Supplementary Figure 1. Chromatograms comparison for the plants at extra-water (black) and low-water (red) conditions. (A) Comparison of the plants roots. (B) Comparison of the plants stems. (C) Comparison of the plants leaves. (D) Comparison of the plants fruits. **Supplementary Table 1.** Comparative GC-MS analysis of Cleome Amblyocarpa plant growing either in extra-water or low-water conditions of the arid desert of Sharjah, UAE. Metabolite average relative percentage of three replicates was displayed ± the standard error of the mean. The relative percentage of a metabolite represented in relation to total areas of all detected metabolites in an extract. | Lipophilic
Metabolites | Extra-Water Condition | | | | Low-Water Condition | | | | |-------------------------------|-----------------------|-----------------|------------------|------------------|---------------------|-----------------|------------------|------------------| | | Roots | Stems | Leaves | Fruits | Roots | Stems | Leaves | Fruits | | I- Tolerance | | | | | | | | • | | Hexatriacontane | 6.79 ± 0.6 | nd | 12.24 ± 0.7 | 26.51 ± 0.19 | nd | 12.05 ± 0.5 | 5.52 ± 0.25 | 40.98 ± 0.85 | | Tetracosane | nd | nd | nd | 8.61 ± 0.35 | nd | nd | nd | 1.5 ± 0.09 | | 1-Heptacosanol | 9.56 ± 0.24 | nd | nd | nd | 2.83 ± 0.4 | nd | nd | nd | | n-Nonadecanol-1 | 17.05 ± 0.4 | nd | nd | nd | 12.54 ± 0.72 | nd | nd | nd | | n-Pentadecanol | 6.08 ± 0.16 | nd | Phytol | 1.19 ± 0.16 | 1.48 ± 0.3 | 1.17 ± 0.06 | 1.07 ± 0.24 | 0.82 ± 0.06 | 1.65 ± 0.21 | nd | 0.55 ± 0.21 | | Tridecanal | nd | nd | nd | nd | nd | 4.33 ± 0.18 | nd | nd | | 9-Octadecenamide | nd | nd | nd | 4.49 ± 0.17 | 5.18 ± 0.26 | nd | nd | nd | | Octacosyl acetate | nd | 6.09 ± 0.27 | nd | nd | nd | nd | nd | nd | | Octadecanoic acid | 5.3 ± 0.16 | 6.37 ± 0.14 | nd | nd | nd | nd | nd | nd | | Pentadecadien | nd | nd | nd | nd | nd | 3.35 ± 0.27 | nd | nd | | II- Protective | | | | | | | | | | Heneicosane | 3.38 ± 0.23 | nd | nd | 11.01 ± 0.26 | nd | nd | nd | nd | | Heptadecanal | 7.32 ± 0.28 | nd | nd | nd | 9.71 ± 0.27 | nd | nd | nd | | Tetratetracontane | 1.92 ± 0.2 | nd | 7.53 ± 0.64 | nd | 9.51 ± 0.31 | nd | 3.62 ± 0.06 | 1.26 ± 0.21 | | Caryophyllene oxide | nd | nd | 4.65 ± 0.23 | nd | nd | nd | 13.85 ± 0.37 | nd | | Spiro[4.5]decane | nd | nd | nd | nd | nd | nd | 5.41 ± 0.34 | nd | | 2,6,10-Dodecatriene | nd | nd | nd | nd | nd | nd | 2.97 ± 0.28 | nd | | Pyran | nd | nd | nd | nd | nd | 3.32 ± 0.21 | nd | nd | | 2(1H)Naphthalenone | nd | nd | nd | nd | nd | nd | 3.85 ± 0.05 | nd | | 1-Heptatriacotanol | nd | nd | nd | nd | nd | nd | 5.81 ± 0.24 | nd | | Pentadecanoic acid | nd | nd | nd | nd | 6.23 ± 0.44 | nd | nd | nd | | Naphthalene | nd | nd | 1.15 ± 0.15 | nd | nd | nd | 3.71 ± 0.11 | nd | | III- Detoxification | | | | | | | | | | 2- | nd | nd | 10.73 ± 0.19 | 3.24 ± 0.7 | 9.56 ± 0.29 | nd | 22.4 ± 0.57 | nd | | Naphthalenemethanol | | | | | | | | | | IV- Growth and
Development | | | | | | | | | | Squalene | 2.37 ± 0.06 | nd | Triacontanol (TRIA) | nd 7.4 ± 0.52 | | ` ' | | | | | | | | |