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Abstract: Chromium (Cr) is an element naturally occurring in rocky soils and volcanic dust. It has
been classified as a carcinogen agent according to the International Agency for Research on Cancer.
Therefore, this metal needs an accurate understanding and thorough investigation in soil–plant
systems. Due to its high solubility, Cr (VI) is regarded as a hazardous ion, which contaminates
groundwater and can be transferred through the food chain. Cr also negatively impacts the growth
of plants by impairing their essential metabolic processes. The toxic effects of Cr are correlated with
the generation of reactive oxygen species (ROS), which cause oxidative stress in plants. The current
review summarizes the understanding of Cr toxicity in plants via discussing the possible mechanisms
involved in its uptake, translocation and sub-cellular distribution, along with its interference with
the other plant metabolic processes such as chlorophyll biosynthesis, photosynthesis and plant
defensive system.
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1. Introduction

Chromium (Cr) is a silver-colored hard metal naturally occurring in rocky soils, and volcanic
dust. Chromium is the 24th element having a molecular weight of 51.1 a.m.u. and a density of
7.19 g/cm3 [1]. The Agency for Toxic Substances and Disease Registry [2] has ranked Cr the 17th
among the most hazardous substances. It has been classified as the number one carcinogen according
to the International Agency for Research on Cancer [3]. Therefore, this metal needs an accurate
understanding of its uptake, transport and bioaccumulation within plants and a thorough investigation
in soil–plant systems.

Chromium can easily convert from one oxidation state to another due to its high redox potential
and intricate electronic and valence shell chemistry [4,5]. It exists in a wide range of oxidation states,
but the most common and stable states are Cr (VI) “hexavalent” and Cr (III) “trivalent” [6]. Both
forms of Cr vary significantly with respect to their bioavailability in soil, translocation and toxicity
within plants [4]. The Cr (III) occurs in the form of chromite (FeOCr2O3), whereas Cr (VI) occurs in
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association with oxygen to form chromate (CrO4
2−) or dichromate (Cr2O7

2−), that are highly toxic to
living organisms [7]. Based on its activity, former is the most stable form of Cr, whereas the highest
noxious one for plants is the Cr (VI). Under physiological conditions, Cr (VI) enters the cells and may
get reduced to Cr (V), Cr (IV), thiylradicals, hydroxyl radicals and finally Cr (III). All these oxidation
states disrupt the cellular integrity of cells by attacking proteins, DNA and membrane lipids [8,9].

Hexavalent Cr (VI) is used in several industrial applications such as electroplating, dyeing
of textiles, leather processing, steel production and tanning industry, resulting in discharge of
chromium-containing effluents. This ultimately causes significant elevation in Cr contents in the
environment [10]. Due to its high solubility in water and soil, Cr (VI) is regarded as a hazardous
ion that contaminates groundwater and can be transferred through the food chain [10–12]. It also
occurs in air, water and soil at different concentrations. Its contents in freshwater and seawater vary
from 0.1 to 117 µg L−1 and 0.5 to 50 µg L−1 respectively. The weathering of Cr containing rocks and
leaching of soils discharge significant Cr contents into the aquatic environment [7]. Cr contents in soil
ranges between 10 and 50 mg kg−1 under natural conditions, however, its concentration in agricultural
soils can reach up to 350 mg kg−1 of the soil [7]. The United States Environmental Protection Agency
(USEPA) [13] has listed Cr among the 14 most dangerous substances that can cause serious health
issues in living organisms. Cr can have both beneficial and harmful effects on human health depending
on its uptake, exposure time and oxidation state. The trivalent form of Cr (III) is an important nutrient
for humans and according to the World Health Organization [14], its daily ideal intake is between 50
and 200 µg day−1 for the metabolism of carbohydrates, proteins and fatty acids. However, its excess in
the body poses serious health concerns. Moreover, hexavalent Cr (VI) is 10–100 folds more harmful
than Cr (III), which can cause allergies and skin problems.

To date, Cr does not have any known biological role in plant physiology [15]. It is generally
perceived that excessive Cr levels in plant tissues may provoke several morpho-physiological
and biochemical processes in plants [16,17]. Any metal toxicity is attributed to a complex series
of metal interactions with the genetic processes, signal transduction and pathways and cellular
macromolecules [18–20]. Hence, Cr toxicity is reported to affect plant growth and impedes their
essential metabolic processes [21]. Typically, Cr toxicity reduces plant growth by inducing ultrastructural
modifications of the cell membrane and chloroplast, persuading chlorosis in the leaves, damaging root
cells, reducing pigment content, disturbing water relations and mineral nutrition, affecting transpiration
and nitrogen assimilation and by altering different enzymatic activities [15,22–25]. All these toxic effects
of Cr might be due to the over production of reactive oxygen species (ROS), which ultimately disrupt
the redox balance in plants [25]. Taking all into consideration, we review the literature that addresses
Cr uptake, translocation and sub-cellular distribution in plants. We also discuss different effects of Cr
on plant pigments, photosynthetic parameters, enzymatic and non-enzymatic antioxidative system
and various endogenous levels of plant hormones (Table 1).

Table 1. Effects of chromium metal on different physiological processes in plants.

Plant Species Physiological Response Reference

Camellia sinensis Increased SOD and CAT activities Tang et al. [26]

Capsicum annuum Increased carotenoid content Oliveira [27]

Chamomilla recutita Increased MDA level Kováčik et al. [28]

Echinochloa colona Increased CAT and POD activities Samantaray et al. [29]

Kandelia candel Increased MDA content, and
activities of CAT and SOD Rahman et al. [30]

Ocimum tenuiflorum Increased proline level Rai et al. [31]

Oryza sativa Increased POD activity Ma et al. [32]
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Table 1. Cont.

Plant Species Physiological Response Reference

Oryza sativa Increased ethylene synthesis Trinh et al. [33]

Oryza sativa Increased CAT and SOD activities Zhang et al. [34]

Oryza sativa Increased POD activity Xu et al. [35]

Phaseolus vulgaris Decreased carotenoids Aldoobie and Beltagi [36]

Pisum sativum Decreased APX activity Duhan [37]

Pterogyne nitens Increased spermidine level Paiva et al. [38]

Raphanus sativus Increased glycine-betaine content Choudhary et al. [39]

Triticum aestivum Increased MDA contents Ali et al. [22]

Triticum aestivum Increased lipid peroxidation Zhang et al. [34]

Vigna radiata Decreased glutathione level Shanker et al. [40]

Zea mays Increased SOD and GPX activities Maiti et al. [41]

Zea mays Increased lipid peroxidation and
H2O2 content Maiti et al. [41]

Abbreviations: Malondialdehyde—MDA; Superoxide dismutase—SOD; Catalase—CAT; Ascorbate peroxidase—
APX; Peroxidase—POD; Guaiacol peroxidase—GPX; Hydrogen peroxide—H2O2.

2. Chromium Uptake, Translocation and Sub-Cellular Distribution

Plant roots secrete various organic acids such as citrate and malate that modify the solubility of
metals present in insoluble form in the soil by acting as ligands [42–45]. Srivastava et al. [46] had
shown an increased accumulation of Cr in tomato plants due to the presence of citrate, aspartate and
oxalate, which converted inorganic Cr into organic complexes, which are readily available for the
plant to uptake. Chromium appears to have no essential role in plant metabolism, hence, there is no
specific mechanism for its uptake in plants [27]. Skeffington et al. [47] had proposed a mechanism for
uptake of both Cr (III) and Cr (VI) in barley (Hordeum vulgare) plants. Nonetheless, specific carriers
responsible for the absorption of essential ions also aid in the uptake of Cr [4]. The uptake of Cr (III) in
plants undergoes through passive mechanism [48], however, Cr (VI) is uptaken through the plasma
membrane, which is an active process involving carriers of essential anions such as sulfate [49,50].
Further, due to the structural similarity of Cr (VI) with phosphate and sulfate, its uptake by root cells
involves phosphate or sulfate transporters [51,52].

The distribution and translocation of Cr within plants depend upon the plant species, the oxidation
state of the Cr ions, and also its concentration in the growth medium [4]. Compared to other heavy
metals, the mobility of Cr in the plant roots is low. Therefore, the concentration of Cr in the roots is
sometimes 100 times higher than in the shoots [48,53]. For instance, Cr concentration was observed to
be highest in the cytoplasm and intercellular spaces of rhizome and root cell wall of Iris pseudacorus [54].
The higher accumulation of Cr in roots might be attributed to the sequestration of Cr in the vacuoles of
root cells as a protective mechanism [55]. Thus, this mechanism provides some natural tolerance to
plants towards Cr toxicity [40]. Furthermore, the translocation of Cr from the roots to the aerial shoots
is very limited and it depends on the chemical form of Cr inside the tissue [4]. In plant tissues, the Cr
(VI) is converted to Cr (III) that has the tendency to bind to the cell walls, which hinders the further
transport of Cr within plant tissues [56].

Numerous metal transporter gene families including CDF (cation diffusion facilitator), HMA
(heavy metal ATPase), ATP binding cassette (ABC) superfamily and ZIP (ZRT, IRT-like protein) have
been identified for different metals like Pb, Cd, Zn and As [4,57–61]. However, the role of transporter
families in the translocation of Cr in plants is still unclear. The translocation of Cr (VI) to shoots is
an active process that involves phosphate and sulfate transporters [4]. Hence, the translocation of
Cr might be mediated by iron (Fe) and sulfur (S) channels in the roots that lead to the competition
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between metals e.g., Fe and Cr [4,62]. Cary et al. [63] had reported Cr uptake and translocation to
the aerial shoots in Fe hyperaccumulators Brassica rapa and Spinacia oleracea signifying that Cr may
be transported through Fe channels. However, the presence of Fe in the growth media reduced Cr
translocation to the shoots [64], which could be due to the competition of carrier channels or due to the
precipitation of Fe with Cr.

3. Effect of Cr on Nutrient Uptake

Heavy metal stress affects nutrient uptake in plants by interacting with other essential minerals.
Chromium restricts the uptake of nutrients in soil by forming insoluble compounds [65]. Nutrient
uptake is thereby inhibited by the metal toxicity especially when the concentration of the metal exceeds
its permissible limits [66]. For instance, excessive Cr had been observed to reduce the uptake of
essential minerals like iron (Fe), magnesium (Mg), phosphorus (P) and calcium (Ca) by masking the
sorption sites and forming insoluble complexes [56,66]. However, Cr transport to different parts of
Citrullus plants had increased leading to enhancement in the concentrations of manganese (Mn) and P,
and reduction in sulphur (S), copper (Cu), zinc (Zn) and iron (Fe) contents in the leaves, suggesting that
Cr disturbs the nutrient balance [67]. Turner and Rust [68] also suggested the similar effects of Cr on
the uptake of various nutrients under Cr toxicity. A gradual decrease in the uptake of micronutrients
like Zn, Cu, Fe, Mn and macronutrients like potassium (K), P and nitrogen (N) had been noticed in the
paddy plants (Oryza sativa L.) under excessive Cr exposure [69]. This reduced nutrient uptake may
occur due to decline in the root growth and impairment of the root penetration under Cr toxicity, or
may be due to the decrease in essential element translocation because of the displacement of nutrients
from the physiologically important binding sites [70,71].

4. Effect of Cr on Chlorophyll Molecules and Photosynthetic Performance

Foliar content of chlorophyll pigments including total chlorophyll, chlorophyll a (Chl a) and
chlorophyll b (Chl b) were assayed under Cr treatment, which showed significant decrease in pigment
accumulation of Catharanthus roseus plants [72]. This could be due to the inhibition of chlorophyll
biosynthesis under Cr stress [73,74]. Increased concentration of Cr may lead to the deterioration of
the chlorophyll content in many plants [75]. Plants exposed to Cr stress showed depleted chlorophyll
contents that might be due to the disrupted chlorophyll biosynthesis [76]. Interestingly, an enzyme
involved in chlorophyll biosynthesis, i.e., δ-aminolevulinic acid dehydratase (ALAD) is being inhibited
by Cr due to the impairment in utilizing the δ-aminolevulinic acid [77].

Effect of Cr was also depicted on pigment contents viz. chlorophyll of vetiver [78] where alterations
in the photosynthetic pigments were observed. Cr induced toxicity had been reported to decrease
the chlorophyll contents in different plants species such as Pistia stratiotes [79], Citrus limonia and
Citrus reshni [80], Zea mays [81,82], Hibiscus esculantus [83], Camellia sinensis [84], Glycine max [85] and
Ocimum tenuiflorum [31]. Decrease in chlorophyll contents under Cr toxicity could be due to the
impairment of chlorophyll biosynthesis enzymes, which are compromised under Cr toxicity [86,87].
Degradation of ALAD could occur under Cr toxicity leading to a decrease in chlorophyll level [88].
Hence, photosynthetic capacity of plants is compromised under Cr stress due to interaction with
biosynthesis of chlorophyll molecules by inhibiting vital enzymes contributing in photosynthesis.
Excessive Cr affects photosynthetic system by targeting the Calvin cycle enzymes, photosynthetic
electron transport and thylakoid membrane [89]. Therefore, gradual decrease in the net photosynthetic
rate can be observed in the plants treated with higher concentration of Cr [90].

Changes in the level of photosynthetic pigments give an important information regarding the toxic
effects of heavy metals, e.g., Cr, Ni, Pb and Cd [70,74,91–94]. However, reduced chlorophyll contents
may be observed due to the increased activity of enzymes like chlorophyllase and deficiency of nutrients,
i.e., because of the translocation of the metals to shoots in higher concentration [91,95]. Moreover, a
significant decrease in transpiration rate, net photosynthetic rate, intercellular CO2 concentration and
stomatal conductance in the leaves were observed where Cr toxicity reduced these parameters by 71%,
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36%, 25% and 57% respectively [96]. Cr also poses hazardous effects on gas exchange as shown by
the multiple linear regression (MLR) analysis that expressed negative β-regression coefficients for all
the parameters of gas exchange [97]. Davies Jr et al. [96] had noticed that Cr inhibited photosynthetic
process by targeting photosystem II (PSII). Hence, chlorophyll fluorescence seems quite useful tool to
study photosynthetic apparatus and action of PSII under heavy metal stress.

5. Reactive Oxygen Species (ROS) and Oxidative Stress

A rather common and frequent effect of heavy metal stress is the overproduction of ROS including
hydroxyl radicals (OH−), hydroperoxyl radicals (HOO), superoxide (O2

−), the peroxinitrite (OONO−)
ion, the paramagnetic singlet oxygen (1O2), nitrogen oxide radical (NO), hydrogen peroxide (H2O2),
ozone (O3) and hypochlorous acid (HOCl) molecules [98–101]. This process is considered as one
of the primary cause for the alterations in plant biology at biochemical level under heavy metal
toxicity [70,73,74,102–106]. Plants may suffer through various drastic physiological changes, which
are mainly due to the imbalance in the generation and scavenging of ROS, termed as an oxidative
burst [70,74,94,102,104,107–112]. Heavy metals like copper (Cu), nickel (Ni), cadmium (Cd), Cr and
arsenic (As) have the tendency to generate ROS if they exceed permissible limits [70,113–115].

On the basis of physical and biochemical characteristics of bioactive-metals, these metals can be
classified into two groups; redox metals like Cr, Cu, Fe and non-redox metals like Cd, Hg, Ni, Zn,
etc. Redox active metals have the capacity to produce oxidative injuries in plants via Haber–Weiss
and Fenton reactions, that consequently generate ROS and leading to disturb the balance between
prooxidant and antioxidant level [116]. However, redox-inactive metals form covalent bonds with the
protein sulfhydryl groups as these metals have the tendency of sharing the electrons.

When Cr metal interacts with the proteins at its catalytic site or any other site, it deactivates the
active sites of enzymes by binding specific functional groups of proteins, thus leading to the alteration
of enzymatic activities [117,118]. Furthermore, dislocation of critical cations from the specific enzyme
binding sites disturbs the equilibrium of ROS in cells, and as a consequence ROS are generated in
drastic amount [119]. Chromium metal has also tendency to bind and utilize the reduced form of
glutathione (GSH) and its derivatives, which plays a significant role in ameliorating these ROS [120].
Besides, NADPH oxidase (present on plasma membrane) also leads to oxidative stress as they are
linked with the Cr [121–123]. In the presence of Cr metal, the NADPH oxidases may consume cytosolic
NADPH and produce free radical O2

−, which is rapidly converted to H2O2 by superoxide dismutase
enzyme (SOD) [124]. Free radicals generated by Cr in association with NADPH oxidase remains
outside the plasma membrane, where pH remains usually low in comparison to inner side of the
cell [125]. Reports suggest that the enhanced generation of ROS in plants under Cr toxicity leads to
oxidative burst by causing damage to DNA, lipids, pigments, proteins and stimulates the process of
lipid peroxidation (Figure 1) [126,127]. Carrier membrane stimulates the absorption of Cr and over
productions of ROS further influences the plasma membrane [41].

There are several reports documented where drastic increase in ROS was observed [22,74,104,128]
with increased malondialdehyde (MDA) contents under Cr toxicity [129]. Alterations in different
physiological and biochemical activities have been observed in Triticum aestivum, Vallisneria spiralis and
Ocimum tenuiflorum [22,31,88] where Cr metal stimulated the deterioration of membrane permeability
by generating MDA. Similarly, increased levels of MDA were found in both roots and leaves of
Kandelia candel (L.) plants in a dose dependent manner suggesting its gradual uptake under a timely
manner [30].
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6. Effect of Cr on Enzymatic Antioxidative System

Activities of various antioxidative enzymes drastically change in plants when subject to Cr toxicity.
ROS leads to oxidative stress, which may affect different subcellular compartments sensitive to ROS.
Superoxide dismutase (SOD) is considered as a first line of defense against various stresses in almost
all the aerobic organisms [70,130]. Dismutation of superoxide ion is catalyzed by the SOD enzyme,
which is localized in almost all the cellular compartments, leading to the production of hydrogen
peroxide and release of oxygen [130]. SOD is involved in the Asada–Halliwell cycle in chloroplasts
and also present in cytosol, apoplasts, mitochondria and peroxisomes [131]. For the removal of ROS,
catalase (CAT) enzyme also plays crucial role, hence considered as important antioxidant enzyme [132].
Dismutation of H2O2 into O2 and H2O is undergone by this enzyme [133].

When exposed to Cr (III) stress for seven days, chamomile plants showed increased accumulation
of Cr mainly in the roots of the plants, which contained high concentrations of ROS, nitric oxide and
thiols. At higher concentration of Cr (III), SOD activity specifically was increased in the roots, while
level of H2O2 showed irregular trend under different concentrations of Cr due to the altered activities
of various peroxidases [28]. Different concentrations of Cr (VI) (50, 100, 200 and 300 µM L−1) escalated
the production of H2O2 leading to the lipid peroxidation and triggered the activities of antioxidative
enzymes like SOD and guaiacol peroxidase (GPX) in comparison to control plants [41]. In contrast,
activities of peroxidase (POD), SOD and CAT were decreased when subjected to Cr (III) in a dose
dependent manner [26].

Maintaining metabolic functions under stress conditions is crucial for plants to survive. Therefore,
a balance between generation and scavenging of ROS is required, which is achieved by regulating
the production of enzymatic and non-enzymatic antioxidants [134]. Hence, the ability of plants to
cope with oxidative stress is characterized by the degree of antioxidant activities [102,104]. However,
activities of these antioxidants may vary with the duration, crop species and tissues under any stress
condition [135]. For instance, Echinochloa colona plants showed increased activities of POD and CAT in
tolerant calluses in comparison to non-tolerant ones [29]. At 0.5 mg L−1 concentration of Cr (VI), CAT
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activity was increased, however decreased at higher concentrations (1.0–2.0 mg L−1). Activity of CAT
was measured highest at 2.0 mg L−1 concentration of Cr in the roots of K. candel but decreased at higher
concentration [30]. As CAT is an iron-porphyrine biomolecule, reduction in CAT activity indicates
that Cr has the potential to interact with iron in metabolic pool or it may influence the presence of
active form of iron [136]. Cr toxicity has detrimental effects on antioxidant enzymes such as POD,
GPX, glutathione reductase (GR) and ascorbate peroxidase (APX), hence resulting in the inhibition of
enzyme activities [129,137]. Plants equipped with an efficient antioxidant system are more capable to
withstand and tolerate higher Cr concentrations. Failure to do so results in the breakdown of the plant
defense system hence activities of antioxidants are jeopardized leading to reduced plant growth or
even leading to plant death.

7. Effect of Cr on Non-Enzymatic Antioxidative System

Apart from the enzymatic antioxidants, plants are also comprised of a complex non-enzymatic
antioxidant defense system to avoid the toxic effects of ROS. These non-enzymatic antioxidants consist
of low molecular weight molecules such as ascorbic acid, glutathione (GSH), phenolic acids, carotenoids,
flavonoids, etc. [94,138] and some high molecular weight secondary metabolites such as tannins [139].
Biosynthesis and accumulation of these non-enzymatic antioxidants by plants could be due to two main
reasons. First, plants have an innate ability to synthesize a variety of phytochemicals to carry out their
normal physiological functioning or to protect them from any pathogenic or herbivores. Second, plants
also synthesize phytochemicals to respond to the environmental factors which could be due to their
natural tendency of defense against any biotic and abiotic stress [140]. Therefore, these lower molecular
weight antioxidants are synthesized and act as a redox buffer to interact with cellular components and
directly influence plant growth and development by modulating different processes from mitosis to
cell elongation and to senescence. Hence, it is crucial for plants to synthesize these antioxidants under
stressed conditions. Glutathione is a redoxactive molecule that can be present in a reduced form GSH
or an oxidized form GSSG. It plays important roles in the plant defensive system including biosynthetic
pathways, detoxification, antioxidant biochemistry and redox homeostasis [141,142]. GSH acts as an
antioxidant by quenching ROS and is involved in the ascorbate-glutathione cycle, which eliminates
damaging peroxides [143]. In poplar trees, glutathione (GSH) biosynthesis was stimulated under Cr
toxicity [144]. In the leaf extracts of tomato (Lycopersicon esculentum), maize (Zea mays) and cauliflower
(Brassica oleracea) plants, GSH level increased subjected to Cr toxicity [145]. Alterations were observed
in the glutathione pool dynamics where individual level of GSSG and GSH and GSH/GSSG ratio was
affected, however sorghum (Sorghum biclor) plants showed potential to scavenge the free radicals
generated under Cr toxicity [146].

Under sub-optimal conditions, level of antioxidants may decrease or increase depending on the
severity of stress. For instance, a sharp decline in the GSH pool was observed under Cr stress, which
severely affected the roots of the plants. Many reports suggested the oxidation of various cellular
thiols like GSH and cysteine in plants subjected to Cr (VI) stress in in vitro conditions [147]. Therefore,
to maintain the redox homeostasis of the cell and for scavenging of free radicals, the interconversion of
reduced and oxidized forms of glutathione (GSH and GSSG respectively) is required.

A non-enzymatic antioxidant “carotenoid” contributes in providing protection to the chlorophylls
against stress conditions by replacing peroxides and scavenging of photodynamic reactions [148].
For instance, carotenoid level increased in Capsicum annuum plants subjected to industrial effluents
specifically containing Cr [27], acting as a defensive mechanism for capsicum plants to scavenge the
free radicals. Other non-enzymatic antioxidants such as cysteine, proline, nonprotein thiol, etc. may
also contribute in modulating resistance against Cr toxicity and protect the macromolecules from the
free radicals generated during the oxidative burst [77]. In one of the reports, carotenoids, non-protein
thiol (NP-SH) and cysteine level increased in the plants subjected to Cr [72].

For providing protection against different types of stresses, accumulation of compatible osmolytes
like proline (Pro) occurs in most of the plants for providing membrane stability and osmotic
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adjustment [94,149]. Proline contents can increase against different types of biotic and abiotic stresses
such as salinity, drought, temperature, heavy metal and pathogen attack [77]. For instance, contents of
Pro increased in Ocimum tenuiflorum L. under Cr stress, which acted as an antioxidant by providing
protection against the hazardous effects of metal [31]. Reports suggested that proline is the only amino
acid that accumulates in the leaves of plants under stress conditions [150]. It starts accumulating even
at low doses of stress and increases in a dose dependent manner. Hence, accumulation of proline
contributes to osmotic adjustment when it gets accumulated in tissues and acts as a dependent marker
for genotypes for the stress tolerance [150]. Polyamines are other non-enzymatic osmoprotectants,
which increase under different abiotic stress conditions [151], and also associated with the boosting up
of plant defensive mechanisms [92,152]. Polyamines including putrescine, spermine and spermidine
have been investigated to increase Cr tolerance in plants under Cr toxicity [38].

8. Effect of Cr on the Endogenous Levels of Plant Hormones

Plant hormones control and regulate plant growth and development through different biochemical
and physiological process. These hormones may act either close to or remote from their synthesis site to
regulate responses to environmental stimuli or genetically programmed developmental changes [153].
Hormones thus have a vital role in plant adaptation to abiotic stress, from which the plant may attempt
to escape or survive under stressful conditions [154]. Thus, abiotic stresses often alter the production,
distribution or signal transduction of growth as well as stress hormones, which may promote specific
protective mechanisms. The phytohormone abscisic acid (ABA) plays a vital role against abiotic
stresses, thus it is considered as a stress hormone. Under different types of abiotic stress conditions,
endogenous level of ABA are increased drastically in plants, which boosts up the signaling pathways
and activates expression of ABA-responsive genes [155]. For instance, strong expression of ABA
biosynthesis genes (OsNCED2 and OsNCED3) and four ABA signaling genes were upregulated in
response to heavy metal stress [156]. Salicylic acid (SA) also provides protection under Cr stress. SA
plays a significant positive role in growth and development of plants as well as ripening and abiotic
stress tolerance [157]. Interaction of ABA and SA also contributes in boosting the defensive strategies
of plants against Cr toxicity [158]. Apart from this, SA also plays essential role in combination with
jasmonic acid (JA) and ethylene, where the interaction of these hormones provides tolerance against Cr
stress [159,160]. The biosynthesis, transportation and accumulation of these plant hormones boost the
signaling pathways, activating certain antioxidant gene expressions and stimulating the production of
osmoprotectants such as proline, soluble sugars, amino acids, etc. [161].

Indole acetic acid (IAA), a plant hormone of auxins contributes to the growth and development of
plants under ideal as well as stressed conditions [162]. IAA plays a key role in plant adaptation to heavy
metal stress by either increasing the membrane permeability or by increasing the concentration of
osmotically active solutes [16,163]. The level of IAA usually increases in the plants under metal toxicity
by affecting different metabolic activities of plants including growth and hormonal balance [164].
Gibberellins (GAs) are considered as comprehensive class of tetracyclic diterpenoid carboxylic acid
compounds. Different forms of GAs have potential to play the role of growth hormone in higher plants
such as GA1 and GA3 [165]. Generally, at low concentration of metal like Cr leads to the elevated
level of GA3, although its high concentration reduces the GA3 content [166]. Apart from these, plant
hormone like cytokinins (CKs), contributes in the regulation of plant development by stimulating
cell division and elongation. Cr stress alters endogenous level of CKs suggesting that CKs are also
involved in tolerating the stress [155]. A few reports also indicated the reduction in the synthesis of
CKs and their transport from roots to other aerial parts of plants during Cr toxicity and they are also
found to interact with other plant hormones [167].

9. Conclusions and Prospects

This review illustrates an overview of Cr metal effects on plant growth and development. Plants
uptake Cr via roots, which causes nutrient imbalance, root injury as well as leaf chlorosis. Cr toxicity
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also targets chlorophyll biosynthesis by inhibiting the activity of vital enzymes. Additionally, it also
results in oxidative stress by targeting cellular membranes and biomolecules resulting in retarded
plant growth, induction of chlorosis and wilting of leaves. Although a handful of data is available
that provides useful information to understand chromium interaction with other essential metal
ions. The mechanisms generating Cr-induced toxicity at the protein and molecular level still need
to be explored in detail. Furthermore, exploration of Cr tolerance mechanism and homeostasis are
essential for sustainable crop production, which is poorly understood in many ecosystems. Therefore,
it is essential to understand the possible means to reduce Cr uptake and its negative impacts on
environment especially in plants.
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