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Abstract: Drought stress adversely effects physiological and biochemical processes of plants, leading
to a reduction in plant productivity. Plants try to protect themselves via activation of their internal
defense system, but severe drought causes dysfunction of this defense system. The imbalance between
generation and scavenging of reactive oxygen species (ROS) leads to oxidative stress. Melatonin,
a multifunctional molecule, has the potential to protect plants from the adverse effects of drought
stress by enhancing the ROS scavenging efficiency. It helps in protection of photosynthetic apparatus
and reduction of drought induced oxidative stress. Melatonin regulates plant processes at a molecular
level, which results in providing better resistance against drought stress. In this review, the authors
have discussed various physiological and molecular aspects regulated by melatonin in plants under
drought conditions, along with their underlying mechanisms.

Keywords: abiotic stress; plant stress physiology; oxidative stress; water deficit conditions;
water stress

1. Introduction

In the present era, water scarcity is one of the main environmental challenges for plants, which
has negative impacts on their growth and development [1,2]. The reduction of water availability to
plants causes physiological imbalances which ultimately reduces plant productivity [3]. The impact of
drought stress on the physiological responses of plants is dependent upon the level of drought, its
exposure time and the growth stage of plants [4]. Drought stress induces phytotoxicity by enhancing
accumulation of reactive oxygen species (ROS) in the plant cells, which is mainly due to the imbalance
between ROS generation and their scavenging [1,5]. Increased concentrations of ROS during drought
conditions negatively affect the photosynthetic reactions by disrupting the photosynthetic apparatus,
including reaction centers and chloroplast structures [6–9]. Furthermore, enhanced ROS accumulation
favors the degradation of chlorophyll molecules and finally declines the photosynthetic performance
of plants under water deficit conditions [10,11].

As plants are exposed to various biotic and abiotic factors, they possess an inbuilt system, known
as antioxidant system, to regulate the biological processes under adverse environmental conditions.
This antioxidant system is comprised of enzymatic and non-enzymatic antioxidants, which work in
a systematic manner to control the levels of ROS in plant cells [12]. However, under severe stress
conditions, such as high drought levels, this antioxidant system is disrupted, leading to an imbalance
in redox homeostasis in plant cells [13–15].

Plant growth regulators are multifunctional molecules which are well known for their physiological
functions in plants [16–19]. These molecules also play an important role in providing resistance to plants
growing under abiotic stresses, such as heavy metals, temperature, pesticides and drought [20–26].
Melatonin is a growth regulator which also confers stress tolerance to plants growing under adverse
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conditions such as drought [6,27,28]. Melatonin regulates the biology of plants by modulating
various physiological, biochemical and molecular processes and ultimately enhances resistance in
plants to withstand drought conditions [29,30]. The regulation of photosynthetic machinery and the
anti-oxidative defense system are the main physiological processes controlled by melatonin under
water deficit conditions [31,32]. In the recent past, considerable research has been undertaken to
explore the effects of this multifunctional molecule in plants under abiotic stress conditions [33–35].
However, as compared to other stresses, drought stress has been less studied and there is a need
to have comprehensive knowledge about the exact mechanisms behind the regulation of melatonin
mediated drought tolerance. Thus, the main objective of the current review is to discuss the advanced
developments undertaken in the recent past which explore the melatonin-mediated drought tolerance
in plants. For a better understanding of the topic, the authors started by discussing the impact of
drought on plant biology, followed by an examination of the various physiological roles of melatonin.
Following this, the mechanisms behind melatonin modulated physiological and molecular aspects
were discussed, including photosynthetic processes, regulation of oxidative stress and other important
biological mechanisms in plants under drought conditions.

2. Drought Stress and its Impacts on Plant Physiology

Plants growing under water deficit conditions face many challenges at the biochemical and
molecular level which ultimately causes hindrance to plant’s growth and yield [36,37]. Drought
stress causes a decline in photosynthesis by disturbing the mechanism of light harvesting and its
utilization, negatively impacting the metabolism of photosynthetic pigments, which declines the
RuBisCo function accompanied by disruption of the photosynthetic apparatus [38–40]. Disruption of
the chloroplast structure also negatively affects photosynthetic performance of plants growing under
drought conditions [6,30]. Drought negatively influences the intercellular CO2 levels which favors the
generation of reduced photosynthetic electron transport constituents, resulting in enhanced generation
of ROS, which causes disruption of the photosynthetic apparatus [41]. Disruption of the photosynthetic
apparatus due to drought leads to a reduction of the photosynthetic rate, stomatal conductance,
transpiration rate, photochemical efficiency of PSII and photosynthetic electron transport rate [6,29,42].
Stomatal closure during water deficit conditions is regulated by the enhanced endogenous levels of
abscisic acid (ABA), which acts as a signaling molecule to modulate a cascade of various physiological
and molecular processes. This enhanced biosynthesis of ABA is due to the up regulation of the ABA
biosynthetic gene NCED3 (9-cis-epoxycarotenoid dioxygenase 3) [43,44]. The expression of histone
H1-S is enhanced under drought stress and this protein promotes the closure of stomata [45,46].
Moreover, ABA also acts as primary messenger for cell signaling pathways which further accelerates
the generation of ROS, followed by increased accumulation of cytosolic Ca2+ which acts as secondary
messenger, stimulating other signaling cascades to regulate plant processes at the molecular level [43].

Drought stress decreases water potential and the relative water content of plants [47–49]. Declined
water potential further causes a reduction in the uptake of various essential minerals, such as nitrogen,
phosphorous and potassium [37,50]. Water deficit conditions have a negative impact on the nitrogen
transporters and nitrogen metabolism. It is due to the down-regulation of genes, such as AMT
(ammonium transporter), NRT (nitrate transporter), NR (nitrate reductase), NiR (nitrite reductase),
GS (glutamine synthetase) and GOGAT (glutamate synthase), under drought stress [51]. Reduced
nutrient uptake is also accompanied by reduced efficiency of their translocation to the target sites in
plants growing under water deficit conditions [52]. Moreover, declined root growth in soils having low
water also negatively affects the efficiency of the nutrient uptake [53].

Drought stress causes an imbalance between the production of ROS and their scavenging, leading
to oxidative stress in plant cells [36]. This ROS scavenging failure leads to the over accumulation of
ROS in plant cells, resulting in oxidation of proteins, peroxidation of lipid membranes and damage
to genetic material [54,55]. Increased ROS levels also cause a reduction in fixation efficiency of CO2

accompanied by enhanced photorespiration [56]. To counterattack the negative effects of drought
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induced oxidative stress, plant’s enzymatic and non-enzymatic antioxidants work together to provide
drought resistance [12,36]. However, severe drought causes an imbalance in redox homeostasis, which
is mainly due to the declined efficiency of the anti-oxidative defense system. For example, activities of
enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), were reported to decrease under
high drought conditions [57]. The production of various osmolytes, such as soluble sugars, proline and
glycine-betaine, also become enhanced, resulting in more accumulation of these compounds which act
as osmoprotectants under drought stress [58,59]. These osmolytes assist in maintaining the leaf turgor
which results in efficient stomatal conductance followed by better CO2 intake by leaves and water
uptake by roots [60,61]. The enhanced osmoprotectant accumulation is due to the up-regulation of
genes involved in biosynthesis of osmolytes, aquaporins, LEA proteins, accompanied by regulation of
various important transcription factors [45]. Figure 1 gives an overview on various responses of plants
under drought stress.
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3. Role of Melatonin in Regulation of Plant Physiology

Melatonin is a growth regulator known for its important roles in the regulation of plant growth and
development [62,63]. It regulates plant’s developmental processes starting from the seed germination
and has been considered to show similar effects, such as auxins, during the process of etiolation [64].
It is also believed that melatonin and auxins can have a co-regulatory impact on plant growth [65].
The concentration of melatonin also acts as a rate limiting step in the regulation of physiological processes.
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At lower concentrations, it promotes the growth, whereas at higher concentrations, it has inhibitory
effects [66]. Melatonin also regulates the important plant processes such as morphogenesis, rhizogenesis
and caulogenesis [67,68]. Melatonin positively regulates the growth of roots. This was supported by
studies carried out on genetically modified rice in which gene encoding serotonin-N-acetyltransferase
(SNAT) was over expressed. The over expression of SNAT resulted in a manifold enhancement of
endogenous melatonin levels accompanied by a significant increment of rice seedling root growth [69].
In plant roots, melatonin also induces the formation of root primodia from pericycle cells [70–73].
Transcriptomic studies carried out on cucumber roots established that melatonin treatment up-regulated
121 genes, and down-regulated 196 genes. This transcriptomic regulation enhanced the plant growth
by increasing the total count of lateral roots [74]. This melatonin mediated root growth in plants is
supposed to be regulated in an auxin dependent manner [75,76].

Melatonin also promotes plant growth by enhancing the efficiency of carbon assimilation [77,78].
Moreover, another fact favoring the improved photosynthesis is the stimulated stomatal conductance
after melatonin application [6]. Photochemical efficiency of PSII is also stimulated by melatonin,
enhancing the overall photosynthesis [42,79]. Moreover, melatonin also boosts the accumulation
of RuBisCO along with enhanced total nitrogen and protein content [80]. Melatonin mediated
enhancement in photosynthesis is also accompanied by the reduced catabolism of chlorophyll molecules
and down-regulation of genes favoring the process of senescence [81]. A delay in senescence in
melatonin treated plants is favored by low H2O2 levels accompanied by high APX activity. Additionally,
melatonin regulates the ascorbate-glutathione cycle, resulting in more accumulation of ascorbate
and glutathione, accompanied by low levels of dehydroascorbate and oxidized glutathione [82].
Seeds treated with melatonin before sowing resulted in improved germination and vigor plants [77,83].
This melatonin seed priming has been followed by overall better vegetative and reproductive growth of
plants leading to improvement in yields [84,85]. In addition to other physiological processes, melatonin
also regulates fruit ripening. In tomatoes, melatonin has been observed to trigger fruit ripening by
stimulating ethylene biosynthesis accompanied by the up-regulation of transcripts involved in ethylene
signalling pathways [86]. Moreover, melatonin also regulates the biosynthesis of anthocyanin and
proteins related to the process of fruit ripening [87].

4. Melatonin Mediated Regulation of Plant Biology under Drought Stress

4.1. Regulation of Photosynthetic Response

Melatonin protects the photosynthetic apparatus from the deleterious effects of drought,
resulting in the recovery of photosynthetic efficiency of plants [6,51]. Melatonin prevents the
degradation of the chlorophyll molecule during drought stress and improves the photosynthesis,
transpiration and stomatal conductance [51,88]. Chlorophyll degradation is catalyzed by enzymes
such as, chlorophyllase (Chlase), pheophytinase (PPH) and chlorophyll degrading peroxidase
(Chl-PRX) [11,89–93]. The reduction in degradation of chlorophyll after melatonin treatment is due to the
down-regulation of genes including Chlase, PPH and Chl-PRX [11]. Additionally, melatonin also recovers
the content of photosynthetic accessory pigments, such as carotenoids under drought stress [31]. Another
enzyme, pheophorbide-a-oxygenase (PAO), is involved in the chlorophyll metabolism. Melatonin
down-regulates the transcript levels of PAO, resulting in reducing the rate of chlorophyll degradation
under drought conditions [32].

Enhanced photosynthetic rate by melatonin is accompanied by improved photochemical efficiency
(Fv/Fm) of photosystem II (PSII) along with a better photosynthetic electron transport rate (ETR) [31,70].
Non photochemical quenching is enhanced under drought stress and has a negative impact on
photosynthetic efficiency. However, melatonin application to drought stressed plants helps in recovering
photosynthetic performance [32]. The enlargement of the leaf area in melatonin treated plants provides
another reason for the better photosynthetic efficiency under water deficit conditions [29].
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The main reason behind the melatonin mediated improvement of photosynthesis in drought stress
is that melatonin protects the chloroplast structures in leaves from oxidative damage [6,30]. During
water deficit conditions, the length of chloroplast decreases gradually, which is accompanied by a
disruption of the membrane, stroma lamellae, grana and thylakoids. However, melatonin treatment
prevents all these ill effects of drought on the chloroplast structure [6]. The better relative water
content in drought stresses leaves after melatonin treatment which further favors the protection of
chloroplast structures [94]. The better water potential in melatonin treated plants under drought
stress [29] can also aid in chlorophyll protection. Moreover, the length of stomata, and the recovery in
the shape of palisade tissue accompanied by less damage to spongy tissue cells also contributes towards
improved photosynthesis of drought stressed plants after melatonin treatment [6]. Additionally,
melatonin also aids in maintaining the cell turgor which enhances the capacity of stomatal opening
and conductance [6]. This increased stomatal conductance helps in better movement of water
and CO2, and ultimately favors the photosynthesis in melatonin treated plants [30]. All these
processes are further favored by melatonin regulated water balance in the mesophyll cells along
with their turgor pressure regulation [30,95]. Moreover, it has also been suggested that in Malus,
melatonin down-regulated a key gene of ABA biosynthetic pathway (MdNCED3) and simultaneously
up-regulated the transcript levels of genes involved in degradation of ABA (MdCYP707A1 and
MdCYP707A1). This molecular response was accompanied by an anti-oxidative response and efficient
scavenging of H2O2. Both of these mechanisms are believed to work in a synergistic manner to
result in better stomatal function [96]. Recently, it has been established that melatonin regulated the
carbon fixation pathway at a molecular level, which resulted in the recovery of the photosynthetic
performance of plants growing under drought stress [31]. Melatonin up-regulates the transcript levels
of various key enzymes of the carbon fixation pathway, such as RUBISCO (ribulose bisphosphate
carboxylase), PGK (phosphoglycerate kinase), GAPA (glyceraldehyde-3-phosphate dehydrogenase),
FBA (fructose-bisphosphate aldolase), FBP (fructose-1,6-bisphosphatase), TIM (triosephosphate
isomerase), SEBP (sedoheptulose-1,7-bisphosphatase), TKT (transketolase), RPI (ribose 5-phosphate
isomerase) and RPK (phosphoribulokinase) [31]. Table 1 summarizes the effect of melatonin on
photosynthetic parameters of plants under drought stress.

Table 1. Summary table explaining the effect of exogenous applied melatonin on various photosynthetic
parameters under drought stress.

Plant Name Conc. Impact on Photosynthetic Parameters under Drought Stress Reference

Actinidia chinesis 100 µM
Recovery of leaf area, chlorophyll and carotenoid contents, photochemical efficiency of

PSII along with photosynthetic electron transport rate.
Better photosynthetic rate, stomatal conductance and transpiration rate.

[31]

Agrostis stolonifera 20 µM
Recovery in relative water content, chlorophyll content and photochemical efficiency.

Down-regulation of genes involved in chlorophyll degradation like CHLASE, PPH and
CHL-PRX.

[11]

Coffea arabica 300 µM
Better leaf water potential.

Increased chlorophyll content, photosynthetic rate, stomatal conductance and
transpiration rate.

[29]

Cucumis sativus 100 µM Improved photosynthetic rate, stomatal conductance, chlorophyll content and
photochemical efficiency of PSII. [70]

Dracocephalum
moldavica 100 µM Recovery of chlorophyll content accompanied by increased leaf length and leaf area. [27]

Malus domestica 100 µM

Recovery of chlorophyll content accompanied by down-regulation of transcript levels of
chlorophyll degrading enzyme PAO.

Improved photosynthetic rate, stomatal conductance, and photochemical efficiency of
PSII along with photosynthetic electron transport rate.

[32]

Increased chlorophyll content, photosynthetic rate, stomatal conductance and
transpiration rate.

Increased length, width and aperture of stomata.
[51]

Malus prunifolia
and

M. hupehensis
100 µM

Better relative water content.
Improved photosynthetic rate, stomatal conductance and chlorophyll content.

Recovery of stomatal opening along with improved stomatal length, width and aperture.
[96]



Plants 2019, 8, 190 6 of 17

Table 1. Cont.

Plant Name Conc. Impact on Photosynthetic Parameters under Drought Stress Reference

Solanum
lycopersicum

200 µM Recovery of chlorophyll content. [88]

100 µM Better cell wall stability accompanied by less leaching of chlorophyll molecules. [97]

0.1 mM Improved photosynthetic rate, stomatal conductance, chlorophyll content and
photochemical efficiency of PSII. [98]

Triticum aestivum 100 µM Recovery of chloroplast apparatus, photosynthetic rate, stomatal conductance,
transpiration rate and photochemical efficiency of PSII. [30]

Vitis vinifera 100 nM Increased chlorophyll content and photochemical efficiency.
Recovery of damaged chloroplast ultrastructure and stomata. [6]

Zea mays

1 mM Recovery of photochemical efficiency of PSII. [94]

100 µM

Better leaf area accompanied by recovery in chlorophyll content, photosynthetic rate,
stomatal conductance and transpiration rate.

Improved water potential, photochemical efficiency of PSII along with photosynthetic
electron transport rate.

[42]

Chlase, chlorophyllase; PPH, pheophytinase; Chl-PRX, chlorophyll degrading peroxidase, PAO, pheophorbide-a-
oxygenase; PSII, photosystem II.

4.2. Regulation of Oxidative Stress and Antioxidative Defense System

4.2.1. Impact on ROS Accumulation

Melatonin protects plants from the ill effects of drought induced oxidative stress by enhancing
the ROS scavenging efficiency. This triggered ROS scavenging is due the melatonin stimulated
anti-oxidative defense system of plants growing under drought conditions [6,29,30,32]. The drought
induced generation of superoxide anions in plant cells is controlled by melatonin, either by enhancing
the scavenging or by controlling the production of superoxide anions [6,98,99]. Moreover, scavenging
efficiency of H2O2 is also enhanced by melatonin in plants growing under drought stress [6,70,96].
This is followed by enhanced detoxification of harmful hydroxyl radicals and other aldehydes involved
in the induction of oxidative stress [27,70]. Melatonin also regulates the ascorbate-glutathione cycle and
triggers the direct scavenging of ROS, such as H2O2 [32]. Melatonin mediated efficient ROS scavenging
in the plants under drought stress leads to protection of plant cell walls. This fact is supported by the
reduced levels of MDA content and decline in electrolyte leakage in melatonin treated plants under
water deficit conditions [11,27,31].

Due to water scarcity in plant cells, biosynthesis of ABA is enhanced, resulting in accumulation of
more ABA than the normal conditions. These enhanced ABA levels favor the generation of ROS, causing
oxidative stress in terms of lipid peroxidation, electrolyte leakage and cause breakdown of chlorophyll
molecules [100]. However, molecular studies on melatonin treated plants under drought stress revealed
that a reduction in ROS levels was also accompanied by declined ABA accumulation. This declined
ABA concentration was due to the melatonin mediated down-regulation of genes responsible for ABA
biosynthesis and simultaneously up-regulation of genes involved in ABA catabolism [96]. Moreover,
it is also believed that melatonin regulates the scavenging/generation of ROS via CK-signaling and both
of melatonin and CK work synergistically to regulate drought induced oxidative stress in plant cells [11].
All of these above mentioned facts were further supported by studies in which the overexpression
of TaCOMT (gene involved in melatonin biosynthesis) in Arabidopsis were subjected to water deficit
conditions. In comparison to non-transgenic plants, overexpressing this gene resulted in enhanced
endogenous levels of melatonin accompanied by a reduction in lipid peroxidation under drought
stress [101]. Similarly, overexpression of another melatonin biosynthetic gene MzASMT (cloned
from Malus zumi) in Arabidopsis plants grown under water deficit conditions, resulted in enhanced
scavenging and better drought tolerance [102]. The impact of melatonin on various oxidative stress
markers has been summarized in Table 2.
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Table 2. Summary table explaining the effect of exogenous applied melatonin on various oxidative
stress markers under drought stress.

Plant Name Conc. Impact on Oxidative Stress Markers under Drought Stress Reference

Actinidia chinesis 100 µM Reduction in MDA content and membrane injury index. [31]

Agrostis stolonifera 20 µM Reduction in contents of H2O2 and MDA accompanied by declined
electrolyte leakage. [11]

Avena nuda 100 µM Reduction in contents of superoxide anion and H2O2. [99]

Brassica napus 50 µM Reduction in H2O2 content. [103]

Coffea arabica 300 µM Reduction in lipid peroxidation. [29]

Cucumis sativus 100 µM Reduction in contents of H2O2, hydroxyl radical and MDA accompanied
by declined electrolyte leakage. [70]

Dracocephalum
moldavica 100 µM Reduction in contents of H2O2, MDA and other aldehydes which cause

oxidative stress accompanied by declined electrolyte leakage. [2]

Malus domestica 100 µM Reduction in electrolyte leakage accompanied by declined H2O2 content. [51]

Reduction in H2O2 content. [32]

Malus prunifolia
and

M. hupehensis
100 µM Reduction in H2O2 content.

Accumulation of ABA is reduced. [96]

Solanum lycopersicum 200 µM Reduction in lipid peroxidation. [88]

0.1 mM Reduction in contents of superoxide anion and MDA. [98]

Triticum aestivum 100 µM Reduction in contents of superoxide anion, H2O2 and MDA accompanied
by declined electrolyte leakage. [30]

Vitis vinifera 100 nM Reduction in contents of superoxide anion and H2O2. [6]

Zea mays 100 µM Reduction in contents of H2O2 and MDA.
Better DPPH scavenging activity. [42]

ABA, abscisis acid; DPPH, 2,2-diphenyl-1-picryl-hydrazyl-hydrate; H2O2, hydrogen peroxide;
MDA, malondialdehyde.

4.2.2. Impact on Enzymatic and Non-Enzymatic Anti-oxidative Defense System

Due to drought stress, generation of ROS takes place in plant cells. To regulate the level of
ROS, plant’s internal defense system (enzymatic and non-enzymatic) gets stimulated. Furthermore,
melatonin also triggers this defense system and enhances the scavenging harmful ROS, leading to a
reduction in drought induced oxidative stress [27,31]. Melatonin is considered as a multifunctional
antioxidant and is a receptor-less scavenger of harmful free radicals [62]. Moreover, melatonin also
acts as a stimulator of the enzymatic anti-oxidative defense system, resulting in protection of plants
against oxidative damages [42,104].

In drought stressed plants, melatonin promotes activities of ABA degrading enzymes along with
H2O2 scavenging enzymes like CAT, POD and APX [96]. This enhanced activity of above mentioned
enzymes results in the decline of H2O2 in guard cells, indicating a direct involvement of melatonin in
scavenging of H2O2 [96,105,106]. In drought stressed plants, melatonin also enhances the activities of
other enzymatic anti-oxidative enzymes, such as SOD, GPX, GR, DHAR and MDHAR [27,29,32].

Melatonin mediated ROS scavenging is controlled in drought stressed plants via the regulation
of the key enzymatic cycle known as the Asada-Halliwell pathway [98]. Additionally, melatonin
also regulates the AsA-GSH cycle which plays an important role in ROS detoxification. This cycle is
regulated by enzymes, such as APX, MDHAR, DHAR and GR [30,32]. In chloroplast, GR is responsible
for AsA homeostasis [107], and in drought stressed plants, melatonin up-regulates the GR activity [30].
Another enzymatic antioxidant, GPX, has capability to scavenge hydroperoxides, H2O2 and lipid
peroxides, and under drought conditions, melatonin up-regulates the activity of GPX, resulting in
efficient ROS scavenging [30,108]. Figure 2 explains the melatonin regulated enzymatic anti-oxidative
defense system in plants growing under drought stress.
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Abbreviations – ASA, ascorbate; APX, ascorbate peroxidase; CAT, catalase; DHA, dehydroascorbate;
DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; GSH, glutathione; GSSG, oxidative
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Table 3 summarizes the effects of exogenous applied melatonin on the enzymatic antioxidants in
plants growing under water deficit conditions.

Table 3. Summary table explaining the effect of exogenous applied melatonin on various anti-oxidative
enzymes under drought stress.

Plant Name Conc. Impact on Antioxidative Enzymes under Drought Stress Reference

Avena nuda 100 µM Enhanced activities of APX, CAT, POD and SOD. [99]

Brassica napus 50 µM Enhanced activities of APX, CAT and POD. [103]

Coffea arabica 300 µM Enhanced activities of APX and CAT, but no significant difference
in SOD activity. [29]

Cucumis sativus 100 µM Enhanced activities of CAT, POD and SOD. [70]

Dracocephalum moldavica 100 µM Enhanced activities of APX, CAT, GPX and SOD. [27]

Malus domestica 100 µM Enhanced activities of APX, CAT, POD, DHAR, MDHAR and GR. [32]

Malus prunifolia
and

M. hupehensis
100 µM Enhanced activities of APX, CAT and POD. [96]

Solanum lycopersicum 200 µM Enhanced GR activity. [88]

0.1 mM Enhanced activities of APX, CAT, GR, POD and SOD. [98]

Triticum aestivum 100 µM
Enhanced activities of APX, GPX, DHAR, MDHAR, GST and GR.
Up-regulation in the transcript levels of APX, DHAR, MDHAR4,

GPX, GPX1, GR and GST2.
[30]

Vitis vinifera 100 nM Enhanced activities of CAT, POD and SOD. [6]

Zea mays 100 µM Enhanced activities of APX, CAT, POD and SOD. [42]

APX, ascorbate peroxidase; CAT, catalase; DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase;
GR, glutathione reductase; GST, glutathione-S-transferase; MDHAR, monodehydroascorbate reductase; POD,
peroxidase; SOD, superoxide dismutase.
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The regulation of AsA-GSH cycle by melatonin under drought stress results in the enhancement of
AsA/DHA and GSH/GSSG ratios [32,98]. The enhanced activity of GR is responsible for the increased
ratio of NADP+/NADPH followed by better performance of photosynthetic electron transport (PET).
This increased PET also inhibits the generation of superoxide anions [98]. Moreover, melatonin
mediated control of superoxide anion production under drought stress is also due to the fact that
melatonin reduces the consumption of O2 flux in those conditions when ADP levels are higher [98].
Moreover, melatonin also enhances the DPPH-radical scavenging efficiency of plants growing under
water deficit conditions [42]. After melatonin treatment, an increase in AsA and GSH contents in drought
stressed plants is also accompanied by a reduced H2O2 content [98]. This stimulated biosynthesis
of AsA and GSH is considered to be necessary for the ROS balance in plants under low water
conditions [30]. It is also suggested that glutamylcysteine synthase, which is a key enzyme of GSH
biosynthetic pathway [109], might have up-regulated by melatonin, but further research is required
to study the exact mechanism. Additionally, AsA and GSH are also involved in the scavenging of
superoxide anions, and the process is further triggered by melatonin under drought stress [6]. Proline
is a non-enzymatic antioxidant which is also involved in providing resistance to plants under water
deficit conditions and melatonin treatment enhances its biosynthesis, resulting in the reduction of
drought induced oxidative stress [6]. Moreover, it is also suggested that proline aids in maintaining
cell function by reducing the levels of ROS and stabilizing cell membranes [6]. Phenolic compounds
are also a potential antioxidant and their accumulation is boosted by exogenous applied melatonin,
which can be beneficial for plants growing under drought stress [89]. Melatonin also stimulates the
biosynthesis of compatible solutes, such as soluble sugars, which are responsible for maintaining the
turgor and osmotic pressure of plant cells growing in water deficit conditions [29]. This stimulated
biosynthesis of osmolytes is a part of a mechanism for maintaining the osmotic balance of plants under
drought stress [41,110]. Additionally, they also play a role in enhancing the ROS scavenging efficiency
and cell wall protection against abiotic stress conditions [111,112]. The various effects of melatonin on
non-enzymatic antioxidants under drought stress have been summarized in Table 4.

Table 4. Summary table explaining the effect of exogenous applied melatonin on various non-enzymatic
antioxidants and osmotic adjustments under drought stress.

Plant Name Conc. Impact on Non-Enzymatic Antioxidants under Drought Stress Reference

Actinidia chinesis 100 µM Accumulation of soluble sugars and proline is increased. This is accompanied by
better cellular osmotic adjustments, resulting in reduction of cell injury. [31]

Brassica napus 50 µM Increased accumulation of total soluble sugars and proline, accompanied by
better osmotic regulation capacity. [103]

Coffea arabica 300 µM Increased accumulation of sucrose, total soluble sugars, ascorbate and proline,
accompanied by improvement in leaf water potential. [29]

Dracocephalum moldavica 100 µM Increased accumulation of proline accompanied by better relative water content. [27]

Malus domestica 100 µM
Increased accumulation of GSH, total GSH, AsA and total AsA.

Reduction in DHA and GSSG accumulation, accompanied by higher ratios of
GSH/GSSG and AsA/DHA.

[32]

Solanum lycopersicum
200 µM Accumulation of p-coumaric acid (a phenolic compound) is increased under only

melatonin treatment. [88]

0.1 mM Increased accumulation total AsA. [98]

Triticum aestivum 100 µM

Increased accumulation of GSH, total GSH, AsA and total AsA.
Reduction in DHA accumulation.Higher ratios of GSH/GSSG and

AsA/DHA.Better cell turgor accompanied by improved water holding capacity
leads to osmotic adjustments in drought stressed cells.

[30]

Vitis vinifera 100 nM
Accumulation of ascorbate, glutathione and proline is enhanced.

Proline is suggested to be involved in regulation of osmotic potential of drought
stressed cells.

[6]

AsA, ascorbate; DHA, dehydroascorbate; GSH, glutathione; GSSG, oxidative glutathione.



Plants 2019, 8, 190 10 of 17

4.3. Regulation of Other Biological Processes Related to Drought Tolerance

Mitogen-activated protein kinase (MAPK) cascade pathways play a crucial role in the regulation
of the plant’s biological processes under abiotic stresses, including drought [113]. Transcription
factors (TFs), such as NAC, WRKY, MYB and DREB are the main components of MAPK signaling
pathway in plants under stress conditions [114]. These TFs are involved in the regulation of various
stress responsive genes responsible for abiotic stress tolerance [115]. Melatonin under drought stress
regulates the MAPK pathway by up-regulating the expression pattern of MAPKs, such as Asmap1 and
Aspk11. It is accompanied by the up-regulation of key TFs, including WRKY1, DREB2 and MYB [99].
This melatonin-mediated regulation of MAPK cascade is believed to be regulated via H2O2 signaling,
resulting in the enhanced plant’s resistance against drought stress [99]. Drought stress in plants causes
negative impacts upon the nitrogen metabolism [116,117]. Melatonin regulates nitrogen metabolism
under drought stress by modulating the physiological and molecular aspects of plant biology [51].
The activities of nitrogen metabolic enzymes, such as NR, NiR, GS and GOGAT are enhanced by
melatonin [51]. Furthermore, the reason behind melatonin induced activities of nitrogen metabolic
enzymes is explained by the fact that melatonin also up-regulates the expression pattern of genes,
including NR, NiR, GS and GOGAT in plants under water deficit conditions [51]. Additionally,
transcript levels of genes involved in nitrogen uptake, AMT (ammonium transporter) and NRT (nitrate
transporter) are also enhanced by melatonin in plants growing under drought stress [51]. Drought
induced senescence is delayed after melatonin application, which is due to the down-regulation of gene
SAG12 (senescence associated gene 12) [32]. Furthermore, this delaying of senescence is favored by
melatonin mediated overexpression of genes, such as JUB1 and DREB2A under drought conditions [11].

Transgenic studies involving overexpression of TaCOMT in Arabidopsis revealed that melatonin
up-regulated various drought responsive genes, such as RAB18, RD29A, KIN1 and DREB2A [101].
Additionally, it is also suggested that melatonin provides drought tolerance by regulating GA and
IAA biosynthetic pathways. Melatonin is believed to suppress IAA biosynthesis via GA-signaling
accompanied by better drought resistance in plants [101]. Cytokinin (CK) biosynthesis is stimulated
by melatonin by up-regulating the transcript levels of key genes involved in CK-signaling,
including Type-A RRs, Type-B RRs (response regulators), HKs (histidine kinases) and HPs (histidine
phosphotransferases) [11]. This melatonin mediated CK-signaling has been associated with the
induction of drought resistance in plants [11].

Cuticle waxes are important for plants growing under low water conditions, as these compounds
assist in controlling the water loss through the leaf’s surface [97]. Melatonin stimulates the biosynthesis
of cuticular waxes and increases their deposition on the leaf’s surface, resulting in minimum water
loss. This enhanced biosynthesis is due to the up-regulation of the transcript levels of genes, such as
KCS1 (ketoacyl-CoA synthase 1), CER3 (ECERIFERUM3), TTS1 (triterpenoid synthase 1) and LTP1
(lipid transfer protein 1), which encodes enzymes involved in wax biosynthetic pathways [97].

5. Conclusions

Melatonin provides resistance to plants growing under drought conditions by enhancing the
scavenging of ROS. This prevents cells from oxidative damage and assists in the recovery of chloroplast
structures resulting in the improvement of photosynthetic efficiency of plants. Melatonin mediated
protection of drought stressed cells is regulated via stimulated cell signaling which ultimately controls
various physiological aspects at a molecular level. Figure 3 provides a detailed overview of melatonin
mediated regulation of plant biology under drought stress. As drought stress directly reduces the yield
and quality of crops, the implication of melatonin at a field level can be helpful from an agronomic point
of view. Some recent studies have also reported the enhanced drought tolerance after gene manipulation
(GM) and developing genetic modified plants with better melatonin biosynthesis. This GM technology
can be beneficial in developing better drought resistant varieties. Moreover, the identification of other
key genes involved in providing drought resistance and studying their behavior under melatonin
treatment can open new possibilities to develop drought tolerant crops.
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