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Abstract: Several studies have demonstrated Si absorption in monocotyledon and dicotyledon
species. Regarding Si accumulation, studies in monocotyledons have identified Si deposition around
the cell wall, cuticle layer bulliform cells, silica cells and endodermal cells. In previous studies
with different citrus species there were evidence of Si accumulation, however no information on Si
deposition can be found. Therefore, in this study, Si was applied (0 and 1000 mg L−1) to the roots
of two citrus species, ‘Delta’ Valencia (Citrus sinensis) and ‘Nules’ Clementine (Citrus reticulata). Si
accumulation were investigated in new, and old leaves and roots. Si deposition was investigated
through scanning electron microscopy using energy dispersive analysis X-ray, environmental scanning
electron microscopy and light microscopy. Si accumulation was significantly higher in Si treated
leaves comparatively to the control in both young and mature leaves. Meanwhile, Si accumulation
increased with leaf age. Additionally, Si accumulation was significantly higher in roots than in leaves.
With respect to Si deposition, granules were identified in the epidermal cells through SEM and ESEM
studies. The light microscopy identified the presence of Si granules in the surface and around the
outer cell surface forming the cuticle-silica double layer of the lower epidermis in Si treated plants.
Silica deposit were not found on the abaxial leaf surface. The findings suggest a passive uptake in
citrus species.

Keywords: Clementine; energy dispersive X-ray analysis; silicon uptake; Valencia

1. Introduction

Silicon (Si) is the second most abundant element in the earth’s crust after oxygen. These two
elements are combined in the aluminosilicates of rocks, clays and soil minerals [1]. Plant available Si can
be found in the soil solution in an undissociated form as monosilicic acid (Si(OH)4) in a concentration
range of 90–150 mg L−1 in soils with a pH lower than eight [2–4]. In highly weathered soils, Si
availability in soil solution is reduced considerably because of soil acidification, organic complexes,
presence of aluminium, iron and phosphate ions, temperature, sorption/dissolution reaction and soil
moisture [4,5]. This leads to the reduction in plant available Si and the need to supplement with silicon
fertilizer in order to improve the quality and yield of agricultural crops under abiotic and biotic stress
conditions [4,6–8].

Silicon is not defined as an essential element for higher plants, although it significantly improves
fitness in nature and increases agricultural productivity and is present in plants in amounts equivalent
to certain macronutrients such as Ca, Mg and P [9].

There are two general mechanisms for Si uptake and transport (active and passive uptake)
co-existing in a plant, with their relative contribution being dependent much upon the plant species
and external Si concentration [2,10]. Oryza sativa and Zea mays, representatives of monocots, have Si in
their tissues in the order of 5% or higher (dry weight basis) and are known as Si accumulators. On the
other hand, Helianthus annuus and Benincasa hispida, representatives of dicots, contain about 0.1% Si on
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a dry weight basis, and are described as intermediate types [3,7]. In another study conducted by [6], Si
concentration in the root cell symplast of rice was higher than the external Si in the soil solution. This
suggests that silicic acid is taken up against the concentration gradient from the external solution to
the cortical cells which results in an active uptake process. Regarding dicots, the coexistence of both a
passive and active transport dependent upon the external Si supply was identified in cucumber [10].
While in another study, the passive uptake mechanism were observed in cucumber and tomato based
on their root ability and their radial transporters that enables them to take up less Si than rice due
to transporter for xylem loading in the latter [6]. This implies that the Si uptake mechanism is also
influenced by three transporters identified in higher plants and involved in Si translocation from the
xylem and distribution in the leaves [11–17]. The Si influx transporter Lsi1 is mainly expressed in the
main roots and lateral roots but not in root hairs and responsible for the transport of Si from the external
solution to the root cells [2,12]. Homologs of Lsi1 have also been reported in barley, maize, pumpkin
and wheat [13,18,19]. While, the Si efflux transporter Lsi2 is found in the endodermis of rice roots [12].
Homologs of the Lsi2 transporter have also been reported in barley, maize and pumpkin [13,20]. The
transporter Lsi6 is a homolog of the Si influx transporter Lsi1 in rice, barley and maize [11,15]. It is a
plasma membrane protein localized at xylem cells of leaf sheaths and blades therefore, it plays a role in
the unloading of Si from xylem to leaf tissues [11,20].

Silica deposition in plants is found in outer cell surface which constitutes that the cuticle-silica
double layer and has been hypothesized to be dependent on transpiration rate [9,16]. The role of
transpiration in Si accumulation implies that Si should be densely deposited in the mesophyll tissue
where most of the transpiration takes place [21]. However, Si was deposited in both the mesophyll
regions and epidermal cells in Poaceae implying that in addition to the influence of transpiration on
the Si uptake, plants also positively controlled the Si accumulation process [22].

Silicon deposition have been found in leaf blades and inflorescence bracts tissues [22–24]. Other
areas of Si deposition have been identified around the cell surface: Cell lumens, cell wall, guard cells,
intercellular spaces, root endodermal cells regions and bulliform cells [7,9,22,25]. Silicon is also found
in the upper and lower epidermis of leaves as silica bodies that eventually constitute a cuticle-silica
double layer [7,21,24,26,27].

The beneficial role of Si in citrus has been demonstrated in only a few studies. Si fertilisation has
been reported to increase fruit yield, accelerate growth by 30–80% and fruit ripening by two to four
weeks [28]. A similar study conducted in grapefruit revealed that calcium silicate slag fertilisation
increased root and shoot mass by 19–40% [29]. Additionally, [30] reported an increase of 14–41% in
tree height and 31–48% increase in shoot mass for Valencia trees.

In greenhouse studies, potassium silicate (K2SiO3) application improved fresh shoot mass by
30–40% in one-year-old and two-year-old sweet orange (Citrus sinensis (L.) Osbeck) trees over a
six-month period [31]. The aim of this study was to examine the area of Si deposition in two Si
accumulating citrus species.

2. Results

2.1. Si Accumulation in Citrus Species

Si uptake increased significantly with leaves age in both Valencia and Clementine species regardless
of Si treatment (Figure 1). The old leaves from plants drenched with 1000 mg L−1 had a significantly
higher Si content compared to new leaves. For both species, drenching with 1000 mg L−1 resulted in
significantly higher Si contents in both roots and leaves (Figure 2). Additionally, roots Si accumulation
were significantly higher than leaves regardless of Si treatment in both citrus species.
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Figure 1. Si accumulation in young (new) and mature (old) leaves of two citrus species. Bars sharing 
a letter are not significantly different. Data are means ± standard errors. 

 
Figure 2. Si accumulation in mature leaves and roots of two citrus species. Bars sharing a letter are 
not significantly different. Data are means ± standard errors. 

2.2. Scanning Electron Microscopy with Energy Dispersive X-ray Analysis 

Scanning electron microscopy investigation in citrus leaves demonstrated the absence of silica 
bodies in non-treated Si leaves (Figure 3A). While silica bodies (granules) were present in epidermal 
cells of Si-treated leaves (Figure 3B). The elemental analysis using EDAX demonstrated Si presence 
in Si treated leaves while negligible amounts of Si were found in Si untreated leaves (Figures 3C,D). 
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Figure 1. Si accumulation in young (new) and mature (old) leaves of two citrus species. Bars sharing a
letter are not significantly different. Data are means ± standard errors.
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Figure 2. Si accumulation in mature leaves and roots of two citrus species. Bars sharing a letter are not
significantly different. Data are means ± standard errors.

2.2. Scanning Electron Microscopy with Energy Dispersive X-ray Analysis

Scanning electron microscopy investigation in citrus leaves demonstrated the absence of silica
bodies in non-treated Si leaves (Figure 3A). While silica bodies (granules) were present in epidermal
cells of Si-treated leaves (Figure 3B). The elemental analysis using EDAX demonstrated Si presence in
Si treated leaves while negligible amounts of Si were found in Si untreated leaves (Figure 3C,D).
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Figure 3. Scanning electron microscopy images of (A) –Si and (B) +Si mature leaves, white granules 
are areas of silicon detection. The selected areas (blue and orange blocks) were examined for 
elemental composition by energy dispersive X-ray analysis (EDAX) (C) −Si leaves (D) + Si leaves. 

2.3. Environmental Scanning Electron Microscopy (ESEM) 

Environmental scanning electron microscopy (ESEM) was used to investigate Si presence in 
adaxial and abaxial leave surfaces. Si was located on the adaxial surface as white granules; more 
granules were found in Si treated leaves compared to the control (Figure 4). In the investigation of 
the abaxial region where stomata are found on citrus leaves, there was no Si deposit identified 
irrespective of the Si treatment (Figure 5). Despite the evidence of Si presence in the epidermal cell, 
the ESEM of the adaxial leaf surface did not provide the exact area of Si deposit within the cell 
structure. 

  
Figure 4. Environmental scanning electron microscopy (ESEM) micrographs of +Si and -Si matured 
citrus leaves, the white granules are areas of silicon detection on the adaxial leaf surfaces. 

+Si −Si 

Figure 3. Scanning electron microscopy images of (A) −Si and (B) +Si mature leaves, white granules
are areas of silicon detection. The selected areas (blue and orange blocks) were examined for elemental
composition by energy dispersive X-ray analysis (EDAX) (C) −Si leaves (D) + Si leaves.

2.3. Environmental Scanning Electron Microscopy (ESEM)

Environmental scanning electron microscopy (ESEM) was used to investigate Si presence in
adaxial and abaxial leave surfaces. Si was located on the adaxial surface as white granules; more
granules were found in Si treated leaves compared to the control (Figure 4). In the investigation of the
abaxial region where stomata are found on citrus leaves, there was no Si deposit identified irrespective
of the Si treatment (Figure 5). Despite the evidence of Si presence in the epidermal cell, the ESEM of
the adaxial leaf surface did not provide the exact area of Si deposit within the cell structure.
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citrus leaves, the white granules are areas of silicon detection on the adaxial leaf surfaces.
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that constitutes a Si double layer in treated Si leaves (Figures 6). With respect to non-treated Si leaves 
no Si deposits were located on the leaf surface (Figure 7). 
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Figure 5. ESEM micrographs of matured citrus leaves subjected to +Si and −Si stomata abaxial
leaf surfaces.

2.4. Light Microscopy

Light microscopy investigation provided further detail with regards to Si deposits in the cell
structure. In the current study, cell structures were examined in both 40 and 100×magnification, the
later provides better view. The results demonstrated that Silica granules were located on the lower
epidermis cell of Si treated leaves. Additionally, silica deposits were found on the outer cell surface
that constitutes a Si double layer in treated Si leaves (Figure 6). With respect to non-treated Si leaves no
Si deposits were located on the leaf surface (Figure 7).
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Figure 6. Si treated matured citrus leaves subjected to light microscopy lower epidermis surface at (A)
40×, and (B) 100× magnification: Arrows in the diagram represent silica granules in the epidermal
surface and Si deposit in outer cell regions constitute the cuticle silica double layer (SDL).
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magnification: No silica deposit was located.

3. Discussion

The accumulation of Si in plants is related to several factors such as transpiration, species, leaf age,
external Si supply, transporters and root uptake ability [4,6,11,13,14,17,32,33]. Si uptake significantly
increased in both cultivars treated with Si. These results agree with previous studies conducted in
tomato [34]; rice [6,7]; citrus [29–31]; forage grass [23] and cucumber [35] that demonstrated the Si
accumulation rate to be linked to external Si concentration. In addition, the plant species role in Si
accumulation is evident in higher plants [4,7,8]. Monocots are classified as active Si accumulator based
on their silicon content in the range of 5–10 g kg−1 in dry weight [4,7,8]. While dicots are classified as a
passive accumulator with Si content of less than 5 g kg−1 [8,36]. Our findings indicated that silicon
content was less than 5 g kg−1 which is typical of Si passive accumulator [8,36].

In this study, the Si content significantly increased with age in the two citrus species irrespective
of Si application level. This finding supports the statement that Si is not relocated within citrus plants
as demonstrated by [7,31]. A similar trend in Si accumulation was found in other studies conducted
on the leaves of bamboo (Sasa veitchii) and banana (Musa acuminata), Si concentration increased with
leaf age, even after maturation [37,38]. Implying that the silica deposit is immobile within the plant
and cannot be translocated to new leaves [7,8]. In addition, this supports the hypothesis of a passive
uptake stated in forage grass (Brachiaria brizantha) plants due to Si accumulation not only during active
growth stage but even after maturation [23,38].
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The Si accumulation pattern in citrus leaves and roots were not affected by the Si supply dose, this
corroborates with [39] who found that the Si accumulation pattern was not affected by the Si supply.
In the current study, Si accumulation was significantly higher in the root than leaves. This result
agrees with [29] who demonstrated a similar pattern of Si accumulation and speculated on the poor
translocation of Si in citrus plants. In the study conducted on Si nutrition in tomato and bitter gourd
the former demonstrated similar accumulation pattern whilst, in the latter shoot Si accumulation was
higher than in the roots [32]. Another trend was observed by [40] whereby Si accumulation was higher
in the shoot comparatively to the root in species with an active Si uptake. A similar trend was also
observed in rice whereby 90% of Si taken up by the roots was translocated to the shoot [12]. Moreover,
similar trends were observed in low-Si supplied banana [37] and rice [7] Si nutrition studies in Japan.
This suggests the involvement of a passive uptake in citrus species.

The undetectable level of Si in citrus fruits further supports the hypothesis of non-translocation
of Si within the plants due to the non-existence of a phloem mobility of Si in the citrus plants. This
statement is sustained by the fact that no study has reported the occurrence of Si in the phloem,
indicating Si cannot be relocated within the plant [37,41,42]. Phloem movement is bidirectional
and nutrient translocation takes place within the plant which is not evident in the Si uptake [31,43].
However, Si transportation takes place via the xylem and is strongly dependent on transpiration [43].

Si deposition in plant cells depends on a number of factors, such as pH, Si concentration
applied [44]. When the pH is lower than seven, which is the usual range inside cells, combined silica
particles form chained oligomers due to weak electrostatic repulsion. However, at higher pH, the form
condensed disordered polymers [45]. In the current study, Si deposition was only found in adaxial
surfaces. Similar results were observed in shoot tissue of tropical forage grass (Brachiaria brizantha)
which was classified as a passive uptake species [23]. While in other previous studies conducted on
bamboo and sugarcane classified as active uptake Si accumulator, Si deposit were found on the abaxial
surface [24,46]. Moreover, in rice a typical active Si accumulator more Si deposit were found in both
leaf surfaces [44]. This implies that silica deposition in specific cell structure depends on leaf side
(adaxial or abaxial surfaces) and plant species [23].

Our results demonstrated that silica deposition was only observed on the lower epidermis surface.
Previous studies in rice and grass have determined more silica deposit in the upper epidermis compared
to the lower epidermis [23,47]. Meanwhile, in sugarcane higher silica deposit was found in the lower
epidermis [48]. This suggests that the silica deposit in the epidermis (lower or upper) depends on the
number of silica cells present at the deposition site, which is specific to each plant species.

In the current study, silica polymerization as granules was identified in the epidermal cell of
Si-treated citrus leaves. This corroborates with previous studies that have identified silica bodies in
the epidermis surface of rice, grass and bamboo [7,21,24,26,27,44]. Some studies reported that silica
deposit in the epidermal cell regions, which is the termini of transpiration stream provides substantiate
evidence of transpiration involvement in Si deposition [2,7,27]. Silica deposit in outer cell surfaces that
constitute cuticle Si double layer in Si-treated plants in this study has also been previously identified in
Si nutrition studies conducted in Brachiaria brizantha and Oryza Sativa [7,9,23,44,49]. It is likely that
Si incorporates cell surface as an organo-silicon compound made up with lignin and carbohydrate
that provides a physical barrier against abiotic and biotic has previously suggested in rice [50,51].
Moreover, Si distribution along the epidermal cells in this study resembles the pathway of transpiration
flow in the cell walls and intercellular space (apoplasm) transported into the plasma membrane and
its trajectory to the xylem [7,43,52]. The presence of barriers in the apoplasmic movement such as
endodermis cells and casparian bands implies the possible involvement of transporters Lsi1 which is
known to facilitate Si passive uptake across the plasma membrane and plant cells [33,43].
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4. Materials and Methods

4.1. Plant Material

Two citrus species Valencia ‘Delta’ and Clementine ‘Nules’ were used for the study. These are two
widely cultivated commercial citrus cultivars in South Africa selected to compare two different citrus
species namely: Orange and soft citrus (mandarins) [53].

4.2. Silicon Uptake Experiment

Two-year citrus seedlings were transferred in 10 L pots containing an artificial growing medium
of Coir-Perlite 60–40% supplemented via root application with formulation of N, P and K at the
concentration (85–115–40 kg ha−1) which represents fertiliser recommendation for two-year citrus
trees [54]. N-P-K were applied in the form of ammonium nitrate (NH4NO3), potassium dihydrogen
phosphate (KH2PO4) and potassium nitrate (KNO3). During this period, the water holding capacity
was determined by watering the selected pot till drainage and weighed to determine subsequent
irrigations. Each pot was irrigated to field capacity with 800 mL of distilled water every three days.
The trees were left to acclimatize for three weeks prior to the Si uptake study.

The Si uptake experiment was performed for three months (January–April 2014 and 2018) in the
glasshouse at the Experimental Farm of the University of Pretoria (S25◦ 44′ E28◦ 15′) on two-year-old
citrus trees namely: ‘Delta’ Valencia oranges (Citrus sinensis) and ‘Nules’ Clementine (Citrus reticulata).
The two species grafted on Carrizo citrange rootstocks were grown in 10 L pots and drenched once
a month over three months with commercially available potassium silicate (1000 mg L−1) and in
the control (0 mg L−1) the K introduced by K2SiO3 was corrected by adding K2O to the trees. Each
treatment consisted of six replications (in groups of three plants per replicate), the 72 trees were
organised in a randomised complete block design. These pots were kept in a climatically controlled
greenhouse on a rotary table to minimize the effect of climatic differences on the plants. A month after
the third drenching application, plant leaves collected were separated into young (new), and mature
(old) leaves and roots collected 10 mm from the root base [55]. These samples were washed in distilled
water to remove all impurities and grind for the Si analysis determined using ICP-OES.

4.3. Si Analysis

Polypropylene and Teflon containers were used for the preparation and digestion of plant samples
to minimize contamination risks when using glassware. All containers were rinsed with NaOH (10%)
prior to use. Leaf and root samples (500 mg) were placed in Teflon microwave digestion tubes and
3 mL of 65% HNO3 (AR grade) was added. The Teflon tubes were capped and left to stand for 5 min
to thoroughly wet the sample. Then 2 mL of 30% H2O2 (AR grade) were added to the tubes and left
overnight. The samples were placed in the microwave unit to the ramping temperature of 180 ◦C for
30 min and the acid digestion step conducted. NaOH (10%) solution was then added to the tubes and
they were returned to the microwave system for the second heating step to solubilise amorphous Si.
The contents of the Teflon tubes were transferred into a plastic beaker to minimize Si contamination
then neutralized with HNO3 (2 M), using phenolphthalein as an indicator, and then diluted to 250 mL
in a volumetric flask. A 10 mL sample was taken for Si determination with Inductively Coupled Plasma
Optical Emission Spectrometry (ICP-OES, Varian Liberty 200); fitted with a hydrofluoric acid (HF)
resistant torch, Sturrman Master spray-chamber and V Groove nebulizer assembly. The plasma power
was 1000 W with a plasma flow rate of 15 L min−1 and an integration time of 1 s. Two Si sensitive
wavelengths, 251.611 nm and 288.158 nm were used to detect Si. The wavelength 251.611 nm was
selected as the most sensitive wavelength based on its higher correlation with the calibration curve.
Matrix interferences were accounted for by preparing the sample and standard in a similar matrix.
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4.4. Data Collection

4.4.1. Microscopic analysis

Scanning Electron Microscopy (SEM) & EDAX Analysis

Silicon deposits were investigated in leaf surface with an electron microscopy. Scanning electron
microscopy (SEM) was used to determine and identify Si precipitates within the leaf. Mature citrus
leaves were collected after three months of Si application; washed with distilled water, wiped and then
fixed with glutaraldehyde (primary fixation) for overnight and osmium tetroxide (post fixation) for 1 h.
This was followed by wash with 0.05 M sodium cacodylate buffer and then subjected to dehydration
series in ethanol. The specimens were placed in Hexamethyldisilazane left to air dried overnight and
mounted on a stub using a carbon double-sided tape and sputter coated with gold using EMTECH
K550X Coater and viewed at 3 kV with Zeiss Crossbeam 540 FEG scanning electron microscope. The
energy dispersive analysis was conducted with an SEM-EDAX (XL30, Phillips, Eindhoven, Holland).

Environmental Scanning Electron Microscopy (ESEM)

Environmental scanning electron microscopy (ESEM) (XL30, Phillips, Eindhoven, Holland) was
used to determine the Si content in citrus leaves adaxial and abaxial epidermal tissues (Valencia and
Clementine). Mature citrus leaves were collected a month after the last drench; washed with distilled
water and wiped before one square centimetre of leaf was excised with a razor blade and coated with
gold, mounted on a carbon planchette and viewed on an ESEM instrument. The operating settings
were: Voltage energy of 20 keV, with pump detection of 500 µm, the diffusion pump was set to a
pressure between 1 and 2 Torr, wet mode, purge custom, spot size 6, room temperature (approximately
20 ◦C), working distance of 50 µm and the mechanical pump had a pressure of 10 mm (Hg). A gaseous
secondary detector was used to determine Si.

Light Electron Microscopy

Plant material (approximately 2 mm2) were cut from the region between the leaf margin and
midrib of the middle sections. The tissues were fixed in 3% glutaraldehyde for 24 h at 1 ◦C. The tissues
were then washed in 0.05 M Sodium Cacodylate buffer for 30 min. The samples were then post-fixed
with 2% osmium tetroxide with pH 7.2 for overnight. After this, they were washed twice in a 0.05 M
Na-cacodylate buffer for 30 min.

The specimens were dehydrated through a series of ethanol 10, 30 and 50% (v/v) ethanol, for
15 min at each dehydration step. The samples were left overnight at 50% (v/v). The next day, the
samples were dehydrated through 70, 90, 100% (v/v) ethanol at 15 min intervals between each step.
The dehydration series were completed with two rinses of 15 min each in absolute alcohol. The low
viscosity (LV) resin is not miscible with alcohol and, therefore, from the 100% alcohol we proceeded
to the solvent propylene oxide in two rinses, the tissues were left overnight in propylene oxide. In
order to ensure adequate infiltration of the material with the embedding mixture the tissues were left
over night in 25:375 LV Resin/propylene oxide. The next day, the tissues were placed in 50:50 LV resin
/propylene oxide for overnight, 75:25 LV resin/ propylene oxide for 2 h and twice into 100% LV Resin
for 1 h.

The tissues were finally placed in approximately labelled moulds and polymerized for 16 h at
60 ◦C. After removal of the tissues from the oven the tissues could cool at room temperature before
sectioning. Selected tissue regions were sectioned in the range of 0.5–1.0 µm. Thick sections were done
using the LKB ULTRAMICROTOME III (Stockholm, Sweden) with a knife clearance angle set at 5◦ to
produce purple sections.

The sections were picked up and mounted onto a glass slide and stained with Ladd’s stain for
20 s and rinsed in distilled water. The tissues were viewed using the Olympus BH2 light microscope at
40× and 100×magnification.
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4.4.2. Statistical Analysis

The collected data was subjected to the analysis of variance by using the Statistical Analysis
System software (SAS) version 9.4 (Cary, NC, USA) to determine treatment mean effects. Differences
between treatments were determined using Fisher’s Least Significant Difference (LSD) at 5% level
of significance.

5. Conclusions

Si is deposited in lower epidermis cell wall regions as granules and silica deposit on the outer cell
surface that constitute the cuticle-silica double layer in both species. Therefore, water loss through the
epidermis could be reduced especially when plants are exposed to unfavourable abiotic conditions.
The absence of Si in the stomata implies the non-involvement of Si in the stomata structure. Our study
supports the hypothesis that the Si deposition in citrus takes place passively through the transpiration
stream implying that Si provides alleviation in stress conditions only when continuously supplied to
the plants. There is also a possible involvement of transporters in the passive uptake process which
requires further investigation.

Author Contributions: M.A.M-S. performed the experiments, analysed the data, prepared figures and tables,
and wrote the manuscript. D.M. supervision, reviewing and editing. Both authors read and approved the
final manuscript.

Funding: Part of the study was financially supported by the Citrus Research International, Nation Research Fund
(THRIP).

Acknowledgments: The authors would like to thank Ntombozuko Matyumza for her technical support in the
electron microscopy work conducted at University of Kwazulu-Natal (Pietermaritzburg) microscopy unit and
her review of this manuscript. We are grateful to Tau Matema for the technical support in the Silicon analysis at
Agriculture Research Council, Institute for Soil, Climate and Water, Pretoria. We also wish to thank the reviewers
for constructive comments and suggestions that have improved the quality of the manuscript. Lastly, Dr Samson
Tesfay from the University of Kwazulu-Natal (Pietermaritzburg) for facilitating the electron microscopy work.

Conflicts of Interest: The authors have no conflicts of interest to report.

References

1. Birchall, J. The essentiality of silicon in biology. Chem. Soc. Rev. 1995, 24, 351–357. [CrossRef]
2. Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397.

[CrossRef] [PubMed]
3. Jones, L.; Handreck, K. Silica in soils, plants, and animals. In Advances in Agronomy; Academic Press:

Cambridge, MA, USA, 1967; pp. 107–149.
4. Epstein, E. Silicon. Ann Rev Plant Biol. 1999, 50, 641–664. [CrossRef] [PubMed]
5. Haynes, R.J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014,

177, 831–844. [CrossRef]
6. Mitani, N.; Ma, J.F. Uptake system of silicon in different plant species. J. Exp. Bot. 2005, 56, 1255–1261.

[CrossRef] [PubMed]
7. Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan, 1st ed.; Elsevier: Amsterdam, The

Netherlands, 2002.
8. Tubana, B.S.; Babu, T.; Datnoff, L.E. A review of silicon in soils and plants and its role in US agriculture:

History and future perspectives. Soil Sci. 2016, 181, 393–411. [CrossRef]
9. Raven, J.A. Cycling silicon–The role of accumulation in plants. New Phytol. 2003, 158, 419–421. [CrossRef]
10. Liang, Y.; Si, J.; Römheld, V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol.

2005, 167, 797–804. [CrossRef]
11. Yamaji, N.; Mitatni, N.; Ma, J.F. A transporter regulating silicon distribution in rice shoots. Plant Cell 2008, 20,

1381–1389. [CrossRef]
12. Ma, F.J.; Yamaji, N.; Mitani-Ueno, N. Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad. Ser.

B 2011, 87, 377–385. [CrossRef]

http://dx.doi.org/10.1039/cs9952400351
http://dx.doi.org/10.1016/j.tplants.2006.06.007
http://www.ncbi.nlm.nih.gov/pubmed/16839801
http://dx.doi.org/10.1146/annurev.arplant.50.1.641
http://www.ncbi.nlm.nih.gov/pubmed/15012222
http://dx.doi.org/10.1002/jpln.201400202
http://dx.doi.org/10.1093/jxb/eri121
http://www.ncbi.nlm.nih.gov/pubmed/15753109
http://dx.doi.org/10.1097/SS.0000000000000179
http://dx.doi.org/10.1046/j.1469-8137.2003.00778.x
http://dx.doi.org/10.1111/j.1469-8137.2005.01463.x
http://dx.doi.org/10.1105/tpc.108.059311
http://dx.doi.org/10.2183/pjab.87.377


Plants 2019, 8, 200 11 of 12

13. Mitani, N.; Yamaji, N.; Ago, Y.; Iwasaki, K.; Ma, J.F. Isolation and functional characterization of an influx
silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J. 2011, 66, 231–240.
[CrossRef] [PubMed]

14. Takahashi, E.; Ma, J.; Miyake, Y. The possibility of silicon as an essential element for higher plants. Comments
Agric. Food Chem. 1990, 2, 99–102.

15. Yamaji, N.; Chiba, Y.; Mitani-Ueno, N.; Ma, J.F. Functional characterization of a silicon transporter gene
implicated in silicon distribution in barley. Plant Physiol. 2012, 160, 1491–1497. [CrossRef] [PubMed]

16. Ma, J.; Yamaji, N. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057.
[CrossRef] [PubMed]

17. Rao, G.B.; Susmitha, P. Silicon uptake, transportation and accumulation in Rice. J. Pharmacogn. Phytochem.
2017, 6, 290–293.

18. Chiba, Y.; Mitani, N.; Yamaji, N.; Ma, J.F. HvLsi1 is a silicon influx transporter in barley. Plant J. 2009, 57,
810–818. [CrossRef] [PubMed]

19. Montpetit, J.; Vivancos, J.; Mitani-Ueno, N.; Yamaji, N.; Rémus-Borel, W.; Belzile, F.; Ma, J.F.; Bélanger, R.R.
Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene.
Plant Mol. Biol. 2012, 79, 35–46. [CrossRef] [PubMed]

20. Mitani, N.; Chiba, Y.; Yamaji, N.; Ma, J.F. Identification and characterization of maize and barley Lsi2-like
silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 2009, 21,
2133–2142. [CrossRef] [PubMed]

21. Motomura, H.; Fujii, T.; Suzuki, M. Distribution of silicified cells in the leaf blades of Pleioblastus chino
(Franchet et Savatier) Makino (Bambusoideae). Ann. Bot. 2000, 85, 751–757. [CrossRef]

22. Motomura, H.; Fujii, T.; Suzuki, M. Silica deposition in relation to ageing of leaf tissues in Sasa veitchii
(Carriere) Rehder (Poaceae: Bambusoideae). Ann. Bot. 2004, 93, 235–248. [CrossRef] [PubMed]

23. De Melo, S.P.; Monteiro, F.A.; De Bona, F.D. Silicon distribution and accumulation in shoot tissue of the
tropical forage grass Brachiaria brizantha. Plant Soil. 2010, 336, 241–249. [CrossRef]

24. Motomura, H.; Fujii, T.; Suzuki, M. Silica deposition in abaxial epidermis before the opening of leaf blades of
Pleioblastus chino (Poaceae, Bambusoideae). Ann. Bot. 2006, 97, 513–519. [CrossRef] [PubMed]

25. Heckman, J. Silicon: A beneficial substance. Better Crops 2013, 97, 14–16.
26. Richmond, K.E.; Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol.

2003, 6, 268–272. [CrossRef]
27. Kaufman, P.B.; Dayanandan, P.; Franklin, C.; Takeoka, Y. Structure and function of silica bodies in the

epidermal system of grass shoots. Ann. Bot. 1985, 55, 487–507. [CrossRef]
28. Taranovskaia, V.G. The silicification of subtropics greenhouse and plantations. Sov. Subtrop. 1939, 7, 32–37.
29. Matichenkov, V.; Calvert, D.; Snyder, G. Silicon fertilizers for citrus in Florida. Proc. Fla. State Hortic. Soc.

1999, 112, 5–8.
30. Matichenkov, V.; Bocharnikova, E.; Calvert, D. Response of citrus to silicon soil amendments. Proc. Fla. State

Hortic. Soc. 2001, 114, 94–97.
31. Wutscher, H. Growth and mineral nutrition of young orange trees grown with high levels of silicon.

HortScience. 1989, 24, 3.
32. Heine, G. Silicon Nutrition and Resistance against Pythium Aphanidermatum of Lycopersicon Esculentum

and Mormodica Charantia. Ph.D. Thesis, University of Hannover, Hannover, Germany, 2005.
33. Ma, J.F.; Yamaji, N. A cooperative system of silicon transport in plants. Trends Plant Sci. 2015, 20, 435–442.

[CrossRef]
34. Marodin, J.C.; Resende, J.T.; Morales, R.G.; Silva, M.L.; Galvão, A.G.; Zanin, D.S. Yield of tomato fruits in

relation to silicon sources and rates. Hortic. Bras. 2014, 32, 220–224. [CrossRef]
35. Adatia, M.; Besford, R. The effects of silicon on cucumber plants grown in recirculating nutrient solution.

Ann. Bot. 1986, 58, 343–351. [CrossRef]
36. Liang, Y.; Hua, H.; Zhu, Y.G.; Zhang, J.; Cheng, C.; Römheld, V. Importance of plant species and external

silicon concentration to active silicon uptake and transport. New Phytol. 2006, 172, 63–72. [CrossRef]
[PubMed]

37. Henriet, C.; Draye, X.; Oppitz, I.; Swennen, R.; Delvaux, B. Effects, distribution and uptake of silicon in
banana (Musa spp.) under controlled conditions. Plant Soil 2006, 287, 359–374. [CrossRef]

http://dx.doi.org/10.1111/j.1365-313X.2011.04483.x
http://www.ncbi.nlm.nih.gov/pubmed/21205032
http://dx.doi.org/10.1104/pp.112.204578
http://www.ncbi.nlm.nih.gov/pubmed/22992512
http://dx.doi.org/10.1007/s00018-008-7580-x
http://www.ncbi.nlm.nih.gov/pubmed/18560761
http://dx.doi.org/10.1111/j.1365-313X.2008.03728.x
http://www.ncbi.nlm.nih.gov/pubmed/18980663
http://dx.doi.org/10.1007/s11103-012-9892-3
http://www.ncbi.nlm.nih.gov/pubmed/22351076
http://dx.doi.org/10.1105/tpc.109.067884
http://www.ncbi.nlm.nih.gov/pubmed/19574435
http://dx.doi.org/10.1006/anbo.2000.1124
http://dx.doi.org/10.1093/aob/mch034
http://www.ncbi.nlm.nih.gov/pubmed/14744706
http://dx.doi.org/10.1007/s11104-010-0472-5
http://dx.doi.org/10.1093/aob/mcl014
http://www.ncbi.nlm.nih.gov/pubmed/16464877
http://dx.doi.org/10.1016/S1369-5266(03)00041-4
http://dx.doi.org/10.1093/oxfordjournals.aob.a086926
http://dx.doi.org/10.1016/j.tplants.2015.04.007
http://dx.doi.org/10.1590/S0102-05362014000200018
http://dx.doi.org/10.1093/oxfordjournals.aob.a087212
http://dx.doi.org/10.1111/j.1469-8137.2006.01797.x
http://www.ncbi.nlm.nih.gov/pubmed/16945089
http://dx.doi.org/10.1007/s11104-006-9085-4


Plants 2019, 8, 200 12 of 12

38. Motomura, H.; Mita, N.; Suzuki, M. Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder
(Poaceae–Bambusoideae). Ann. Bot. 2002, 90, 149–152. [CrossRef] [PubMed]

39. Jones, L.; Handreck, K. Uptake of silica by Trifolium incarnatum in relation to the concentration in the
external solution and to transpiration. Plant Soil. 1969, 30, 71–80. [CrossRef]

40. Ma, J.F.; Mitani, N.; Nagao, S.; Konishi, S.; Tamai, K.; Iwashita, T.; Yano, M. Characterization of the silicon
uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol. 2004, 136,
3284–3289. [CrossRef]

41. Heine, G.; Tikum, G.; Horst, W.J. Silicon nutrition of tomato and bitter gourd with special emphasis on silicon
distribution in root fractions. J. Plant Nutr. Soil Sci. 2005, 168, 600–606. [CrossRef]

42. Casey, W.; Kinrade, S.; Knight, C.; Rains, D.; Epstein, E. Aqueous silicate complexes in wheat, Triticum
aestivum L. Plant Cell Environ. 2004, 27, 51–54. [CrossRef]

43. Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, MA, USA,
2012; ISBN 978-0-12-384905-2.

44. Zhang, C.; Wang, L.; Zhang, W.; Zhang, F. Do lignification and silicification of the cell wall precede silicon
deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant Soil. 2013, 372, 137–149.
[CrossRef]

45. Coradin, T.; Lopez, P.J. Biogenic silica patterning: Simple chemistry or subtle biology? ChemBioChem 2003, 4,
251–259. [CrossRef] [PubMed]

46. Sakai, W.S.; Sanford, W. A developmental study of silicification in the abaxial epidermal cells of sugarcane
leaf blades using scanning electron microscopy and energy dispersive X-ray analysis. Am. J. Bot. 1984, 71,
1315–1322. [CrossRef]

47. Takahashi, N.; Kato, Y.; Isogai, A.; Kurata, K. Silica distribution on the husk epidermis at different parts of
the panicle in rice (Oryza sativa L.) determined by X-ray microanalysis. Plant Prod. Sci. 2006, 9, 168–171.
[CrossRef]

48. Naidoo, P.; McFarlane, S.; Keeping, M.; Caldwell, P. Deposition of silicon in leaves of sugarcane (Saccharum
spp. hybrids) and its effect on the severity of brown rust caused by Puccinia melanocephala. In Proceedings
of the Annual Congress-South African Sugar Technologists’ Association, Durban, South Africa, 2009.

49. Schurt, D.A.; Cruz, M.F.; Nascimento, K.J.; Filippi, M.C.; Rodrigues, F.A. Silicon potentiates the activities of
defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. Trop. Plant Pathol. 2014, 39,
457–463. [CrossRef]

50. Inanaga, S.; Okasaka, A.; Tanaka, S. Does silicon exist in association with organic compounds in rice plant?
Soil Sci. Plant Nutr. 1995, 41, 111–117. [CrossRef]

51. Kim, S.G.; Kim, K.W.; Park, E.W.; Choi, D. Silicon-induced cell wall fortification of rice leaves: A possible
cellular mechanism of enhanced host resistance to blast. Phytopathol. 2002, 92, 1095–1103. [CrossRef]
[PubMed]

52. Hodson, M.; Sangster, A. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). II. X-ray
microanalysis and backscattered electron imaging. Can. J. Bot. 1989, 67, 281–287. [CrossRef]

53. Saunt, J. Citrus Varieties of the World, 2nd ed.; Sinclair International Limited: Norwich, UK, 2000.
54. FSSA-MVSA. Fertiliser Handbook of South Africa, 6th ed.; The Fertilizer Society of South Africa: Lynnwood

Ridge, South Africa, 2007; ISBN 090-907-186-1.
55. Lux, A.L.M.; Abe, J.; Tanimoto, E.; Hattori, T.; Inanaga, S. The dynamics of silicon deposition in the sorghum

root endodermis. New Phytol. 2003, 158, 5. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/aob/mcf148
http://www.ncbi.nlm.nih.gov/pubmed/12125768
http://dx.doi.org/10.1007/BF01885262.pdf
http://dx.doi.org/10.1104/pp.104.047365
http://dx.doi.org/10.1002/jpln.200420508
http://dx.doi.org/10.1046/j.0016-8025.2003.01124.x
http://dx.doi.org/10.1007/s11104-013-1723-z
http://dx.doi.org/10.1002/cbic.200390044
http://www.ncbi.nlm.nih.gov/pubmed/12672103
http://dx.doi.org/10.1002/j.1537-2197.1984.tb11988.x
http://dx.doi.org/10.1626/pps.9.168
http://dx.doi.org/10.1590/S1982-56762014000600007
http://dx.doi.org/10.1080/00380768.1995.10419564
http://dx.doi.org/10.1094/PHYTO.2002.92.10.1095
http://www.ncbi.nlm.nih.gov/pubmed/18944220
http://dx.doi.org/10.1139/b89-041
http://dx.doi.org/10.1046/j.1469-8137.2003.00764.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Si Accumulation in Citrus Species 
	Scanning Electron Microscopy with Energy Dispersive X-ray Analysis 
	Environmental Scanning Electron Microscopy (ESEM) 
	Light Microscopy 

	Discussion 
	Materials and Methods 
	Plant Material 
	Silicon Uptake Experiment 
	Si Analysis 
	Data Collection 
	Microscopic analysis 
	Statistical Analysis 


	Conclusions 
	References

