Next Article in Journal
Effects of Light Level and Nitrogen Supply on the Red Clover–Orobanche Minor Host–Parasite Interaction
Next Article in Special Issue
Effect of Water Stress during Grain Filling on Yield, Quality and Physiological Traits of Illpa and Rainbow Quinoa (Chenopodium quinoa Willd.) Cultivars
Previous Article in Journal
Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle

Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis

1
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
2
Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
3
Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid, Spain
4
Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
*
Author to whom correspondence should be addressed.
Plants 2019, 8(6), 145; https://doi.org/10.3390/plants8060145
Received: 2 May 2019 / Revised: 22 May 2019 / Accepted: 28 May 2019 / Published: 30 May 2019
(This article belongs to the Special Issue Photosynthetic Metabolism under Stressful Growth Conditions)
  |  
PDF [2440 KB, uploaded 30 May 2019]
  |  

Abstract

During exposure to direct sunlight, leaf temperature increases rapidly and can reach values well above air temperature in temperate forest understories, especially when transpiration is limited due to drought stress, but the physiological effects of such high-temperature events are imperfectly understood. To gain insight into leaf temperature changes in the field and the effects of temperature variation on plant photosynthetic processes, we studied leaf temperature dynamics under field conditions in European aspen (Populus tremula L.) and under nursery conditions in hybrid aspen (P. tremula × P. tremuloides Michaux), and further investigated the heat response of photosynthetic activity in hybrid aspen leaves under laboratory conditions. To simulate the complex fluctuating temperature environment in the field, intact, attached leaves were subjected to short temperature increases (“heat pulses”) of varying duration over the temperature range of 30 °C–53 °C either under constant light intensity or by simultaneously raising the light intensity from 600 μmol m−2 s−1 to 1000 μmol m−2 s−1 during the heat pulse. On a warm summer day, leaf temperatures of up to 44 °C were measured in aspen leaves growing in the hemiboreal climate of Estonia. Laboratory experiments demonstrated that a moderate heat pulse of 2 min and up to 44 °C resulted in a reversible decrease of photosynthesis. The decrease in photosynthesis resulted from a combination of suppression of photosynthesis directly caused by the heat pulse and a further decrease, for a time period of 10–40 min after the heat pulse, caused by subsequent transient stomatal closure and delayed recovery of photosystem II (PSII) quantum yield. Longer and hotter heat pulses resulted in sustained inhibition of photosynthesis, primarily due to reduced PSII activity. However, cellular damage as indicated by increased membrane conductivity was not found below 50 °C. These data demonstrate that aspen is remarkably resistant to short-term heat pulses that are frequent under strongly fluctuating light regimes. Although the heat pulses did not result in cellular damage, heatflecks can significantly reduce the whole plant carbon gain in the field due to the delayed photosynthetic recovery after the heat pulse. View Full-Text
Keywords: hybrid aspen; heat stress; leaf temperature; photosynthesis inhibition; photosystem II; Populus; stomatal conductance; sunflecks hybrid aspen; heat stress; leaf temperature; photosynthesis inhibition; photosystem II; Populus; stomatal conductance; sunflecks
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Hüve, K.; Bichele, I.; Kaldmäe, H.; Rasulov, B.; Valladares, F.; Niinemets, Ü. Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis. Plants 2019, 8, 145.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Plants EISSN 2223-7747 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top