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Abstract: Association mapping is a powerful approach to detect associations between traits of interest
and genetic markers based on linkage disequilibrium in molecular plant breeding. The aim of this
study was the identification of single nucleotide polymorphisms (SNPs) and SilicoDArT markers
associated with yield traits and morphological features in maize. Plant material constituted inbred
lines. The field experiment with inbred lines was established on 10 m2 plots in a set of complete
random blocks in three replicates. We observed 22 quantitative traits. Association mapping was
performed in this study using a method based on the mixed linear model with the population
structure estimated by eigenanalysis (principal component analysis applied to all markers) and
modeled by random effects. As a result of mapping, 969 markers (346 SNPs and 623 SilocoDArT) were
selected from 49,911 identified polymorphic molecular markers, which were significantly associated
with the analyzed morphological features and yield structure traits. Markers associated with five
or six traits were selected during further analyses, including SilicoDArT 4591115 (anthocyanin
coloration of anthers, length of main axis above the highest lateral branch, cob length, number of
grains per cob, weight of fresh grains per cob and weight of fresh grains per cob at 15% moisture),
SilicoDArT 7059939 (anthocyanin coloration of glumes of cob, time of anthesis—50% of flowering
plants, time of silk emergence—50% of flowering plants, anthocyanin coloration of anthers and cob
diameter), SilicoDArT 5587991 (anthocyanin coloration of glumes of cob, time of anthesis—50% of
flowering plants, anthocyanin coloration of anthers, curvature of lateral branches and number of rows
of grain). The two genetic similarity dendrograms between the inbred lines were constructed based
on all significant SNPs and SilicoDArT markers. On both dendrograms lines clustered according
to the kernel structure (flint, dent) and origin. The selected markers may be useful in predicting
hybrid formulas in a heterosis culture. The present study demonstrated that molecular SNP and
Silico DArT markers could be used in this species to group lines in terms of origin and lines with
incomplete origin data. They can also be useful in maize in predicting the hybrid formula and can
find applications in the selection of parental components for heterosis crossings.
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1. Introduction

Modern maize breeding is to create new cultivars with improved traits [1]. Currently, the breeding
based largely on the use of the heterosis phenomenon (F1 hybrid vigor), occurring as a result of crossing
two inbred lines with the highest combining ability. As a result, high-yielding hybrids are obtained
with traits that exceed parental lines. Although the reasons for the occurrence of heterosis are not
clearly determined, there are many hypotheses explaining this phenomenon, e.g., the hypothesis of
overdomination or domination. It is believed that heterosis is associated with the genetic distance
between parental forms, determined by DNA polymorphism, therefore adequate selection of parental
components becomes a key element in the breeding process [1]. Presently, intensive research have
been conducted on the possible use of molecular markers in the selection of parental lines for heterosis
crosses [2–4]. Markers based on single nucleotide polymorphisms (SNPs) are increasingly used for this
purpose [5].

Modern methods for identifying single SNP polymorphisms use the next-generation sequencing
technology (NGS). The NGS is a technique developed in the 21st century that provides much
higher performance and throughput than the previously used Sanger sequencing technique [6].
This technology provides inexpensive whole genome sequence readings through methods, such as
chromatin immunoprecipitation, mutation mapping, polymorphism detection and detection of
non-coding RNA sequences [7]. Sequencing methods such as: Restriction site associated DNA
(RADseq) [8], multiplexed shotgun genotyping (MSG) [9] and bulked segregant RNA-Seq (BSRSEq) [10]
enable the identification of a significant number of markers and more accurate examination of many
loci in a small number of samples.

Another genotyping-by-sequencing method applied already to many hundreds of organisms is
DArTseq™. The DArTseq™ represents a combination of a DArT complexity reduction methods and
next generation sequencing platforms [11–15]. Therefore, DArTseq™ represents a new implementation
of sequencing of complexity reduced representations [16] and more recent applications of this concept
on the next generation sequencing platforms [8,17]. The DArTseq procedure [15] is used, among others,
to identify single nucleotide markers (SNPs) and provides a large pool of so-called silicoDArTs that have
a dominant character because the variability is determined by a single point mutation, without a variant
from the second homologous chromosome. The presence or absence of a mutation (silicoDArT marker)
is often treated as a single feature, which is assigned a value of 1 or 0, respectively. In this method, the
genome complexity is reduced by restriction enzyme digestion and sequencing of short fragments [12].
DArTseq technology replaces the hybridization stage with sequencing taking place in the Illumin
system [18]. Similar to DArT methods based on array hybridizations, the DArTseq™ technology is
optimized for each organism by application the most appropriate complexity reduction method (both
the size of the representation and the fraction of a genome selected for assays). DArTseq™ has been
optimized for maize a few years ago and was used to characterize a complete maize germplasm
collection of the International Maize and Wheat Improvement Center (CIMMYT).

Association mapping also called linkage disequilibrium mapping involves searching for
genotype–phenotype correlations in unrelated individuals using dedicated statistical methods [19–21].
The association mapping approach provides possibilities to generate good quality markers for
marker-assisted selection (MAS). Functional markers tightly linked with the trait reflect gene
polymorphisms, which directly cause phenotypic variation. Association mapping provides opportunities
to find such markers in a broad spectrum of genetic resources. Its potential results from the likelihood
of higher mapping resolution, due to the use of a larger number of recombination events in the
germplasm’s developmental history [22]. Thus, association mapping has become a promising approach
compared to traditional mapping. There are two main types of association mapping: Genome-wide
association mapping (GWAM) and candidate gene association mapping (CGAM). The GWAM
approach surveys genetic variation in the whole genome to find association signals for various complex
traits, whereas CGAM correlates DNA polymorphisms in selected candidate genes and the trait of
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interest [20,21]. There are many examples of successful application of association analysis in cereals,
mainly in maize.

Recently, GWAM has evolved as a powerful tool to dissect the genetic architecture of complex traits
in crop species [22,23]. Advances in NGS allow identification of thousands of genetic marker loci, which in
turn enables their statistical association with traits of interest based on linkage disequilibrium [24].
Skim-based genotyping by sequencing (skimGBS) uses low-coverage (1–10×) whole genome sequencing
for high resolution genotyping. Genomic reads from parental individuals are mapped to the reference
genome and SNPs are predicted. Reads from the progeny are then mapped to the same reference
and comparison with the parental SNP file enables calling of SNPs in the progeny of one or other
parental genotypes [25]. Associated genetic markers can be causal for the trait of interest or in linkage
disequilibrium with a causal locus [20]. To date, GWAM approaches using whole genome sequencing
have allowed researchers to dissect genetic regulation of complex traits, such as oil biosynthesis,
carotenoid concentration and yield in well studied crops, including maize and rice [26–28].

The aim of this study was to identify SNP and SilicoDArT markers associated with yield traits and
morphological features in maize (Zea mays L.). These studies are to facilitate the selection of parental
components for heterosis crossings.

2. Results

2.1. Phenotyping

The results of ANOVA demonstrated that the differences between lines were significant for all
traits. Population structure estimated by eigenanalysis showed that lines formed randomly distributed
groups (Figure 1). The generated groups consisted of lines with flint and dent grain structure of different
origins, e.g., one of the groups consisted of lines: L47, L53, L60, L83, L85 and L93, which belonged to
different origin groups.
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Figure 1. Population structure of inbred lines of maize (Zea mays L.) estimated by eigenanalysis.
Flint F2: 74; Flint F2/EP1: 35,39,41,51,53; Flint F2/CM7: 73; Flint/BSSS: 38; Flint/ID: 40;
Flint/Lancaster: 60,68; German Flint/F2: 69,82,93; Flint Origin unknown: 42,52,36; Dent
ID: 33,43,44,56,58,59,61,62,64,65,72,76,79,80,83,85,88,89,90,94; Dent BSSS: 47,49,50,87; Dent ID/BSSS:
54,57,63,66,67,75,77,78,81,84,86,91,92,45,46; Dent Lancaster: 55; Dent ID/Lancaster: 50; Semident BSSS: 71.

Table 1 shows correlation coefficients between the observed traits. The 54 pairs of traits were
statistically significantly correlated positively, however 34 pairs correlated negatively.
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Table 1. Correlation coefficients of observed traits on the basis of mean values for inbred lines (n = 4; m = 10).
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TG 1
ACGC 0.61 1

TA 0.38 0.17 1
TSE 0.39 0.17 0.79 1

ACSi −0.33 −0.17 −0.31 −0.29 1
ACA −0.16 −0.37 0.04 0.03 0.39 1

ACBG −0.14 0.04 −0.07 −0.1 0.31 0.2 1
ANGLE −0.13 0.07 −0.21 −0.17 −0.01 −0.09 0.18 1

CLB −0.25 −0.32 −0.27 −0.19 −0.04 0.11 0.1 0.51 1
LMA 0.01 −0.04 0.28 0.22 −0.31 −0.09 −0.17 0.01 0.07 1
NPLB 0.16 0.11 0.11 0.09 −0.05 0.05 0.29 0.24 −0.1 −0.24 1
ACSh −0.37 −0.2 −0.45 −0.4 0.35 0.17 0.28 0.03 0.18 −0.17 0.08 1
ACI −0.42 −0.14 −0.42 −0.46 0.48 0.15 0.59 0.25 0.15 −0.35 0.22 0.47 1
PL 0 −0.26 0.45 0.33 −0.18 0.12 −0.12 −0.26 −0.11 0.31 0.06 −0.27 −0.21 1

HIP −0.02 −0.19 0.43 0.2 −0.03 0.24 −0.03 −0.27 −0.17 0.12 0.13 −0.2 −0.03 0.74 1
DC 0.56 0.28 0.4 0.42 −0.19 0.03 −0.05 −0.09 −0.25 −0.16 0.32 −0.31 −0.34 0.31 0.26 1
LC −0.04 −0.09 0.07 0.13 −0.31 −0.29 0.06 0.14 0.25 0.33 −0.08 −0.05 −0.05 0.27 0.04 −0.03 1

NRG 0.32 0.18 0.17 0.14 −0.07 0.1 −0.17 −0.19 −0.02 −0.05 0.1 −0.15 −0.31 0.2 0.21 0.56 −0.09 1
NGC 0.32 0.17 0.1 0.12 −0.28 −0.13 −0.06 0.2 0.18 0.08 0.23 −0.22 −0.21 0.17 0.09 0.53 0.5 0.61 1

WFGC 0.37 0.18 0.27 0.27 −0.23 −0.04 0 −0.09 −0.1 0.1 0.12 −0.17 −0.17 0.39 0.36 0.65 0.49 0.5 0.74 1
DM −0.12 −0.16 −0.36 −0.37 −0.11 −0.06 −0.11 0.33 0.26 −0.04 −0.02 −0.08 −0.06 −0.26 −0.34 −0.28 −0.13 −0.24 −0.07 −0.53 1

WFG15 0.38 0.16 0.2 0.19 −0.27 −0.06 −0.04 −0.02 −0.04 0.08 0.13 −0.22 −0.19 0.37 0.31 0.65 0.5 0.49 0.81 0.97 −0.32 1

p < 0.05 p < 0.01 p < 0.001

TG—type of grain, ACGC—anthocyanin coloration of glumes of cob, TA—time of anthesis (50% of flowering plants), TSE—time of silk emergence (50% of flowering plants),
ACSi—anthocyanin coloration of silks, ACA—anthocyanin coloration of anthers, ACBG—anthocyanin coloration at the base of the glume, ANGLE—angle between main axis and lateral
branches, CLB—curvature of lateral branches, LMA—length of main axis above the highest lateral branch, NPLB—number of primary lateral branches, ACSh—anthocyanin coloration of
sheath, ACI—anthocyanin coloration of internodes, PL—plant length, HIP—height ratio of insertion of the peduncle of the upper ear to plant length, DC—cob diameter, LC—cob length,
NRG—number of rows of grain, NGC—number of grains per cob, WFGC—weight of fresh grains per cob, DM—dry matter content at harvest time, WFG15—weight of fresh grains per cob
at 15% moisture.
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2.2. Genotyping Data (SilicoDArT and SNP)

The DArTseq NGS analysis of tested maize lines allowed us to identify 49,911 polymorphisms
(including 33,452 SilicoDArT and 16,459 SNP). Out of these, 3229 of these markers (including 2121
SilicoDArT and 1108 SNPs) were selected for GWAM using the following criteria: One SilicoDArT and
SNP within a given sequence (69 nt), minor allele frequency (MAF) >0.25 and the missing observation
fractions <10%. The two independent dendrograms (UPGMA) based on the SNP and SilicoDArT
markers (calculated according to the Nei and Li’s distance [29] show the genetic relationships of 62
used inbred lines (Figures 2 and 3)). The highest genetic similarity, calculated on the basis both types
of markers (equal to 0.99) was revealed between the L40 and L51 lines, whereas the lowest genetic
similarity (equal 0.062) was found for L53 and L72. Genetic similarity coefficients calculated based on
the observations of markers of particular types and all markers together were significantly statistically
correlated at the level of 0.001: Between SilicoDArT and SNPs r = 0.76, between SilicoDArT and all
markers r = 0.95 and between SNPs and all markers r = 0.93.
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Figure 2. Dendrogram of genetic similarity of the studied inbred lines of maize (Zea mays L.) on the
basis of single nucleotide polymorphism (SNP) marker observations.

Based on SNP markers the lines could be classified into three groups. The first group included the
L72 line with the dent-type grain belonging to the Iowa Dent origin group and the L73 line with the
flint grain originating from France. The second group consisted of all lines with the flint-type grain,
where the L40 and L51 lines originating in Europe showed the highest similarity (98%). Parental forms
of the L40 line were derived from France and Spain, while L51 from Germany. In the same group,
similarity at the level of 90% occurred between the L39 and L93 lines; both of these lines were related
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to the F2 line bred at Institute National de la Recherche Agronomique (INRA) in France. The L38 line,
which is the only one derived from the cross of a flint grain line with a line belonging to the Iowa Stiff
Stalk Synthetic origin group from the USA, was the least related (52%) with other lines in this group.
The similarity determined on the basis of SNP markers between the flint-type grain lines in the second
group ranged from 52% to 98%. The third group included all dent- and semident-type grain lines with
the exception of three flint-type grain lines, L42, L52 and L36 (all of unknown origin), which belonged
to the same subgroup. The third group contained lines from the United States and the similarity
between them ranged from 53% to 97% (between the L85 and L92 lines). The L85 line belonged to
the Iowa Dent origin group, while the parental forms of the L92 line were from the Iowa Dent and
Iowa Stiff Stalk Synthetic origin groups. The grouping of lines based on SNP marker similarity largely
reflected the origin of these lines and the division based on the kernel structure (flint, dent; Figure 2).
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Figure 3. Dendrogram of genetic similarity of the studied inbred lines of maize (Zea mays L.) on the
basis of SilicoDArT marker observations.

Four basic groups could be distinguished between the analyzed lines on the similarity dendrogram
of SilicoDArT markers. In the first group, similarly to the SNP-based tree, there was the L73 flint-type
grain line. The second group contained the L72 and L80 dent-type grain lines, both from the Iowa
Dent origin, and the similarity between them was 40%. The third group included all flint-type grain
lines, where the highest similarity (95%) occurred between the L40 and L51 lines originating in Europe,
similarly as in SNP markers. The similarity at the level of 78% was found between the L39 and L93 lines
in the same group, similarly as in SNP markers. The fourth group included all dent- and semident-type
grain lines, with the exception of four flint-type grain lines, L36, L42, L52 (all of unknown origin) and
L38 (derived from the crossing of a flint-type grain with a dent-type grain form). Maize lines also
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clustered according to the kernel structure (flint, dent) and origin (Figure 3) in the case of Silico DArT
markers, as in the similarity estimated on the basis of SNP markers.

The variability of genetic similarity of studied lines calculated on the basis of SNP and SilicoDArT
markers was not significantly different, as shown in the boxplot (Figure 4). The bottom and top of the
box were the 25th and 75th percentiles—the lower and upper quartiles—, respectively, and the band
near the middle of the box was the 50th percentile—the median. The ends of the whiskers represent
the minimum and maximum of all data.
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2.3. Association Mapping

The number of markers significantly associated with investigated traits at false discovery rate
(FDR) < 0.05 was 969 in GWAM: 623 of SilicoDArTs and 346 of SNPs (Table 2). The least markers (6)
were associated with the number of primary lateral branches (NPLB) trait, and the most (150) with the
anthocyanin coloration of glumes of cob (ACGC) trait. Table S1 presents markers associated with at least
two traits, i.e., characterized by pleiotropy—a very desirable trait in breeding. Markers associated with
five or six traits deserve particular attention: SilicoDArT 4591115 (ACA, LMA, LC, NGC, WFGC and
WFG15), SilicoDArT 7059939 (ACGC, TA, TSE, ACA and DC) and SilicoDArT 5587991 (ACGC, TA,
ACA, CLB and NRG).

The sequences (69 bp length) of SilicoDArTs 4591115, 7059939 and 5587991 were used for physical
mapping. These three markers were selected because they were associated with five or six traits.
The BLAST search in the Zea mays reference genome enabled identification of the position of markers.
The marker 4591115 was aligned with chromosome 5 in the non-coding region. The closest genes were
distanced by 60 Kb at the 5′ side putative MYB DNA-binding domain superfamily protein (GLK47,
XM_008683029) and vegetative cell wall protein gp1-like (LOC103628816, XM_008648941). At the 3′

side, 10 Kb away was the localized uncharacterized protein LOC100191236 (NM_001136670.1).
The Blast search was not able to identify any places in the genome fully identical to the sequences

of SilicoDArT markers 5587991 and 7059939. The fragment (41 bp) of the marker 5587991 showed
homology to the chromosome 1, in the region that was 78 Kb away from the myosin-1 gene. The different
fragment of this marker (28 bp) was aligned to chromosome 3 within the intron of the 50S ribosomal
protein L31 gene.
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Table 2. Associations between markers (Silico and SNP) and studied traits found in genome-wide association mapping with allelic substitution effects (significant
associations selected at p < 0.05 with correction for multiple testing by the Benjamini–Hochberg method).

Trait
Number

Trait
No of Significant Markers LOD Min LOD Max Effect Min Effect Max

Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total

1 Type of grain 40 22 62 2.52 2.53 2.52 7.68 4.62 7.68 −0.99 −0.78 −0.99 0.73 0.82 0.82
2 Anthocyanin coloration of glumes of cob 101 49 150 2.50 2.53 2.50 9.53 10.33 10.33 −1.26 −1.05 −1.26 1.18 1.17 1.18
3 Time of anthesis (50% of flowering plants) 30 29 59 2.54 2.52 2.52 5.35 6.06 6.06 −2.15 −2.64 −2.64 2.33 1.95 2.33
4 Time of silk emergence (50% of flowering plants) 47 24 71 2.51 2.51 2.51 4.99 8.06 8.06 −2.46 −3.22 −3.22 2.53 2.27 2.53
5 Anthocyanin coloration of silks 59 28 87 2.51 2.54 2.51 6.23 5.50 6.23 −1.17 −1.46 −1.46 1.51 1.38 1.51
6 Anthocyanin coloration of anthers 31 8 39 2.50 2.52 2.50 3.67 3.63 3.67 −1.07 −1.08 −1.08 1.29 1.25 1.29
7 Anthocyanin coloration at the base of the glume 38 18 56 2.60 2.53 2.53 5.57 3.63 5.57 −1.30 −1.09 −1.30 1.22 1.11 1.22
8 Angle between main axis and lateral branches 40 17 57 2.51 2.54 2.51 6.78 4.58 6.78 −0.89 −0.82 −0.89 1.12 0.91 1.12
9 Curvature of lateral branches 18 10 28 2.58 2.69 2.58 4.16 4.21 4.21 −0.80 −0.71 −0.80 0.88 0.84 0.88
10 Length of main axis above the highest lateral branch 30 20 50 2.55 2.59 2.55 5.62 4.99 5.62 −0.92 −0.93 −0.93 0.93 0.82 0.93
11 Number of primary lateral branches 5 1 6 2.51 2.98 2.51 3.16 2.98 3.16 0.40 0.44 0.40 0.47 0.44 0.47
12 Anthocyanin coloration of sheath 4 9 13 2.51 2.70 2.51 3.14 4.98 4.98 −0.65 −0.76 −0.76 0.77 0.96 0.96
13 Anthocyanin coloration of internodes 14 6 20 2.56 2.60 2.56 4.05 3.66 4.05 −0.86 −0.70 −0.86 1.11 0.97 1.11
14 Plant length 18 10 28 2.64 2.65 2.64 4.45 4.48 4.48 −16.29 12.55 −16.29 19.27 19.02 19.27
15 Height ratio of peduncle insertion of the upper ear to

plant length
26 18 44 2.54 2.62 2.54 5.67 4.82 5.67 −9.25 −8.74 −9.25 10.87 9.76 10.87

16 Cob diameter 16 13 29 2.51 2.54 2.51 4.90 5.29 5.29 −0.18 −0.16 −0.18 0.22 0.19 0.22
17 Cob length 24 13 37 2.51 2.52 2.51 4.70 3.93 4.70 −1.07 −1.22 −1.22 1.63 1.27 1.63
18 Number of rows of grain 16 6 22 2.51 2.54 2.51 4.22 3.66 4.22 −0.91 −0.88 −0.91 0.93 0.81 0.93
19 Number of grains per cob 13 8 21 2.57 2.53 2.53 4.31 3.22 4.31 −34.25 −29.05 −34.25 38.10 32.47 38.10
20 Weight of fresh grains per cob 19 14 33 2.51 2.53 2.51 3.57 5.32 5.32 −15.69 −13.81 −15.69 12.87 18.41 18.41
21 Dry matter content at harvest time 12 8 20 2.52 2.51 2.51 5.20 2.85 5.20 −2.65 −2.13 −2.65 2.92 2.03 2.92
22 Weight of fresh grains per cob at 15% moisture 22 15 37 2.53 2.51 2.51 4.26 4.94 4.94 −9.34 −11.17 −11.17 11.34 13.86 13.86

Total 623 346 969
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The two fragments (27 and 22 bp) of marker 7059939 were aligned to the separate regions of
chromosome 2 (120 Mb distant from each other). The first fragment was located within the serine
carboxypeptidase-like gene and the second was in protein LOC103648845. Another small fragment
(25 bp) of this sequence showed homology to non-coding regions of chromosomes 4 and 9.

3. Discussion

Maize, one of our most important crop species, has been the target of genetic investigation and
experimentation for more than 100 years. Crossing two inbred lines tends to result in “better” offspring,
a process known as heterosis. Attempts to map genetic loci that control traits important for farming
have been made, but few have been successful [30].

The DArTseq technology is a modification of the DArT method. It consists in replacing the
hybridization step on microarrays with next-generation sequencing in the Illumina system [18].
Several times more polymorphic markers—both dominant silicoDArT and codominant SNPs—are
obtained as a result of the analysis.

The first association mapping (AM) was described in wheat [31], where markers associated
with resistance to cereal rust, yellow rust, powdery mildew and also grain yield were identified.
One hundred and seventy winter wheat (Triticum aestivum L.) lines were analyzed. A number of
markers of the traits studied was selected based on AM, and they were positioned on the appropriate
species chromosomes, based on the genetic map containing 1644 markers, of which 813 were DArT
markers. DArT markers have also proved useful in association mapping in wheat [32]. The latter
authors identified markers highly associated with important agrotechnical traits useful in breeding
programs. DArT markers have been successfully used to analyze the genetic diversity and structure
of Chinese common wheat (Triticum aestivum L.) populations. A total of 111 cultivars and breeding
lines from northern China were examined. The results provided information for further selection
of parental forms and establishing heterozygous test materials for the needs of the Chinese wheat
breeding program [33].

In the present study, similarity dendrograms were constructed between the inbred lines based on
all significant SNPs and SilicoDArT markers. Inbred lines on both dendrograms clustered according to
the kernel structure (flint, dent) and origin. There were no statistically significant differences in the
clustering of the analyzed lines between genetic similarity results based on SNP and SilicoDArT markers.

The association mapping resulted in identification of 969 markers significantly linked (at FDR
< 0.05 in GWAM) with the analyzed morphological features and yield structure traits. Among the
selected markers, 623 were SilicoDArTs and 346 were SNPs. The least markers (6) were associated with
the NPLB trait, and the most (150) with the anthocyanin coloration of glumes of cob. Three markers
were associated with five or six traits: SilicoDArT 4591115 (anthocyanin coloration of anthers, length of
main axis above the highest lateral branch, cob length, number of grains per cob, weight of fresh
grains per cob and weight of fresh grains per cob at 15% moisture), SilicoDArT 7059939 (anthocyanin
coloration of glumes of cob, time of anthesis—50% of flowering plants, time of silk emergence—50%
of flowering plants, anthocyanin coloration of anthers and cob diameter) and SilicoDArT 5587991
(anthocyanin coloration of glumes of cob, time of anthesis, anthocyanin coloration of anthers, curvature
of lateral branches and number of rows of grain). The sequence of SilicoDArTs 4591115, 7059939 and
5587991 were used in physical mapping in the Zea mays genome. The marker 4591115 was localized
on chromosome 5 on the non-coding region. In the closest neighborhood (10–60 Kb) were localized
putative MYB DNA-binding domain protein, vegetative cell wall protein gp1-like gene and some
uncharacterized protein LOC100191236. It is difficult to conclude whether the localization of this
marker in the genome can have a direct meaning on its detected correlations with the features.

One fragment (41 bp) of SilicoDArT 5587991 showed homology to chromosome 1, and the
second fragment of this marker (28 bp) was aligned to chromosome 3 within the intron of the 50S
ribosomal protein L31 gene. The two fragments (27 and 22 bp) of marker 7059939 were aligned to the
separate regions of chromosome 2 (120 Mb distant from each other). The first fragment was located
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directly within the serine carboxypeptidase-like gene and the second was in protein LOC103648845.
Both markers showed homology to the coding sequences, which might affect the correlated features.
It is difficult to explain division of the marker sequences into two fragments. It could be the result of
incidental ligation during the library preparation step or alternatively real rearrangements in tested
lines genomes.

The theoretical basis for the relationship between genetic distance and heterosis was presented by
Bernardo [34]. He found that molecular markers could be useful for predicting heterosis if they show a
strong domination effect, allele frequency is negatively correlated with parents, their inheritance is
high and there is an association between quantitative trait loci (QTL).

In the study, similarity dendrograms were created between inbred lines based on molecular
markers. The lines analyzed clustered according to origin. Most studies indicate that the less related
parental components, the higher the heterosis effect can be expected in the F1 generation hybrids. Thus,
in the case of missing or incomplete information about the origin of parental lines, molecular SNP and
SilicoDArT markers may be useful in predicting hybrid formulas in heterosis.

Nineteen tropical maize biparental populations evaluated in multienvironment trials were used
in Zhang et al.’s [35] study to assess the prediction accuracy of different quantitative traits using
low-density (~200 markers) and genotyping-by-sequencing (GBS) single-nucleotide polymorphisms
(SNPs), respectively. An extension of the genomic best linear unbiased predictor that incorporates
genotype × environment (GE) interaction was used to predict genotypic values; cross-validation
methods were applied to quantify prediction accuracy. Their results showed that low-density SNPs
were largely sufficient to obtain a good prediction in biparental maize populations for simple traits
with moderate-to-high heritability, but GBS outperformed low-density SNPs for complex traits.
GE interaction in maize is usually strong for complex quantitative traits, and maize hybrids are
always tested in multiple environments. Most of the current genomic prediction studies have only
applied a single-environment model and have not considered predictive models with correlated
environmental structures [36]. Cook et al. [37] conducted joint-linkage quantitative trait locus (QTL)
mapping and GWAM for kernel starch, protein and oil in the maize nested association mapping
population, composed of 25 recombinant inbred line families derived from diverse inbred lines.
Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled
by 21–26 QTLs. Numerous GWAM associations were detected, including several oil and starch
associations in acyl-CoA:diacylglycerol acyltransferase 1–2, a gene that regulates oil composition and
quantity. Results from nested association mapping were verified in a 282 inbred association panel
using both GWAM and candidate gene association approaches. They identified many beneficial alleles
that will be useful for improving kernel starch, protein and oil content. Benke et al. [38] investigated
the effect of two different Fe regimes on the formation of morphological and physiological traits;
they have identified polymorphisms significantly associated with morphological and physiological
traits and analyzed the correlation between those traits employing the association mapping population.
Fine mapping of QTL confidence intervals of the intercrossed B73 ×Mo17 population resulted in the
identification of a total of 13 SNPs in Fe limited regime and 2 SNPs under normal supplementation that
were statistically (FDR = 0.05) associated with cytochrome P450 94A1, invertase beta-fructofuranosidase
insoluble isozyme 6 and a low-temperature-induced 65 kDa protein. Association analysis of the entire
genome under restricted and normal Fe treatments yielded a total of 18 and 17 significant SNPs,
respectively. Dell’Acqua et al. [39] generated for the first time a balanced multi-parental population in
maize, which serves as a tool for effortless QTL mapping in maize due to a large variety and dense
recombination events. This author generated 1636 MAGIC maize recombinant inbred lines originating
from eight genetically different founder lines. The analysis of the MAGIC 529 maize line demonstrated
that the population is a balanced, uniformly differentiated mosaic of eight founders that has a mapping
power and resolution enhanced by the high frequencies of minor alleles and the rapid disappearance of
linkage disequilibrium. That study provided evidence how MAGIC maize can be used to find strong
candidate genes through the incorporation of genome sequencing and transcriptomic information.
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The latter authors described three flowering time QTLs and three grain yield QTLs and indicated
potential candidate genes. MAGIC maize subsets have been demonstrated to acquire high power and
high resolution QTL mapping in power simulations. According to Xiao et al. [40], a growing number of
readily available GWAM results allow us to narrow down association analyses to single well-annotated
candidate genes and to elucidate the structure of the genome and its constitution connected with the
studied traits. First attempts aimed at calculating the pattern of the distribution of associated loci at
the whole genome level have demonstrated that intragenic regions and those with close proximity
to genes (as opposed to intergenic regions) were primarily responsible for the variability of maize
traits, particularly in the 5′UTR (non-translated region) [10]. In addition, non-synonymous mutated
SNPs along with variants with high copy numbers show the highest rate of functional mutations,
while intergenic regions contain significantly less functional SNPs [41]. The above systematic studies
indicate that gene regulation at the level of expression should have an important function in phenotypic
diversity. The expression pattern of immature maize kernels has been broadly studied within the
frame of this hypothesis [42] and highly similar conclusions have been drawn as in earlier studies
regarding quantitative traits; namely that non-synonymous SNPs are the crucial factors in expression
regulation, and they have the highest number of SNP-QTL associations [42].

4. Materials and Methods

4.1. Plant Materials

The plant material was sixty-two inbred lines from the maize collections belonging to two Polish
cultivation companies: The Plant Breeding Smolice IHAR Group (Poland) and the Plant Breeding
Małopolska (Poland). Among the analyzed lines were both flint- and dent-shaped grain forms.
Lines with a flint-type grain belonged to three different origin groups: F2 (a group related to the
F2 line bred at INRA in France from the Lacaune population), EP1 (a group related to the EP1 line,
bred in Spain from the population derived from the Pyrenees) and German Flint (a line group bred
from the local German population). Lines with a dent-type grain belonged to different origin groups
from the United States: Iowa Stiff Stalk Synthetic (BSSS), Iowa Dent (ID) and Lancaster. Inbred lines
of complex origin bred from different starting populations and lines of unknown origin were also
analyzed (Table 3).

Table 3. Plant material used in the experiment with division into origin groups of flint-shaped grain
forms, dent-shaped grain forms and semi dent-shaped grain forms inbred lines of maize (Zea mays L.).
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F2

In
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ed
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ne
N

um
be

rs

74
F2/EP1 35,39,41,51,53
F2/CM7 73

Flint/BSSS 38
Flint/ID 40

Flint/Lancaster 60,68
German Flint/F2 69,82,93
Origin unknown 42,52,36

Dent

ID 33,43,44,56,58,59,61,62,64,65,72,76,79,80,83,85,88,89,90,94
BSSS 47,49,50,87

ID/BSSS 54,57,63,66,67,75,77,78,81,84,86,91,92,45,46
Lancaster 55

ID/Lancaster 50

Semident
BSSS 71

Origin unknown 37,34,48

4.2. Phenotyping

The field experiment with inbred maize lines was established in 2015 using 10 m2 plots in a
set of complete random blocks in three replicates in Polish breeding stations in the Plant Breeding
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Smolice IHAR Group (51◦42′20.813” N, 17◦9′57.405” E) and Plant Breeding Małopolska (50◦58′12.75” N,
16◦56′5.892” E). The analysis of morphological features was conducted from May to October 2015
and included 13 traits: Type of grain (TG), anthocyanin coloration of glumes of cob (ACGC), time of
anthesis—50% of flowering plants (TA), time of silk emergence—50% of flowering plants (TSE),
anthocyanin coloration of silks (ACSi), anthocyanin coloration of anthers (ACA), anthocyanin coloration
at the base of the glume (ACBG), angle between main axis and lateral branches (ANGLE), curvature of
lateral branches (CLB), length of main axis above the highest lateral branch (LMA), number of primary
lateral branches (NPLB), anthocyanin coloration of sheath (ACSh) and anthocyanin coloration of
internodes (ACI). Biometric measurements were carried out in the first half of November 2015 and
included nine traits: Plant length (PL), height ratio of insertion of peduncle of the upper ear to plant
length (HIP), cob diameter (DC), cob length (LC), number of rows of grain (NRG), number of grains
per cob (NGC), weight of fresh grains per cob (WFGC), dry matter content at harvest time (DM) and
weight of fresh grains per cob at 15% moisture (WFG15). Measurements concerning yield structure
traits were performed on 20 randomly selected cobs from three replicates of each inbred line.

Climatic conditions: In 2015, the average rainfall in Smolice was 39.45 mm and was 5.82 mm
lower than the average rainfall for many years. The highest rainfall was in July (55 mm) and the lowest
in March (15 mm). The average air temperature this year in Smolice was 11.54 ◦C and was higher than
the average temperature over the years by 1.8 ◦C. The warmest month in 2015 was August (21 ◦C),
while the lowest temperature was recorded in December (1.1 ◦C). In 2015, rainfall and temperature
levels were unfavorable during the initial development of maize. Despite the early sowing date, the
maize remained in the 2–3 leaf stage for a long time, and purple discoloration was visible on the leaves
due to the difficulty in taking phosphorus from the soil. May was full of rainfall, which had a positive
effect on the further development of maize.

4.3. Genotyping and SilicoDArT and SNP Data Processing

Genotype data for association mapping were derived from polymorphisms identified in DArT
and candidate gene sequences.

Sixty-two lines were genotyped. Total genomic DNA was extracted from the young leaves of
the analyzed forms using the GenElute Plant Mini Kit (Sigma-Aldrich, Poznań, Poland). DNA purity
and concentration were determined spectrophotometrically (Thermo Scientific, Waltham, MA, USA).
The concentration of all DNA samples was adjusted to 100 ng µL−1. The DArTseq analysis was
performed at Diversity Arrays Technology Pty Ltd. (Australia).

DNA samples digestion/ligation reactions were processed according to Kilian et al. [13]
but replacing a single PstI-compatible adaptor with two adaptors corresponding to: PstI- and
NspI-compatible sequences and moving the assay on the sequencing platform as described by
Sansaloni et al. [15]. The PstI-compatible adapter was designed to include Illumina flowcell attachment
sequence, sequencing primer sequence and “staggered”, varying length barcode region, similar to the
sequence reported by Elshire et al. [17]. Reverse adapter contained flowcell attachment region and
NspI-compatible overhang sequence.

Only “mixed fragments” (PstI–NspI) were amplified in PCR using the following reaction conditions:
Denaturation 1 min at 94 ◦C, followed by 30 cycles of 94 ◦C for 20 s, 58 ◦C for 30 s and 72 ◦C for 45 s,
and the final elongation 72 ◦C for 7 min. After PCR equimolar amounts of amplification products from
each sample of the 96-well microtiter plate are bulked and applied to c-Bot (Illumina) bridge PCR
followed by sequencing on Illumina Hiseq2500. The sequencing (single read) was run for 77 cycles.

Sequences generated from each lane were processed using proprietary DArT analytical pipelines.
In the primary pipeline the fastq files were first processed to filter away poor quality sequences,
applying more stringent selection criteria to the barcode region compared to the rest of the sequence.
In that way the assignments of the sequences to specific samples carried in the “barcode split” step
were very reliable. Approximately 2,500,000 (+/−7%) sequences per barcode/sample were used in
marker calling. Finally, identical sequences were collapsed into “fastqcall files”. These files were
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used in the secondary pipeline for DArT PL’s proprietary SNP and SilicoDArT (presence/absence of
restriction fragments in representation) calling algorithms (DArTsoft14). For the association analysis,
only DArT sequences meeting the following criteria were selected: One SilicoDArT and SNP within
a given sequence (69 nt), minor allele frequency (MAF) >0.25 and the missing observation fractions
<10%. SilicoDArT and SNP sequences were mapped using the Blast service at https://www.gabipd.org/

with default parameters. The sequences (69 bp) of three SilicoDArT markers (4591115, 7059939 and
5587991) were used to search the RefSeq genome database of Zea mays (tax ID: 4577) with Nucleotide
BLAST search (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi). The silicoDArT markers are dominant,
because they represent the presence versus absence of restriction enzyme fragment in genomic
representations of a subset of lines in the analysis. These markers are extracted by DArTsoft14 software
and markers, which were present in a representation were assigned 1 and those absent were assigned
0 value, respectively.

4.4. Statistical Analysis and Association Mapping

A one-way analysis of variance (ANOVA) was performed to verify the hypothesis of the lack
of the effect of lines on the variability of observed traits. Sample sizes for lines that were used in
calculations were equal to ten for each of the four replications. The coefficients of genetic similarity
(S) of the investigated lines were calculated using the Nei and Li [29] formula. Lines were grouped
hierarchically using the unweighted pair group method of arithmetic means (UPGMA) based on
calculated coefficients. The relationships among lines were presented in the form of a dendrogram.
Association mapping was performed using a method based on the mixed linear model with the
population structure estimated by the eigenanalysis (principal component analysis applied to all
markers) and modeled by random effects [43,44]. All analyses were conducted in Genstat 18.2.
Significance of associations between traits and SilicoDArT and SNP markers was assessed on the basis
of p-values corrected for multiple testing by the Benjamini–Hochberg method.

5. Conclusions

The development of new genotyping methods based on hybridization markers or NGS makes
them increasingly applied in basic research. The availability of a large number of SNP markers or
the reproducibility of DArT technology and their decreasing costs make modern methods to be used
in economically important plants in applied research, such as identification of trait markers or even
selection at the level of entire genomes, when the criterion of time is more important than the initial
financial expenditure. The results of the conducted research show undoubtedly to the advantages of
DArT Seq technology because of it identifying 49,911 polymorphisms (including 33,452 SilicoDArT
and 16,459 SNP). Of these markers three very important ones were identified, and deserve particular
attention, because they were associated with five or six traits: SilicoDArT 4591115, SilicoDArT 7059939
and SilicoDArT 5587991. These markers will be analyzed and tested in subsequent years of research.
As results from conducted research molecular markers SilicoDArT and SNP can also be used in this
species to group lines in terms of origin and lines with incomplete origin data. They can therefore
be used to select parent components for heterosis hybrids. However, one should be aware of the
advantages and disadvantages of DArT or SNP markers discussed. It seems that DArT markers may
sometimes be more convenient than SNP markers due to their dominant nature (e.g., in polyploid
species). The availability of probe DNA sequences, and thus the possibility of developing specific
markers is their unquestionable advantage. At the same time, the DArTseq technology (in contrast to
GBS) provides a large pool of the so-called silicoDArTs, which are also dominant (such a marker is
either present or not in a given genotype, but is not related to the difference in the DNA sequence of a
given marker). One should also be aware of the fact that DArT markers, due to their known location in
many utility species, may be a better solution than SNP markers when the chromosomal location or
localization of linkage groups to specific chromosomes of a given species is important. Therefore, it is

https://www.gabipd.org/
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worthwhile to consider which type of markers will provide greater advantages in the case of specific
research tasks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/9/330/s1,
Table S1: Effects of markers (Silico and SNPs) associated with two or more traits (pleiotropy) found in GWAM
with allelic substitution effects (significant associations selected at p < 0.05 with correction for multiple testing by
the Benjamini-Hochberg method).
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Masojć, P.; Targońska-Karasek, M.; Banaszak, Z.; Banaszak, K.; et al. Identification of Single Nucleotide
Polymorphisms Associated with Brown Rust Resistance, α-Amylase Activity and Pre-harvest Sprouting in
Rye (Secale cereale L.). Plant Mol. Biol. Rep. 2017, 35, 366–378. [CrossRef]

23. Edwards, D.; Batley, J.; Snowdon, R.J. Accessing complex crop genomes with next-generation sequencing.
Theor. Appl. Genet. 2013, 126, 1–11. [CrossRef]

24. Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic
marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510.
[CrossRef]

25. Bayer, P.E.; Ruperao, P.; Mason, A.S.; Stiller, J.; Chan, C.-K.K.; Hayashi, S.; Long, Y.; Meng, J.; Sutton, T.;
Visendi, P.; et al. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and
gene conversions in Cicer arietinum and Brassica napus. Theor. Appl. Genet. 2015, 128, 1039–1047. [CrossRef]

26. Guo, Z.; Tucker, D.M.; Wang, D.; Basten, C.J.; Ersoz, E.; Briggs, W.H.; Lu, J.; Li, M.; Gay, G. Accuracy of
Across-Environment Genome-Wide Prediction in Maize Nested Association Mapping Populations. G3 Genes
Genomes Genet. 2013, 3, 263–272. [CrossRef]

27. Li, L.; Petsch, K.; Shimizu, R.; Liu, S.; Xu, W.W.; Ying, K.; Yu, J.; Scanlon, M.J.; Schnable, P.S.;
Timmermans, M.C.P.; et al. Mendelian and Non-Mendelian Regulation of Gene Expression in Maize.
PLoS Genet. 2013, 9, e1003202. [CrossRef]

28. Suwarno, W.B.; Pixley, K.V.; Palacios-Rojas, N.; Kaeppler, S.M.; Babu, R. Genome-wide association analysis
reveals new targets for carotenoid biofortification in maize. Theor. Appl. Genet. 2015, 128, 851–864. [CrossRef]

29. Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases.
Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [CrossRef]

30. Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: Essex, UK, 1996.
31. Crossa, J.; Burgueño, J.; Dreisigacker, S.; Vargas, M.; Herrera-Foessel, S.A.; Lillemo, M.; Singh, R.P.;

Trethowan, R.; Warburton, M.; Franco, J.; et al. Association Analysis of Historical Bread Wheat Germplasm
Using Additive Genetic Covariance of Relatives and Population Structure. Genetics 2007, 177, 1889–1913.
[CrossRef]

32. Yu, L.-X.; Barbier, H.; Rouse, M.N.; Singh, S.; Singh, R.P.; Bhavani, S.; Huerta-Espino, J.; Sorrells, M.E. A
consensus map for Ug99 stem rust resistance loci in wheat. Theor. Appl. Genet. 2014, 127, 1561–1581.
[CrossRef]

33. Zhang, L.; Liu, D.; Guo, X.; Yang, W.; Sun, J.; Wang, D.; Sourdille, P.; Zhang, A. Investigation of genetic
diversity and population structure of common wheat cultivars in northern China using DArT markers.
BMC Genet. 2011, 12, 42. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0101673
http://www.ncbi.nlm.nih.gov/pubmed/25006804
http://dx.doi.org/10.1186/1753-6561-5-S7-P54
http://dx.doi.org/10.1038/35035083
http://dx.doi.org/10.1371/journal.pone.0019379
http://www.ncbi.nlm.nih.gov/pubmed/21573248
http://dx.doi.org/10.1093/bfgp/elr046
http://dx.doi.org/10.1155/2008/574927
http://dx.doi.org/10.1016/j.pbi.2009.12.004
http://dx.doi.org/10.3835/plantgenome2008.02.0089
http://dx.doi.org/10.1007/s11105-017-1030-6
http://dx.doi.org/10.1007/s00122-012-1964-x
http://dx.doi.org/10.1038/nrg3012
http://dx.doi.org/10.1007/s00122-015-2488-y
http://dx.doi.org/10.1534/g3.112.005066
http://dx.doi.org/10.1371/journal.pgen.1003202
http://dx.doi.org/10.1007/s00122-015-2475-3
http://dx.doi.org/10.1073/pnas.76.10.5269
http://dx.doi.org/10.1534/genetics.107.078659
http://dx.doi.org/10.1007/s00122-014-2326-7
http://dx.doi.org/10.1186/1471-2156-12-42
http://www.ncbi.nlm.nih.gov/pubmed/21569312


Plants 2019, 8, 330 16 of 16

34. Bernardo, R. Relationship between single-cross performance and molecular marker heterozygosity.
Theor. Appl. Genet. 1992, 83, 628–634. [CrossRef] [PubMed]

35. Zhang, X.; Pérez-Rodríguez, P.; Semagn, K.; Beyene, Y.; Babu, R.; López-Cruz, M.A.; San Vicente, F.; Olsen, M.;
Buckler, E.; Jannink, J.-L.; et al. Genomic prediction in biparental tropical maize populations in water-stressed
and well-watered environments using low-density and GBS SNPs. Heredity 2015, 114, 291–299. [CrossRef]

36. Gao, Z.-Y.; Zhao, S.-C.; He, W.-M.; Guo, L.-B.; Peng, Y.-L.; Wang, J.-J.; Guo, X.-S.; Zhang, X.-M.; Rao, Y.-C.;
Zhang, C.; et al. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred
lines and improving parental genome sequences. Proc. Natl. Acad. Sci. USA 2013, 110, 14492–14497.
[CrossRef]

37. Cook, J.P.; McMullen, M.D.; Holland, J.B.; Tian, F.; Bradbury, P.; Ross-Ibarra, J.; Buckler, E.S.; Flint-Garcia, S.A.
Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association
Panels. Plant Physiol. 2012, 158, 824–834. [CrossRef] [PubMed]

38. Benke, A.; Urbany, C.; Stich, B. Genome-wide association mapping of iron homeostasis in the maize
association population. BMC Genet. 2015, 16, 1. [CrossRef] [PubMed]

39. Dell’Acqua, M.; Gatti, D.M.; Pea, G.; Cattonaro, F.; Coppens, F.; Magris, G.; Hlaing, A.L.; Aung, H.H.;
Nelissen, H.; Baute, J.; et al. Genetic properties of the MAGIC maize population: A new platform for high
definition QTL mapping in Zea mays. Genome Biol. 2015, 16, 167. [CrossRef]

40. Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide Association Studies in Maize: Praise and
Stargaze. Mol. Plant 2017, 10, 359–374. [CrossRef]

41. Wallace, J.G.; Bradbury, P.J.; Zhang, N.; Gibon, Y.; Stitt, M.; Buckler, E.S. Association Mapping across
Numerous Traits Reveals Patterns of Functional Variation in Maize. PLoS Genet. 2014, 10, e1004845.
[CrossRef]

42. Liu, H.; Luo, X.; Niu, L.; Xiao, Y.; Chen, L.; Liu, J.; Wang, X.; Jin, M.; Li, W.; Zhang, Q.; et al. Distant eQTLs and
Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in
Maize. Mol. Plant 2017, 10, 414–426. [CrossRef] [PubMed]

43. Malosetti, M.; Ribaut, J.-M.; van Eeuwijk, F.A. The statistical analysis of multi-environment data: Modeling
genotype-by-environment interaction and its genetic basis. Front. Physiol. 2013, 4. [CrossRef] [PubMed]

44. van Eeuwijk, F.A.; Bink, M.C.; Chenu, K.; Chapman, S.C. Detection and use of QTL for complex traits in
multiple environments. Curr. Opin. Plant Biol. 2010, 13, 193–205. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00226908
http://www.ncbi.nlm.nih.gov/pubmed/24202681
http://dx.doi.org/10.1038/hdy.2014.99
http://dx.doi.org/10.1073/pnas.1306579110
http://dx.doi.org/10.1104/pp.111.185033
http://www.ncbi.nlm.nih.gov/pubmed/22135431
http://dx.doi.org/10.1186/s12863-014-0153-0
http://www.ncbi.nlm.nih.gov/pubmed/25634232
http://dx.doi.org/10.1186/s13059-015-0716-z
http://dx.doi.org/10.1016/j.molp.2016.12.008
http://dx.doi.org/10.1371/journal.pgen.1004845
http://dx.doi.org/10.1016/j.molp.2016.06.016
http://www.ncbi.nlm.nih.gov/pubmed/27381443
http://dx.doi.org/10.3389/fphys.2013.00044
http://www.ncbi.nlm.nih.gov/pubmed/23487515
http://dx.doi.org/10.1016/j.pbi.2010.01.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Phenotyping 
	Genotyping Data (SilicoDArT and SNP) 
	Association Mapping 

	Discussion 
	Materials and Methods 
	Plant Materials 
	Phenotyping 
	Genotyping and SilicoDArT and SNP Data Processing 
	Statistical Analysis and Association Mapping 

	Conclusions 
	References

