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Abstract: Cymbidium is one of the most important genera of flowering plants in the Orchidaceae family,
and comprises a wide variety of beautiful and colorful species. Among these, only a few species
possess floral scents and flavors. In order to increase the availability of a new Cymbidum hybrid,
“Sunny Bell”, this study investigated the volatile floral scents. Volatiles of the floral organs of the
new Cymbidium hybrid, “Sunny Bell”, at the full-flowering stage were characterized with headspace
solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis.
A divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber gave the best extraction
for volatile components. Twenty-three components were identified as the main volatiles for the floral
organs of the new Cymbidium hybrid, “Sunny Bell” at the full-flowering stage; twelve compounds in
the column, sixteen compounds in the labellum, eleven compounds in the sepals, and nine compounds
in the petals were identified. Terpenes are the major source of floral scents in this plant. As a result
of GC-MS analysis, the most abundant compound was linalool (69–80%) followed by α-pinene
(3–27%), 4,8-dimethyl-1,3,7-nonatriene (5–18%), eucalyptol (6–16%), and 2,6-dimethylnonane (2–16%).
The main components were identified as monoterpenes in the petals and sepals, and as monoterpenes
and aliphatics in the column and labellum. The results of this study provide a basis for breeding
Cymbidium cultivars which exhibit desirable floral scents.
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1. Introduction

Orchids, a flowering plant with over 800 described genera and 25,000 species, are prized for their
beauty and long flowering, exhibiting flowers of an incredible variety of size, shape, and color [1].
Cymbidium comprises approximately 44 species that are native to the Himalayas, tropical regions of
Southeast Asia, and Australia [2]. It has been reported that Cymbidium flowers are rich in volatile
compounds including cineole, isoeugenol, and (-)-α-selinene [3]. Floral scent and color are major traits
for floriculture crops in developing new cultivars of Cymbidium. Therefore, headspace solid-phase
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microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to characterize
the floral scent of the new Cymbidium hybrid, “Sunny Bell”.

A Cymbidium variety, “Sunny Bell” (Cymbidium karan × Cymbidium eburneum) was developed at
the National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon,
Korea in 2013 (Figure 1). Different spider-type cultivars showed differences in the quantity and quality
of floral aroma volatiles. Different accessions of C. also showed differences in the amounts of floral
scent volatiles. This hybrid came from the progenies crossed between C. eburneum and C. karan in 2000
(Figure 2).
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Figure 2. Pedigree diagram of the new hybrid, Cymbidium “Sunny Bell”. “•” indicates the number of
plants in each lane.

Finally, 101 seedlings were obtained after planting and acclimatization in a green house. In 2007,
one line was selected based on its performance characteristics including flower color, leaf shape, flower
stalk, and growth rate, and named “Wongyuo F1-47”. A proceeding line coded 000390-46 possessed
uniformity and excellent characteristics with a floral scent. The line 00-0390-46 has a longer flowering
period because of its relatively larger diameter and greater number of flowers than 00-0390-20, which
is a comparable variety; therefore, consumer preference for this cultivar is stronger than that for others.
The line selected after the second analysis of plant characteristics was named “Sunny Bell”. This hybrid
had light purple-colored petals and lips (RP59B) and large-sized flowers (diameter 7.9 cm). The general
impression of the petals and sepals showed an incurved shape. The flowers started blooming from
in February under optimal culture conditions. “Sunny Bell” had about 7–8 flowers per stalk, with
large-sized plants. The peduncle attitude was erect (Tables 1 and 2).
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Table 1. Morphological characteristics of a new hybrid, Cymbidium “Sunny Bell”.

FlowerCultivars
Color a Shape Plant Size Peduncle

Attitude
Fragrance Bloom

Sunny Bell
(Wongyuo

F1-47)
RP59B incurved small erect mild winter

(From Feb.)

Silk Road
(control) R56A some

spreading medium semi-upright strong winter
(From Jan.)

a Based on the Royal Horticultural Society (RHS, 2001) color chart.

Table 2. Comparative characteristics of flowers of a new hybrid, Cymbidium “Sunny Bell”.

Cultivars
Flower

Width/Flower
Length (cm)

Peduncle
Length (cm)

No. of
Flowers/Peduncle

No. of
Peduncle Preference a

Sunny Bell
(Wongyuo F1-47) 7.9 ± 0.5 b/7.9 ± 0.4 67.1 ± 8.6 7.1 ± 1.2 4.4 ± 1.6 3.7 ± 0.9

Silk Road
(control) 5.4 ± 1.6/4.7 ± 1.3 47.0 ± 3.5 5.8 ± 2.6 3.3 ± 1.0 3.9 ± 0.7

a Preference evaluation was undertaken at the Cymbidium exhibition held at the National Institute of Horticultural
and Herbal Science (NIHHS) in 2013. Poor (1)–Excellent (5). b All data are presented as mean ± standard deviation
(n = 15).

Headspace analysis can be used to determine the composition of natural materials and to
provide broad olfactory profiles [4]. Solid phase microextraction (SPME) is a simple, fast, sensitive,
and convenient sample preparation technique that minimizes solvent usage while integrating sampling
and sample preparation steps prior to instrumental analysis [5]. Recently, SPME has been widely applied
to the sampling and analysis of aromatic and volatile biological pharmaceutical samples. For example,
the authors of [6] reported forty-three compounds in the flower of Vicia sativa L. and the authors of [7]
analyzed and identified volatile constituents which included alcohols, aldehydes, esters, acids, ketones,
terpenes, C13-norisoprenoides, and sulfur compounds from two species of the Brassicaceae (Crucifer)
family using HS-SPME-GC-MS [6,7]. Solid-phase microextraction (SPME) is a new type of sample
pretreatment technology that allows the rapid and simple extraction of small amounts of volatile
compounds. This technique has high reproducibility under the same test conditions and is suitable
for floral scent analysis. In this investigation, we performed headspace solid-phase microextraction
(HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) to analyze the floral scent
volatiles. Nowadays, several types of SPME fiber coatings are available for the extraction of analytics.
Among them, non-polar polydimethylsiloxane (PDMS) fibers are preferred for the extraction of
non-polar analytes, including many volatile flavor compounds. Carboxen-polydimethylsiloxane
(CAR-PDMS) fibers exhibit better extraction efficiency than 50/30 µm DVB/CAR/PDMS coated SPME
fiber attached to a manual PDMS fiber, and similar fibers, but show inferior repeatability and their
equilibration is more time-consuming [8].

Monoterpenes, sesquiterpenes, and aliphatics have been identified as the major volatile compounds
in Cymbidium, with their total exceeding 90%. While there have been previous reports on the
analysis of volatile components [(E)-4-hexadecen-6-yne, 6-oxoheptanoic acid methyl ester, dodecane
hexadecanoic acid, isopropyl myristate, and tetradecanoic acid] of Cymbidium varieties [9,10], there are
no reports on the characteristics of the volatiles contributing to the floral scents of the new “Sunny
Bell” hybrid. Thus, in the present study, HS-SPME coupled with GC-MS was used to characterize
the volatile components of “Sunny Bell” flowers. Specifically, this study aimed to evaluate the
volatile polymorphisms of different floral organs from “Sunny Bell” to determine the floral organs of
significant scent.
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2. Results and Discussion

The floral volatile components of the “Sunny Bell” Cymbidium hybrid were analyzed using
HS-SPME coupled with GC-MS. Each peak was identified by matching their spectra with those
recorded in the National Institute of Standards and Technology (NIST) 14 mass spectral library and
published data, as well as analysis of the Retention indices [RI] or Gas Chromatography the retention
time [GC r.t.] data, and confirmed through analysis of the fragmentation pattern in mass spectra.
Table 3 shows the 23 volatile components identified as the volatiles of the “Sunny bell” flowers; of
which 94.05% were in the column, 97.23% in the labellum, 98.82% in the sepals, 99.80% in the petals,
and 88.95% in the whole flower (new hybrid Cymbidium, “Sunny Bell”). These volatiles were grouped
based on biochemical synthesis pathways [11].

Twelve volatile compounds belonging to different chemical classes, monoterpenes (44.75%) and
aliphatics (49.30%), were identified in the column (Figure 3A). The most abundant compounds were
α-pinene, 2,6-dimethylnonane, eucalyptol, and 1,3-di-tert-butylbenzene, accounting for about 71% of
the total GC peak area, followed by 2,4-dimethyl-1-decene (8.18%), cis-1,1,3,4-tetramethylcyclopentane
(6.75%), and 7-methyl-1-undecene (2.52%).
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In the labellum, sixteen volatile compounds were identified (Figure 3B): monoterpenes
(48.34%), aliphatics (48.28%), and sesquiterpens (0.61%). The most abundant compounds were
4,8-dimethyl-1,3,7-nonatriene, trans-ocieme, linalool, and 1,3-di-tert-butylbenzene, accounting for
about 57% of the total GC peak area, followed by β-myrcene (8.62%), eucalyptol (6.90%), and α-pinene
(5.27%) (Figure 3B).

The sepals yielded eleven volatile compounds (Figure 3C): monoterpenes (82.86%), aliphatics
(8.15%), and sesquiterpenes (7.81%). The most abundant compounds were linalool, trans-β-ocieme,
and 4,8-dimethyl-1,3,7-nonatriene, accounting for about 84%, followed by β-myrcene (3.50%),
α-farnesene (2.93%), and (±)-trans-nerolidol (2.25%). The relative content of linalool was significantly
higher in the sepals compared to the column and labellum.

In the petals, ten volatiles were identified (Figure 3D): monoterpenes (91.17%), aliphatics (1.33%),
and sesquiterpens (6.60%). The major compounds were linalool, accounting for approximately 80%,
followed by trans-β-ocieme (6.13%), α-pinene (3.12%), and β-farnesene (2.19%). The relative linalool
content was significantly higher in the petals than in the other floral organs. The petals and sepals of
the new hybrid, Cymbidium “Sunny Bell” had floral scents composition ratio. The order of total peak
areas (data not shown) was as follows: petals > sepals >> labellum > column.



Plants 2019, 8, 251 5 of 8

Table 3. Percentage of volatile compounds identified in four different floral organs of a new hybrid, Cymbidium “Sunny Bell” using HS-SPME-GC-M.

Relative Content b (%) ± SD c

Peak Retention Indices a Compounds Whole Flower
(Sunny Bell) Column Labellum Sepal Petal

Monoterpens 54.49 44.75 48.34 82.86 92.17
1 934 α-pinene 1.06 ± 0.20x 27.41 ± 2.52 5.27 ± 1.59
2 990 β-myrcene 10.20 ± 1.63 0.94 ± 0.22 8.62 ± 0.31 3.50 ± 0.06 3.12 ± 0.14
4 1032 eucalyptol 0.74 ± 0.06 16.40 ± 1.77 6.90 ± 0.96
5 1035 cis-β-ocimene 5.81 ± 0.48 1.65 ± 0.07 1.55 ± 0.15
6 1047 trans-β-ocimene 14.37 ± 0.97 13.94 ± 0.81 8.03 ± 0.10 7.13 ± 0.27
10 1121 linalool 24.31 ± 2.28 13.61 ± 3.30 69.68 ± 5.26 80.37 ± 0.68

Aliphatics 6.42 49.30 48.28 8.15 1.33
3 1007 2,6-dimethylnonane 16.21 ± 1.20 2.89 ± 0.12
7 1076 cis-1,1,3,4-tetramethylcyclopentane 6.75 ± 0.16 1.93 ± 0.08
8 1080 2,4-dimethyl-1-decene 8.18 ± 0.24 2.43 ± 0.23
9 1113 4,8-dimethyl-1,3,7-nonatriene 4.20 ± 0.37 18.77 ± 1.06 5.67 ± 4.58
11 1128 allocimene A 1.72 ± 0.07 1.35 ± 0.33
12 1133 3-isopropylidene-5-methyl-1,4-hexadiene 1.33 ± 0.09
13 1237 4,6-dimethyldodecane 1.71 ± 0.38 2.37 ± 0.06
14 1245 1,3-di-tert-butylbenzene 2.22 ± 0.17 10.51 ± 2.07 9.74 ± 0.11
15 1300 2-isopropyl-5-methyl-1-heptanol 1.48 ± 0.45 2.25 ± 0.08
16 1309 7-methyl-1-undecene 2.52 ± 0.92 3.69 ± 0.07
17 1318 hexyl octyl ether 1.65 ± 0.61 2.49 ± 0.10
23 1574 (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene 1.13 ± 0.10

Sesquiterpenes 26.04 0.61 7.81 6.60
18 1422 β-caryophyllene 11.80 ± 0.53 0.61 ± 0.07 1.56 ± 0.68
19 1454 β-farnesene 0.55 ± 0.05 1.07 ± 0.15 1.03 ± 0.19
20 1480 β-ionone 1.56 ± 0.14
21 1504 α-farnesene 13.69 ± 0.74 2.93 ± 0.10 2.19 ± 0.34
22 1562 (±)-trans-nerolidol 2.25 ± 0.28 1.52 ± 0.20

a Retention indices calculated against n-alkanes (C8–C16); b Relative contents (%) = (area under peak/total peak area) × 100. c All data are presented as mean ± standard deviation (n = 3).
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21–28 floral scent compounds in the major volatile components of the flower of three Cymbidium
varieties [3]. The volatiles mainly comprised monoterpenes, aliphatics, and sesquiterpenes and
their contents exceeded 90% [3]. Our results revealed that aliphatics (48.28–49.30%) followed by
monoterpenes (44.75–48.34%) of the column and labellum, are the major components in the floral organs
of the “Sunny Bell” Cymbidium hybrid. The main components of the sepals and petals were found
to be monoterpenes (82.86–91.17%), and sesquiterpenes (6.60–7.81%). α-pinene, linalool, eucalyptol,
and 4,8-dimethyl-1,3,7-nonatriene were the major compounds responsible for the floral scent of this
Cymbidium variety. Linalool is an acyclic monoterpene with tertiary alcohol functionality and is one
of the major contributors to floral scents in nature. About 70% of the terpenes contributing to floral
scents are attributable to linalool. This may be because monoterpenes have a lower boiling point than
sesquiterpenes. Different species contain different types and quantities of floral volatile compounds.
Linalool has been reported to show anti-inflammatory, antitumor, antioxidant, and antimicrobial
activity [12]. α-pinene can be found in the essential oils of coniferous (pine) trees, rosemary, lavender,
and turpentine, and exhibits antioxidant [13], anti-inflammatory [14], and antimicrobial activity [15].
Eucalyptol is a colorless oil as a natural compound, and is used in food preparations. Eucalyptol shows
anti-inflammatory [16,17], gastroprotective [18], hepatoprotective [19,20], and antitumorogenic
effects [21], and antimycotic [22,23] and antibacterial activity [24]. 4,8-Dimethyl-1,3,7-nonatriene
was isolated and identified for the first time from cardamom oil [25]. Finally, the (3S)-(E)-nerolidol
synthase sesquiterpenes responsible for pleasant scent emission are a good candidate for a regulatory
role in releasing the important signaling molecule 4,8-dimethyl-1,3,7-nonatriene during the daytime [26].

This study demonstrated that the new Cymbidium hybrid, “Sunny Bell” flowers differ greatly in
their volatile composition depending on the floral organs of the plant, a finding that provides important
theoretical references for flower appreciation, breeding, and studies on aromatic volatile composition.

3. Materials and Methods

3.1. Plant Materials

The flowers of Cymbidium “Sunny Bell” were collected in the greenhouse floriculture research
division, National Institute of Horticultural and Herbal Science (NIHHS). Wanju, Korea, in February
2016 and were identified by Dr. Mi-Seon Kim; a voucher specimen (F20160204-01) is deposited in the
NIHHS. The inflorescence of Cymbidium “Sunny Bell” is a raceme that always exhibits inconsistent
flowering. Approximately 20 g of raw floral material of Cymbidium “Sunny Bell” was collected between
09:00 a.m. and 11:00 a.m., on 4–5 February 2016. The flowers were moistened and immediately
transported to the laboratory. In all experiments, the flowers were thinly and evenly sliced using a
knife, such that they could be accommodated in a headspace vial (20 mL). Finally, 1.0 g of materials
was weighed and allowed to stand for 30 min at ambient temperature.

3.2. Analysis of Volatile Components by HS-SPME-GC-MS

Divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fibers with film thickness of
50/30 µm (Supelco, Bellefonte, PA, USA) were used in this assay. For each sample, the SPME device was
inserted into the sealed vial by manually penetrating the silicone septum, and the fiber was exposed to
the headspace of the sliced material after 30 min. The SPME fiber was exposed to each sample for
30 min at 40 ◦C. After extraction, the needle on the SPME manual holder was set to 0.5 cm in the GC
injector. The fiber was then directly desorbed for 10 min. An Agilent 7000C GC-MS system (Agilent
Technologies, Wilmington, DE, USA), with a DB-5MS column (30 m × 0.25 mm I.D. × 0.25 µm, Agilent
Technologies, Wilmington, DE, USA) was used under the following conditions: MS transfer line heater
280 ◦C, injector temperature 250 ◦C, and operation in the splitless mode. Initially, the oven temperature
was held at 60 ◦C for 5 min, then increased from 60 ◦C to 250 ◦C at 3 ◦C/min, and finally maintained for
5 min at 280 ◦C. Helium gas was used as the carrier at a flow rate of 1.0 mL/min. The Agilent 7000C
mass spectrometer was operated in the electron ionization mode at 70 eV with a source temperature
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of 250 ◦C, the quadrupole was set to 150 ◦C, and scanning was performed from m/z 30 to 500 in the
full-scan mode.

3.3. Data Analysis

The constituents were identified by matching their spectra with those recorded in the NIST 14
(National Institute of Standards and Technology, Gaithersburg, MD, USA) mass spectral library and with
published data (NIST, http://webbook.nist.gov/chemistry/; Pubchem, http://pubchem.ncbi.nlm.nih.gov/;
Flavornet, http://www.flavornet.org/; Chemspider, http://chemspider.com/). The major components
were then identified by analysis of the fragmentation data in the MS spectra. In addition, the constituents
were confirmed by comparing the retention indices (RI) or GC retention time (r.t.) data with those of
authentic standards or published literature. The RI′s are calculated as shown in Equation (1) [27]

RI = 100 × n + [100 × (tx − tn)]/(tn + 1 − tn) (1)

where RI is the retention index of the unknown compound x, n is the number of carbon atoms of the
n-alkane eluted before x, n + 1 is the number of carbon atoms of the n-alkane eluted after x, tx is the
retention time of x, tn is the retention time of the n-alkane eluted before x, and, tn + 1 is the retention
time of the n-alkane eluted after x. All the indices were calculated via three replicate measurements by
injecting pure compounds. The compounds were measured as relative contents (%) and calculated
automatically from the peak areas obtained by the total ion chromatographic (TIC) analysis, using
Equation (2) [27]:

Relative contents (%) = (area under peak/total peak area) × 100%. (2)
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