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Abstract: In this research, seven different models to predict leaf area (LA) of loquat (Eriobotrya japonica
Lindl) were tested and evaluated. This species was chosen due to the relevant importance of its fruit
as an appreciated early summer product and of its leaves and flower as a source of additional income
within the nutraceutical and functional food markets. The analysis (calibration and validation) was
made using a large dataset (2190) of leaf width (W), leaf length (L), and single LA collected in ten
common loquat cultivars. During the analysis, the results obtained using one- and two-regressor
models were also evaluated to assess the need for fast measurements against different levels of
accuracy achieved during the final estimate. The analysis permitted to finally select two different
models: 1) a model based on a single measurement and quadratic relationship between the single LA
and W (R2 = 0.894; root mean squared error [RMSE] = 12.98) and another model 2) based, instead,
on two measurements (L and W), and on the linear relationship between single LA and the product
of L × W (R2 = 0.980; RMSE = 5.61). Both models were finally validated with an independent
dataset (cultivar ‘Tanaka’) confirming the quality of fitting and accuracy already observed during the
calibration phase. The analysis permitted to select two different models to be used according to the
aims and accuracy required by the analysis. One, based on a single-regressor quadratic model and W
(rather than L) as a proxy variable, is capable of obtaining a good quality of fitting of the single LA of
loquat cultivars (R2 = 0.894; RMSE = 12.98), whereas, the other, a linear two-regressor (i.e., W and L)
model, permitted to achieve the highest prediction (R2 = 0.980; RMSE = 5.61) of the observed variable,
but double the time required for leaf measurement.

Keywords: Indirect measurement; plant phenotyping; leaf shape; model calibration; bootstrap;
validation

1. Introduction

Leaves are one of the fundamental physiological hubs of a plant in which processes, such as
photosynthesis and transpiration, take place. Together with other plant apparatus (e.g., xylem strands
and phloem elements), leaves contribute to the absorption of nutrients and water from the soil through
the roots and allow the translocation of photosynthetic products from the source to the sink organs.
Moreover, within a life cycle of a plant, leaves pass from a juvenile heterotrophic state to a mature
autotrophic condition [1] determining source-to-sink transitions [2].

Previous research carried out in tomatoes showed that a higher leaf area (LA) after fruits set can
increase fruit size at harvest [3]. This latter aspect is quite important considering that for some species
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(e.g., Prunus sp.) large fruit size, pulp firmness, and sweetness are considered important fruit quality
traits [4]. For instance, as reported by Kappel et al. [4], fruit size at harvest of Prunus sp. is highly
dependent on the relationships between yield efficiency, leaf area (LA), and crop load. Moreover, higher
rates of fruit drop might arise after reduction in LA (e.g., due for instance to herbivores, defoliation,
and leaf shading) which causes a decrease of available resources needed for fruit development [5].

For this reason, the analysis of LA in fruit trees is considered of utmost importance and models
are needed to estimate this parameter rapidly and accurately. On the other hand, considering that
the analysis of plant parameters during the entire cycle of growth might be tedious, it is important to
clearly define the objective of the research [6] and the methodologies to be used. For instance, LA can be
measured directly (1) by destructive harvest of leaves and the subsequent measurement of their area in
the laboratory obtained generally using a planimeter, digital LA meter, or image processing [7], or (2) by
non-destructive measurements directly on the plant, using a portable digital LA meter, or (3) indirectly
taking other proxy measurements (e.g., leaf length and width) and allometric approaches. Direct
methods are generally simple and accurate although the measurements involved can be laborious and
time-consuming making it difficult to get a representative spatial sample [8] and making large-scale
implementation only marginally feasible [9]. In addition, the great spatial and temporal variability of
canopies structure makes the direct measurement not really suitable for long-term monitoring of LA
development. Moreover, direct measurement of LA, carried out through the excision of leaves might
damage the canopy—especially if frequent measurements of LA are needed during the growing season;
therefore, affecting by non-negligible uncertainty, other measurements that may need to be carried out
on the same plant [10,11]. Indirect methods, in which LA is inferred from observations of other proxy
variables directly on the plant, such as the leaf length (L) and leaf width (W) [12], are generally faster,
amenable to automation, and thereby, allow a larger spatial sample to be obtained [8].

So far, several models and regression equations have been proposed, either to be applied at the
leaf [11,13] or shoot level [14–23]. Until now, models and regression equations for fruit trees cover several
species, like for instance, apricot [24], avocado [25], banana [26], blackberry [25], cacao [27], chestnut [28],
citrus [29], grapevine [14,15,20,25,30–33], guava [34], hazelnut [18], kiwifruit [25,35], lotus plum [25],
mango [36], medlar [37], passion fruit [38], peach [39], persian walnut [40], persimmon [25,41],
pistachio [42], rabbiteye blueberry [43], red currant [25], small fruits [44], red raspberry [25],
sour orange [45], strawberry [46,47], pecan [48], sweet cherry [49,50], and white mulberry [51].
In this context, it seems interesting to also analyse the loquat (Eriobotrya japonica Lindl), a fruit tree
species belonging to the Rosaceae family.

Loquat is a subtropical evergreen perennial fruit shrub or small tree, preferably cultivated in light,
well-drained, deep (>1.5 m), moist, alluvial soils, with mild climate (on average air temperature >15 ◦C
and less than 25 ◦C after fruit set), with few wind (fruit can be damaged), no risk of frost (−12 ◦C is
fatal for the plants, but preferably higher than −5 ◦C to avoid damage to the fruits), and with rainfalls
(650–1000 mm annually) well-distributed throughout the year. Currently, China is the main producer,
(1,000,000 tons produced annually on 170,000 ha) followed by Spain (40,000 tons annually), Pakistan
(30,000 tons annually), and Turkey (10,000–20,000 tons) [52]. In Italy, with a production of about
6000 tons, it is listed among the minor fruit trees covering a total area of 450 hectares [53], generally
represented by family orchards and isolated trees. As the current management are considered sometimes
too rudimentary, new data and information on this species can help to cultivate it in a more rational
manner, especially considering that loquat might represent, with its anti-inflammatory and diuretic
properties, promising cultivation of the future. Loquat fruits have a juicy, nutritious, and palatable
pulp and can be used to make jam, wine (together with seeds that are rich in starch), fruit juice, syrup,
and candied fruit [54]. They are generally much appreciated by the consumers especially because fruits
are available in the market out of season, in early summer [54]. Moreover, loquat plants, with their
heavy fragrance, are also nectariferous, with a great honey potential [54]. Moreover, thanks to the
presence of volatile oils (e.g., farnoquiol) and vitamin B17, loquat leaves have a notable curative
effect against coughs and asthma and lung cancer [54,55]. Finally, a recent study [56] carried out on
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loquat cultivar (cv.) Golden Nugget reports the presence of a high concentration of phenolic bioactive
products in loquat leaves and flower, especially during the green stage, (i.e., chlorogenic acid and
quercetin derivatives) with antioxidant capacity and inhibitory activity against enzymes relevant for
hyperglycemia such as α-amylase and α-glucosidase. Therefore, the two products, together with fruits,
may constitute a source of additional income within the nutraceutical and functional food markets [56].

Therefore, considering the importance of this species, this paper aims: (1) to test and compare rapid
(i.e., based on quick measurements such as L and W), but still accurate, generalised allometric models
for loquat species that can be used for different cultivars, and (2) to validate, using an independent
data set and rigorous statistical analysis, the best models.

2. Results and Discussion

2.1. Leaf Data Analysis of the Tested Cultivars

In this study, seven generalised allometric models for retrieving, rapidly and accurately, single LA
of loquat cultivars were tested, compared, and validated using an independent data set. The importance
of this analysis is related to the unquestioned importance represented by leaf architecture within the
broad fields of botany, plant physiology, and fruit crops. The photosynthetic rate per unit area is
strongly influenced by leaf morphology (size, shape, symmetry, venation, organisation, and petiole
characteristics) and leaf cell anatomy (cell types and their size, shape, density, and the size and
distribution of intercellular air spaces) [57]. However, although leaf thickness and the internal
architecture is fundamental for maximising light collection and carbon dioxide uptake, the ability to
intercept light is dependent only on its two-dimensional structure, i.e., L and W [58].

For this reason, many studies still highlight the importance of studying LA of several fruit crops,
so that it would be possible to characterise leaf functions and structures, based only on those two
important proxy variables [13,24,40,44,59–62].

In our study, the analysis of the training set (constituted by pooled leaf area values measured from
nine different cultivars of Eriobotrya japonica in 2015) permitted to evaluate how different morphometric
characteristics, such as L and W, were related to the single leaf area. Specifically, L ranged between
10.0 and 33.3 cm, whereas W ranged between 2.5 and 12.1 cm (Table 1).

Table 1. Characteristics of predictors (L, W) and dependent variable (LA) used in this study.

Group No. of
Cultivars

No. of Leaves
Sampled

L (cm) W (cm) L ×W (cm2) L:W
Mean (± SE)

LA (cm2)

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Training set 9 1890 10 33.3 20.17 2.5 12.1 6.341 38 387.2 133.28 3.25 (0.47) 25.35 274 88.4
Validation set 1 300 12.6 31.8 20.27 3.4 11 6.268 42.84 337.7 131.66 3.29 (0.54) 27.3 229.7 84.61

L: leaf length; W: leaf width; LA: leaf area; L:W: length to width ratio (leaf shape ratio); SE: standard error.

At the same time, single LA values ranged between 25.35 and 274.00 cm2. All those values should
be intended as the range of utilisation of the proposed seven models. Another parameter considered
in this study was the aspect ratio of the leaf (i.e., length to width ratio or L:W) [63]. In Angiosperms,
the leaf shape is an important characteristic regulated by several genetic factors and mutations which
testify how leaves cope with their environment [58] and whose diversity can be, often, discussed in
functional and evolutionary terms of natural selection [64]. Indeed, although a larger total area is
obviously more advantageous in terms of photosynthetic productivity, there are cases (e.g., flooding
areas) in which the presence of wider leaves might also constitute a disadvantage [65]. Besides these
aspects, the collected leaf aspect ratio data can be useful to carry out leaf phenotyping of loquat
cultivars and as part of a training database, to train machine learning algorithms to classify cultivars
using shape features, as has already happened, for instance, with leaves of several species [66] and
cultivar identification of fruits [67]. In loquat, the mean leaf shape ratio of the training set was
equal to 3.25 (SE = ±0.54) with pooled data ranging from a minimum of 1.91 and a maximum of 6.12
(Table 2), meaning that on average, the polar diameter exceeded the equatorial diameter more than
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once (i.e., an elliptical leaf shape). Overall, the maximum mean leaf shape ratio corresponded to the cv.
‘Precoce di Palermo’ (mean = 3.804 ± 0.52) whereas the minimum leaf shape ratio was related to the
cv. ‘Nespolone di Trabia’ (mean = 2.941 ± 0.28) (Table 2). The data of the training and validation sets
collected during the 2015 and 2016 growing seasons, respectively were quite similar and, of particular
importance, the data (cv. ‘Tanaka’) utilised to validate the models were always comprised within
the range of utilisation of the calibrated models (Table 1). The mean leaf shape ratio value of loquat
estimated in this study was similar to that published for the Chinese litchi and higher than that reported
for other common fruit crops (Table 3 [68]).

Table 2. Characteristics of the leaf shape ratio (L:W) from different cultivars used in this study.

Cultivar
Leaf Shape Ratio (L:W)

Max Mean Standard
Deviation Min

Algerino 4.349 2.947 0.357 1.910
Champagne 4.677 3.276 0.411 2.067
Early Gold 4.943 3.092 0.451 2.250

Grosso lungo 6.120 3.726 0.643 2.540
Grosso tondo 5.167 3.472 0.435 2.291

Nespola di Ferdinando 4.400 2.981 0.361 1.984
Nespolone di Palermo 4.016 3.014 0.309 2.250
Nespolone di Trabia 3.864 2.941 0.281 2.238
Precoce di Palermo 5.270 3.804 0.524 2.339

Tanaka 5.231 3.293 0.467 2.176
Total 6.120 3.256 0.528 1.910

Table 3. Comparison of mean values of leaf shape ratio of Loquat with other values reported for other
fruit crops in the literature.

Species L:W References

Apple 1.76 [69]
Apricot 1.14 [24]

Chinese litchi 3.19 [68]
Citrus 1.85 [29]
Durian 2.42 [70]

Hazelnut 1.23 [18]
Loquat 3.25 This study
Medlar 2.38 [37]

Mulberry 2.71 [71]
Persimmon 1.45 [41]

2.2. Model Calibration and Validation

In the current study, linear and exponential (Table 4) models, based on one regressor (L or W;
models 1 to 6), and used to estimate the desired variable (LA) showed a good fitting (R2 ranged between
0.836 and 0.880) but compared to the other models utilised in this research, a moderate accuracy root
mean squared error [RMSE] ranged from 13.82 to 16.14 cm2). Instead, a better accuracy (R2 was ranging
between 0.853 and 0.894; RMSE ranged from 12.98 to 15.27 cm2) was obtained by using a quadratic
relationship between L or W and the dependent variable (LA) (Table 4).

In general, to estimate a single LA of loquat cultivars the use of W should be preferred as a
predictor in linear, exponential, and quadratic modelling. In fact, as showed by the analysis, the best
ranking (bayesian information criterion [BIC] = 14,854 ÷ 15,089; predicted residual error sum of squares
[PRESS] = 314,867 ÷ 357,115; sum of squared errors [SSE] = 313,948 ÷ 356,091) and better fitting and
accuracy (R2 = 0.880 ÷ 0.894; RMSE = 12.98 ÷ 13.83) (Figure 1) was achieved by using as regressor
W, rather than L (R2 = 0.836 ÷ 0.853; RMSE = 15.27 ÷ 16.14; BIC = 15,458 ÷ 15,664; PRESS = 435,447
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÷ 486,356; SSE = 434,241 ÷ 484,990). In particular, by comparing the six different single-regressor
allometric equations, model 6 was the best ranking and; therefore, to estimate the single LA of loquat
cultivars using only one measurement, W and bootstrapped coefficients of model 6 (Table 5) should
be preferred.

Table 4. Fitted constant (a) and coefficient (b) of the models used to estimate the loquat leaf area (LA in
cm2) of single leaves from leaf length (L) and leaf width (W) measurements. The standard errors and
p-value in parenthesis; L and W were in cm. All data were derived from the calibration Experiment
2015 (n = 1890 leaves).

Model
No.

Form of the Model
Tested

Fitted Coefficient and Constant
R2 RMSE BIC PRESS SSE

Bias
(PRESS-SSE)a (SE/p-Value) b (SE/p-Value)

1 LA = a + b × L −83.292 (1.801/***) 8.510 (0.087/***) 0.836 16.14 15,664 486,356 484,990 1366
2 LA = a × eb×L 14.610 (0.291/***) 0.086 (0.001/***) 0.851 15.74 15,571 462,944 461,346 1598
3 LA = a + b × L2 2.227 (0.901/*) 0.203 (0.002/***) 0.853 15.27 15,458 435,447 434,241 1206
4 LA = a + b ×W −61.081 (1.321/***) 23.575 (0.202/***) 0.880 13.83 15,089 357,115 356,091 1024
5 LA = a × eb×W 19.217 (0.284/***) 0.230 (0.002/***) 0.878 13.82 15,087 357,303 355,669 1634
6 LA = a + b ×W2 14.025 (0.666/***) 1.741 (0.014/***) 0.894 12.98 14,854 314,867 313,948 919
7 LA = a + b × (L ×W) −0.516 (0.321/ns) 0.667 (0.002/***) 0.980 5.614 11,732 58,879 58,694 185

Note: *** p < 0.001; * p < 0.05; ns = not significant; R2 = coefficient of determination; RMSE (cm2) = root mean
squared error; BIC = Bayesian information criterion, PRESS = predicted residual error sum of squares; SSE = sum of
squared error; Bias = differences between the PRESS and SSE values.
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Figure 1. Plots of predicted leaf area (PLA) using model 7 [LA = −0.516 + 0.667 × (L ×W)], obtained
with pooled data of nine different loquat cultivars, versus observed values of single leaf areas (OLA) of
each cultivar used in the calibration experiment (data collected during 2015). Dotted lines represent
the 1:1 relationship between the predicted and observed values. The solid line represents the linear
regression line of each model.
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Table 5. Main outputs for non-parametric bootstrap analysis (replications: 1000) of models 6 and
7 fitted with data from the loquat single leaf area (LA in cm2) from leaf length (L) and width (W)
measurements. Standard errors and p-value in parenthesis; L and W were in cm.

Model
N.

Dependent
Variable

Number of
Predictor
Variables

Parameter
Original Boot

Percent
Confidence

Interval

Value (p-Value) Value Bias SE Med Skew Kurtosis 2.5% 97.5%

6 LA 1

R2 0.894 - 0.894 0.000 0.005 - - - - -
RMSE 12.980 - 12.992 −0.012 2.704 - - - - -

(intercept) 14.025 (***) 14.003 −0.022 0.706 14.021 −0.013 −0.335 12.656 15.395
W2 1.741 (***) 1.742 0.001 0.018 1.742 −0.038 −0.405 1.707 1.778

7 LA 2

R2 0.980 - 0.980 3.24 × 10−5 0.001 - - - - -
RMSE 5.614 - 5.6022 −0.012 1.334 - - - - -

(intercept) −0.516 (ns) −0.526 −0.011 0.350 −0.525 0.013 0.301 −1.211 0.176
L ×W 0.667 (***) 0.667 0.000 0.003 0.667 0.048 0.202 0.661 0.673

Note: *** p < 0.001; ns = not significant; R2 = coefficient of determination; RMSE (cm2) = root mean squared error.

Compared to the single regressor models, a better predictive capability to estimate the single LA
of loquat cultivars was reached by using the product (L ×W) of the two proxy variables (i.e., L and W).
In fact, as showed by the ranking (BIC = 11,732; PRESS = 58,879; SSE = 58,694) and accuracy (R2 = 0.980;
RMSE = 5.614) values, model 7 ranked first between all the models tested in this study (Table 4).

Finally, considering that the shape of a loquat leaf is essentially similar to an ellipse (whose area is
generally calculated as the product of Pi (π) times the semi-major axis of length L times the semi-minor
axis of length W), and as expected, the product of L ×W gave the best fitting of the single LA. Therefore,
following the above considerations, to accurately estimate single LA of loquat cultivars both L and W
measurements are necessary (Figure 2) and the bootstrapped coefficients of model 7 can be used (Table 5).
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Figure 2. Plot of predicted leaf area (PLA) estimated using (A) one-regressor bootstrapped model
6 [LA = 14.003 + 1.742 × W2] and (B) two-regressors bootstrapped model 7 [LA = −0.526 + 0.667
× (L ×W)] versus observed values of single leaf areas (OLA) of cv. ‘Tanaka’ collected during 2016
(validation experiment). The solid line and the grey area represent, respectively, linear regression lines
of the bootstrapped models 6 and 7 and generalised linear smoothing. R2 and root mean squared
error (RMSE) are also reported. Dotted lines represent the 1:1 relationship between the predicted and
observed values. The analysis of the dispersion pattern of residuals for models 6 and 7 are shown in
the insets. Residuals = the difference between predicted leaf areas (PLA) estimated by model 6 or 7
(with coefficients obtained from pooled data from nine loquat cultivars, see Table 4 for more details)
versus the observed leaf area of ‘Tanaka’ cultivar sampled in 2016 (validation experiment). The solid
line is the mean of the differences. The broken lines are the limits of agreement, calculated as d ± 3 SD
(standard deviation); where d is the mean of the differences, and SD is the standard deviation of the
differences. If the differences are normally distributed, 97% of the differences in a population will lie
between the limits of agreement.
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Regarding the selection of the best model to be utilised to estimate loquat single LA, a balance
should be searched between the performances of the model itself and the number of variables
(the economy) needed to make the prediction [20,72]. Generally, simple and convenient equations that
only involve one variable have to be preferred [72]. On the other hand, it should also be noted that
although the time required for the leaf measurement is doubled, models that require two measurements
per leaf, generally estimate single LA accurately [24,25,73]. Therefore, the decision about what kind of
model should be used (one or two regressors) depends mainly on the aim of the study and the desired
accuracy of the estimates.

3. Materials and Methods

3.1. Experimental Site and Plant Material

The experiment was carried out in 2015 and 2016 at the experimental station of the Council for
Agricultural Research and Economics (CREA) located in Caserta, southern Italy on mature loquat trees.
All trees were grafted in the year 1990 onto seedling rootstocks and trained to an open-vase shape and
with a tree spacing of 5 m × 5 m (400 plants ha−1).

The trial included a total of nine cultivars used for model calibration (‘Algerino’, ‘Champagne’,
‘Early Gold’, ‘Grosso Lungo’, ‘Grosso Tondo’, ‘Nespola di Ferdinando’, ‘Nespolone di Palermo’,
‘Nespolone di Trabia’, ‘Precoce di Palermo’) measured in 2015 and the cv. ‘Tanaka’ used for model
validation (data collected during 2016).

3.2. Data Collection

A total of 210 healthy leaves were collected for each of the nine cultivars used for model calibration
(the calibration dataset; therefore, consisted of 1890 leaves), whereas 300 leaves were collected for the
cultivar ‘Tanaka’. The leaves were rapidly transported to the lab, where the following parameters were
individually measured on each sample leaf: L, W, and LA of the leaf blade. LA was measured with an
LA meter (LI-3100; LICOR, Lincoln, NE, USA) calibrated to 0.01 cm2.

3.3. Statistical Analysis

3.3.1. Model Calibration

The choice of the allometric models to be used was based on the specific morphometric
characteristics and leaf shape traits (in this case length: width ratio or L:W; [63]) of the leaves
of Eriobotrya japonica. In the genus Eriobotrya, leaves are alternate, simple, coriaceous, coarsely dentate,
and with a short petiole. Usually, loquat’s leaves have a shape similar to an ellipse (L: 12–30 cm; W:
3–9 cm) with a shining upper lamina and, often, a lower pubescent surface [74].

The estimation of the LA of nine loquat cultivars was; therefore, carried out on pooled data
(training set; n = 1890; Table 1) using seven different regression models (Table 4), of which three were
linear, two quadratic, and two exponential. The allometric models were essentially based on one fast
measurement of a proxy variable (i.e., the L or W of the leaves) or the product of the previous two
variables (L ×W).

Fitting of the linear and quadratic models was made in the statistical software R-STAT [75] using
the lm function available in the CRAN (comprehensive R archive network) Stats package in, whereas
the exponential models were fitted in R-STAT using the nonlinear least-squares minimisation (nlsLM)
function available in the CRAN package minpack.lm [76] (Table 4).

The performance of the seven different allometric models were based on the following criteria:
highest R-squared (R2), lowest RMSE, lowest BIC [77], lowest PRESS criterion [78,79], lowest SSE,
and the lowest bias (i.e., the evidence of the internal validity of the fitted model; [80] between the
PRESS and SSE values. The BIC criteria and PRESS were both computed in R-STAT using the functions
available, respectively, in the CRAN packages Stats [75] and in the modelling and analysis of real-time
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PCR data (qpcR) [81]. Finally, once the best ranking model was chosen, the coefficients of the selected
models were tuned using the non-parametric bootstrapping function available in the CRAN package
Boot [82]. The bootstrapped model coefficients together with the associated, standard error, median,
and per cent confidence intervals were obtained iteratively in 1000 bootstrapped samples selected with
the replacement of observations from the original data set (n = 1890).

3.3.2. Model Validation

Validation of the selected bootstrapped models was made by comparing the predicted values
of a single LA estimated using proxy values (L and W) available in the validation set (n = 300) of cv.
‘Tanaka’ measured during a field experiment carried out in 2016 and the observed single LA values.
In this case, the goodness of fit of the selected models was based on the R-squared (R2) and the RMSE
of the observed LA (OLA) versus predicted LA (PLA) of ‘Tanaka’ loquat cultivar.

4. Conclusions

Based on the previous results, if the objective of the analysis is to carry out numerous, continuous
(such us during the entire cycle of vegetative growth), and fast estimates of the single LA of loquat
cultivars, measurements should be preferably based on a single predictor, and in particular on W rather
than on L. Therefore, once measurements of the W parameter are obtained from a consistent sample of
plants, a quadratic model (model 6, Table 4) should be chosen and used to estimate the value of interest
(i.e., single LA) with a good quality of fitting (R2 = 0.894) and moderate accuracy (RMSE = 12.98).

On the other hand, if the analysis requires better accuracy, a two-regressor model should be
preferred and, accordingly, measurements of both L and W carried out. So doing, it will be possible to
achieve the highest prediction (R2 = 0.980; RMSE = 5.614) of the single LA of loquat cultivars.

In conclusion, considering the importance of loquat species, with leaves and fruit constituting a
likely source of additional income within the nutraceutical and functional food markets [56], this study
and the proposed allometric models can represent an important resource to better evaluate growth
stages, productivity, treatment to pest, and pathogen effectiveness or to indirectly estimate other
important indicators such as leaf area index (LAI), a value generally used in combination with gas
exchange and chlorophyll fluorescence measurements.
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