioreactors used for mammalian cell cultures due to their cost-effectiveness,
flexibility, and safety [106–108]. Tobacco BY-2 cells are a representative platform for the manufacture
of biopharmaceutical proteins in suspension culture. Raven et al. [109] succeeded in cultivating
BY-2 suspension cells secreting a human M12 antibody in a disposable orbital shaker at a working
volume of 100 L; this scale is 200-fold greater than that used for routine cultivation in shake flasks.
A manufacturing process involving expanded bed adsorption chromatography showed high yield
recovery (ranging from 75% to 85%) and product purity >95%. A little earlier, a study to determine the
suitability of the orbital shaker disposable SB200-X bioreactor system for scaled-up cultivation of BY-2
cells secreting human IgG reported cell growth and recombinant protein produced yields comparable
with those obtained after cultivation in 500 mL shake flasks [110]. Semi-continuous operation through
two phases each of growth and expression was used for production of an active tetrameric form of
recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, from a transgenic rice
cell suspension bioreactor; the maximum yield was 1.6 mg BChE/L [111].

Despite advantages such as cost-effectiveness, rapid scale-up, and low risk of pyrogen
contamination, only one therapeutic product has entered the market: glucocerebrosidase, which is
produced in Israel by Protalix.

3.2.3. Hydroponic Systems

An indoor hydroponic system guarantees fast growth, is free from soil-borne disease, and does not
require pesticides or herbicides. Hydroponic systems can be adopted to grow plants stably or transiently
expressing transgenes in a greenhouse or a closed growth system. A fully contained hydroponic system
used for primary research was used to grow vacuum-infiltrated N. benthamiana plants transiently
expressing recombinant proteins [112]. Several proprietary improvements have allowed this plant
platform to be adapted to generate a large-scale automated hydroponic growth system.

Both tomato plants expressing the F1-V antigens of bubonic plague and the greenhouse-adapted
wild-type plants were grown hydroponically for 24–30 weeks in a greenhouse equipped with heating
and evaporative cooling systems [113]. Plant growth, cumulative fruit yield, fruit TSP concentration,
and cumulative TSP production were measured. Cumulative fruit yield per plant of F1-V tomato
over 13 weeks of harvest was almost half that of the greenhouse-adapted wild-type; however, the TSP

www.protalix.com
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concentration in the fruit was at least three times higher. Therefore, the critical metric to consider when
using hydroponic cultivation for high-value protein production is not biomass productivity but the
protein concentration in fruit. The following studies were conducted to determine optimal conditions
for hydroponic cultivation of biopharmaceuticals. Transgenic tomato plants expressing F1-V protein
were grown hydroponically at high electrical conductivity (EC) in nutrient solution; increasing EC
led to a significant fall in the levels of both TSP and F1-V antigen in the fruit [114]. To identify the
optimum time of harvest to maximize the yield of F1-V antigen, protein levels in the green fruit were
investigated at different developmental stages [115]. Harvesting small green fruits without pruning
was the most practical way to maximize antigen yield.

In another study, transgenic lettuce plants expressing coagulation factor IX fused to a CTB carrier
were grown in a scaled-up Fraunhofer cGMP hydroponic system and harvested at about 870 kg fresh
weight per 1000 ft2 per annum, yielding 24,000–36,000 doses [116]. This hydroponic system consisted
of two wire shelving units with four growing areas per rack. Growth conditions were as follows:
light intensity, 70–90 mmol m−2 s−1; photoperiod, 18 h; temperature, 23–26 ◦C, and humidity, 20–60%.
This scalable production method that is translatable to cGMP is performed well using a transformed
edible crop.

To ensure GMP, a rice-based oral vaccine against cholera, MucoRice-CTB, was produced in a closed
hydroponic cultivation system, thereby yielding a product that met regulatory requirements [117].
These plants were cultivated using hydroponic techniques based on a circulating nutrient solution and
a polystyrene foam board as a floating holder in a molecular farming factory that can be harvested
three times a year. To ensure batch-to-batch consistency with respect to plant growth and CTB
expression, appropriate environmental conditions for growing the rice, including lighting, wind
velocity, temperature, humidity, and nutrient solution, were established.

Hydroponic systems are attractive due to their high recycling efficiency and ease with which
fertilization and root temperature can be controlled. Consequently, these systems can be a good
choice for cultivation of pharmacological plants (not only leafy vegetables but also fruit or storage
vegetables). In Japan, the Hokkaido Center of the National Institute of Advanced Industrial Science
and Technology invested in commercialization of a medicine sourced from strawberries expressing
canine interferon, which suppresses gum inflammation in dogs. The strawberries were grown in a
previously established closed-type plant factory equipped with a hydroponic cultivation bed [118].
Such a fully closed hydroponics system can be operated year-round, yielding several harvests annually;
thus, it is both cost and production-effective.

4. Conclusions

There are various systems for producing industrially or pharmaceutically useful recombinant
protein in plants, and each system has strengths and weaknesses. We have reviewed many examples
of production using each system. In the future, demands for plant-based biopharmaceuticals will
increase. Most importantly, the economic feasibility of producing useful recombinant proteins will
determine the viability of companies that have just started industrializing this process. Any successful
strategy must make good use of the advantages of producing “bio-betters” by selecting suitable
methodologies to overcome the low price of mass production in E. coli and the excellent efficacy of
animal cells. Of the production systems discussed in this review, transient expression systems have
been most frequently adopted by different companies, with 16 market-releasable items that are safe
and environmentally friendly currently in indoor or outdoor trials [119]. Bioreactor-based cell culture
systems, which can be rapidly scaled-up and are free of mammalian pathogens, have been adopted by
traditional fermentation-based companies. Despite this, the situation concerning GM plants is still
not always favorable and some major hurdles remain. The final goal, namely, the production of a
plant-based vaccine in fresh plant materials that can be eaten, is yet to be achieved. Given market prices,
the large capacity required, and the general understanding of plant biopharmaceuticals by the general
population, it is difficult to challenge the dominance of conventional production platforms based on E.
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coli, mammalian cells, and yeast. However, recent advances in plant molecular farming allow very
large-scale, even multi-tonne scale, production of plant-based pharmaceuticals. The positive trend is
that many researchers try to start a venture based on technology acquired from the laboratory. Thus,
technologies from various fields will converge and continue to develop; eventually, clinical products
produced using these systems will enter the market.
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