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Abstract: Rice (Oryza sativa L.) is one of the most important staple food crops worldwide, while its
growth and productivity are threatened by various abiotic stresses, especially salt stress. Unraveling
how rice adapts to salt stress at the transcription level is vital. It can provide valuable information
on enhancing the salt stress tolerance performance of rice via genetic engineering technologies.
Here, we conducted a meta-analysis of different rice genotypes at the seedling stage based on
96 public microarray datasets, aiming to identify the key salt-responsive genes and understand
the molecular response mechanism of rice under salt stress. In total, 5559 genes were identified to
be differentially expressed genes (DEGs) under salt stress, and 3210 DEGs were identified during
the recovery process. The Gene Ontology (GO) enrichment results revealed that the salt-response
mechanisms of shoots and roots were different. A close-knit signaling network, consisting of the
Ca2+ signal transduction pathway, the mitogen-activated protein kinase (MAPK) cascade, multiple
hormone signals, transcription factors (TFs), transcriptional regulators (TRs), protein kinases (PKs),
and other crucial functional proteins, plays an essential role in rice salt stress response. In this study,
many unreported salt-responsive genes were found. Besides this, MapMan results suggested that
TNG67 can shift to the fermentation pathway to produce energy under salt stress and may enhance
the Calvin cycle to repair a damaged photosystem during the recovery stage. Taken together, these
findings provide novel insights into the salt stress molecular response and introduce numerous
candidate genes for rice salt stress tolerance breeding.

Keywords: Oryza sativa L.; salt stress; abiotic stresses; transcriptome responses; MapMan analysis;
transcription factors; qRT-PCR

1. Introduction

Since plants are sessile, they are forced to continuously face a multitude of biotic and abiotic
stresses during their lifespan. Abiotic stresses, such as salt, drought, and low temperature, seriously
threaten the growth and agricultural productivity of plants [1]. Of the abiotic stresses, salt stress is a
serious threat to crops’ yield worldwide. According to the FAO Land and Plant Nutrition Management
Service, at least 6% of the world’s land is affected by salt stress to different degrees [2]. In recent years,
environmental pollution and climate change have intensified the adverse effects of salt stress through
raising soil salinity [3]. Previous investigations have clarified that salt stress impairs plants in the
form of osmotic stress and oxidative stress [4]. Osmotic stress breaks the selective permeability of
the cell membrane and ion homeostasis due to a high-salinity external condition and an excessive
accumulation of Na+ and Cl− in plant cells, which seriously impede the absorption of water and
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nutrients in plants [2,5]. Besides this, the imbalance in production and elimination of reactive oxygen
species (ROS) leads to subsequent oxidative stress [6,7].

Over the past few decades, many studies have focused on the molecular process of plant salt
tolerance based on emerging new technologies, including RNA-sequencing (RNA-seq), alternative
splicing analysis, miRNA analysis, epigenetics, and quantitative trait locus (QTL) mapping [8–15].
These studies have demonstrated that various signaling pathways play vital roles during the plant
salt stress response process, including the Ca2+-mediated signaling pathway, the mitogen-activated
protein kinase (MAPK) cascade, the ROS signaling pathway, and the abscisic acid (ABA) signaling
pathway [16,17]. In addition, functional protein genes and transcription factors (TFs) were found to be
involved in plant salt stress response and tolerance [17].

Rice (Oryza sativa L.) is one of the most important staple food crops worldwide and also a
model for plant genomic studies in monocots [18]. So far, several studies have reported lots of
salt-responsive genes in rice based on microarray or RNA–seq analysis [8,19–23]. For example,
transcript changes at the initial phase of salt stress were investigated using a 1728-cDNA library of
roots from the salt-tolerant rice (var. Pokkali) [19]. Another study with a cDNA microarray library
from shoots containing 9000 unigenes identified 486 salt-responsive expressed sequence tags in the
highly salt-tolerant indica rice, Nona Bokra [20]. In addition, another study reported that a total of 1676,
817, and 1310 upregulated genes and 1270, 1323, and 2284 downregulated genes were identified in the
flag leaf, shoot, and panicle of Minghui 63 (indica) under a high-salinity condition, respectively [21].
In 2010, 995 and 1052 genes were identified to be linked to salt stress in Nipponbare (japonica) based
on RNA-seq, separately [22]. Zhou et al. (2016) conducted an RNA-seq analysis of Dongxiang
wild rice (Oryza rufipogon Griff), and their study reported 6867 differentially expressed transcripts
(2216 upregulated and 4651 downregulated) in the leaves and 4988 differentially expressed transcripts
(3105 upregulated and 1883 downregulated) in the roots [23]. Wang et al. (2018) reported that a
total of 5273 differentially expressed genes (DEGs) were identified between salt-tolerant and sensitive
genotypes of indica rice at the seedling stage [8]. In fact, mechanisms of gene regulation are different at
different development stages, in various tissues, and in different genotypes [8,24]. Although multiple
previous studies have tried to explain the rice regulatory mechanisms of salt tolerance based on
microarray or RNA-seq analysis, the potential regulatory mechanism of salt tolerance is still not fully
understood, especially the differences in the salt stress tolerance of different genotypes. Thus, the
roots’ and shoots’ microarray datasets (GSE76613) of the TNG67 genotype (rice subspecies indica,
salt-tolerant) and the TCN1 genotype (rice subspecies japonica, salt-sensitive) were downloaded and
analyzed. This study not only contributes to a better understanding of the molecular mechanisms of
salt stress tolerance but also provides candidate genes for salt-resistance molecular breeding.

2. Materials and Methods

2.1. Plant Materials

The ‘Nipponbare’ rice (O. sativa ssp. japonica) was chosen for the quantitative real-time RT-PCR
(qRT-PCR) verification of randomly selected DEGs. After 2 days of germination in water at 37 °C,
seeds were grown in containers with sponges as supporting materials in Yoshida solution with 60%
relative humidity and with a light and temperature regime of 14 h/10 h, light/dark, 30 °C/22 °C.
Three-leaf stage seedlings were transferred to 200 mM NaCl Yoshida solution for salt treatment. Then,
the roots of treatment/control seedlings were collected at 0, 3, 6, 12, and 24 h for RNA extraction.
In this study, 0 h was the control group, and 3 h, 6 h, 12 h, and 24 h were treatment groups. Three
biological replicates were adopted for each group. For each biological replicate, 15 seedlings were
collected and mixed. Totally, 15 RNAs (three control groups and 12 treatment groups) were extracted
using the TRIzol method and all RNAs were reverse-transcribed into cDNAs using the PrimeScript RT
reagent Kit (TakaRa, Dalian, China).
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2.2. Data Collection and Meta-Analysis

The series matrix file of the TNG67 genotype (rice subspecies indica, salt-tolerant, 48 datasets of
the roots and shoots) and the TCN1 genotype (rice subspecies japonica, salt-sensitive, 48 datasets of
the roots and shoots) were obtained from the Gene Expression Omnibus (GEO) repository (accession
number GSE76613; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76613). Within the
two genotypes, 0-h, 3-h, 24-h, and recovery 24-h roots and shoots from three-leaf stage seedlings
after 250 mM NaCl treatment were used in this study. Detailed information (experiment design,
transcriptome analysis, array information, data processing, and platform ID) of GSE76613 can be
obtained from the GEO repository, and this information is partly summarized in Table S1. Raw data
analysis and ID conversion were performed using the R language package [25,26]. A difference analysis
was carried out with the limma package in the Bioconductor package (http://www.bioconductor.
org/) [26]. DEGs were considered those with a |log2fold change| >1.5 after normalization to the
control and with significant results for the t-test (p value <0.05) based on six replicates (3 biological
repeats x 2 technical repeats) for each treatment compared with the control [18].

2.3. Gene Ontology (GO) Enrichment Analysis

To understand DEGs’ functions, a GO enrichment analysis of core salt-responsive DEGs (common
DEGs at 3 h and 24 h of both genotypes in shoots or roots) was implemented by the GOseq R package
(https://www.bioconductor.org/packages/release/bioc/html/goseq.html) based on the Wallenius
noncentral hyper-geometric distribution [27]. GO terms with a corrected p value of less than 0.001 were
considered significantly enriched.

2.4. TF, TR, and PK Identification and MapMan Analysis

For the identification of TFs, the DEG sequences were searched against the Plant transcription
factor database (PlantTFDB 4.0, http://planttfdb.cbi.pku.edu.cn/) with an E-value cut off of ≤10−5 [28].
For the identification of transcriptional regulators (TRs) and protein kinases (PKs), all of the core
salt-responsive sequences in roots and shoots were analyzed by iTAK software (http://itak.feilab.net/
cgi-bin/itak/index.cgi) [29]. The average log2fold change values of 3 biological repeats x 2 technical
repeats for each treatment compared with the control at different points were displayed using MapMan
3.6.0 (https://mapman.gabipd.org/) [18,30].

2.5. Sequence Alignment and Gene Comparison

Genes that have previously been identified as salt-responsive genes were obtained based on
previous papers [8,23,31]. Gene ID conversion between different genome versions (such as 9311 and
Nipponbare) was conducted by diamond software (https://ab.inf.uni-tuebingen.de/software/) using
the blastp method with the following parameters: max-target-seqs 1, evalue 1e-10 [32]. Common DEGs
are shown by a Venn diagram.

2.6. DEG Mapping on the Previously Identified Salt-Stress-Related QTL Intervals

A total of 17 salt-stress-related QTLs of rice were downloaded from the Gramene QTL database
(http://archive.gramene.org/db/) [23]. All DEGs were mapped on these QTLs according to sequence
and QTL location information.

2.7. Quantitative Real-Time PCR (qRT-PCR) Validation of DEGs

In this study, six DEGs were randomly selected for the verification of the DEG results. Primers
of these genes were designed by Primer 5.0 in specific regions or 3’–UTR regions (the primers in
Table S2). The qRT-PCR reaction (10 µL) was formulated using ChamQ™ SYBR® Color qPCR Master
Mix (Vazyme, Shanghai, China). qRT-PCR was carried out in 96-well plates on a CFX96 Touch™
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Ubi (LOC_Os03g13170, encodes
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ubiquitin fusion protein) was used as an internal control. The average threshold cycle (Ct) from
three biological replicates was used to determine the fold change of gene expression by the 2−∆∆CT

method [33].

3. Result

3.1. Identification of DEGs Involved in Salt Stress

Comparisons of gene expression in the shoots from the two genotypes (TNG67 and TCN1)
(Table S3) revealed a total of 1241 DEGs in TCN1 and 904 DEGs in TGN67 at 3 h of salt treatment
(S3) and two genotypes shared 586 DEGs (Figure 1A). Following 24 h after salt stress (S24), 1519 and
1319 DEGs were identified in TCN1 and TGN67, respectively, and 738 DEGs were shared by two
genotypes (Figure 1A). At S3 and S24, two genotypes shared 377 DEGs (Figure 1A). These genes showed
similar expression patterns at S3 and S24 in these two genotypes (Figures S2 and S3, Tables S4 and
S5), suggesting that these genes were core salt-responsive genes in shoots between the two genotypes.
After 24 h recovery after salt stress (ReS24), 395 DEGs were identified in TCN1, while 436 DEGs were
identified in TGN67, and the two genotypes had 180 DEGs in common (Figure 1A). In roots, 993 and
1448 DEGs were identified at S3 (714 DEGs in common), while 2493 and 2360 DEGs were identified
at S24 (1605 DEGs in common) (Figure 1B). At S3 and S24, a total of 488 DEGs were shared by the
two genotypes (Figure 1B). These genes displayed similar expression patterns at S3 and S4 in both
genotypes (Figures S2 and S4, Tables S4 and S6), indicating that these genes were core salt-responsive
genes in the roots of these two genotypes. Interestingly, a total of 123 DEGs were found between core
salt-responsive genes in shoots and core salt-responsive genes in roots (Figure S1 and Table S4). As
these genes also showed similar expression patterns in the shoots and roots of the two genotypes
at S3 and S24, these genes play important roles during the salt stress process. At ReS24, in roots,
1037 DGEs were identified in TCN1 as well as 1057 DEGs in TGN67, and the two genotypes shared
353 DEGs (Figure 1B). Under salt stress, the number of DEGs identified in roots was greater than that
in shoots within these two genotypes (Figure 1), suggesting that the salt stress has a more broad effect
on gene expression in roots than in shoots. We also observed that the number of DEGs at S24 was
greater than that at S3 in shoots and roots in both genotypes.
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Figure 1. A Venn diagram of differentially expressed genes (DEGs) in shoots of TNG67 and
TCN1 seedlings at different points (exposed to salt stress for 3 h or 24 h and allowed to recover
for 24 h) (A); a Venn diagram of DEGs in roots of TNG67 and TCN1 seedlings at different points (B).

The heat map of all DEGs revealed that all DEGs showed similar expression patterns in these two
genotypes (Figure 2), indicating that the main response mechanism of salt stress was the same in both
genotypes. In addition, all DEGs can be grouped into two groups (I and II). Genes in Group I showed
higher expression levels in roots than in shoots, while genes in Group II had higher expression levels in
shoots than in roots (Figure 2). The core salt-responsive genes in shoots and roots also showed different
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expression patterns (Figures S3 and S4). These results suggest that the salt-response mechanisms were
different between shoots and roots. Thus, the core salt-responsive genes in shoots and roots were
annotated by a GO enrichment analysis, respectively.
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after salt stress treatments and at a subsequent 24-h recovery point.

To verify the reliability of DEGs in this study, six salt-responsive DEGs with significantly
upregulated expression levels under salt stress were randomly chosen for qRT-PCR (Figure S5).
The qRT-PCR result revealed that these six genes were significantly upregulated after salt stress.

3.2. GO Enrichment Analysis of Core Salt-Responsive Genes

To understand the core salt-responsive genes’ functions in shoots or roots, a GO enrichment
analysis of these genes was performed. A total of 30 and 25 terms were enriched in shoots and roots,
respectively (Tables 1 and 2). Shoots and roots shared seven terms, including ‘response to cadmium
ion (GO:0046686)’, ‘response to water deprivation (GO:0009414)’, ‘response to cold (GO:0009409)’,
‘response to salt stress (GO:0009651)’, ‘hyperosmotic salinity response (GO:0042538)’, ‘response to
abscisic acid (GO:0009737)’, and ‘response to wounding (GO:0009611)’. These terms are all related to
abiotic stress, especially salt stress. As shown in Tables 1 and 2, the remaining terms involve multiple
biological processes. These results revealed that the salt-response mechanisms were different in shoots
and roots. Shoots involve an abscisic acid response, the hydrogen peroxide catabolic process, the
glucose catabolic process, the ethylene biosynthetic process, and the others, while roots mainly involve
nitrate transport, lipid transport, selenate transport, the salicylic-acid-mediated signaling pathway,
and the others.



Plants 2019, 8, 64 6 of 16

Table 1. The biological process categories of Gene Ontology (GO) annotation of core salt-responsive
genes in shoots under salt stress. The GO enrichment analysis of core salt-responsive genes was
implemented by the GOseq R packages, and GO terms with p <0.001 were adopted in this study. Red
terms represent common terms of shoots and roots.

Gene_Ontology_term Cluter_frequency p-Value

heat acclimation (GO:0010286); 5.70% 0
response to cadmium ion (GO:0046686); 14.25% 4.16E-10
response to water deprivation (GO:0009414); 14.81% 1.59E-09
response to cold (GO:0009409); 13.11% 2.01E-09
response to salt stress (GO:0009651); 14.53% 8.65E-08
positive regulation of transcription, DNA-templated (GO:0045893); 10.83% 9.72E-08
response to heat (GO:0009408); 7.12% 1.66E-07
hyperosmotic salinity response (GO:0042538); 7.41% 3.62E-07
response to high light intensity (GO:0009644); 6.27% 4.43E-07
response to abscisic acid (GO:0009737); 11.68% 3.43E-06
negative regulation of abscisic acid-activated signaling pathway (GO:0009788); 3.70% 5.57E-06
response to hydrogen peroxide (GO:0042542); 5.70% 0.0000161
negative regulation of seed dormancy process (GO:1902039); 1.14% 0.0001145
leaf senescence (GO:0010150); 4.84% 0.0001683
negative regulation of protein kinase activity (GO:0006469); 1.42% 0.0002851
toxin catabolic process (GO:0009407); 4.56% 0.0005736
cell proliferation (GO:0008283); 4.00% 0.0010226
negative regulation of transcription, DNA-templated (GO:0045892); 4.84% 0.0018958
response to chitin (GO:0010200); 8.55% 0.0022302
response to hypoxia (GO:0001666); 2.85% 0.0038614
response to organic substance (GO:0010033); 6.27% 0.0043247
response to wounding (GO:0009611); 8.26% 0.0045121
protein folding (GO:0006457); 4.84% 0.0050309
release of seed from dormancy (GO:0048838); 1.14% 0.005182
hydrogen peroxide catabolic process (GO:0042744); 3.13% 0.0056712
glucose catabolic process (GO:0006007); 3.42% 0.0062763
ethylene biosynthetic process (GO:0009693); 3.13% 0.007078
ethylene-activated signaling pathway (GO:0009873); 3.99% 0.0072325
PSII associated light-harvesting complex II catabolic process (GO:0010304); 2.00% 0.0081537
photoinhibition (GO:0010205); 1.42% 0.0083607

Note: A total of 351 core salt-responsive genes in shoots were enriched on GO terms. Cluter_frequency = enriched
gene numbers of each term/351.

Table 2. The biological process categories of Gene Ontology (GO) annotation of core salt-responsive
genes in roots under salt stress. The GO enrichment analysis of core salt-responsive genes was
implemented by the GOseq R packages, and GO terms with p < 0.001 were adopted in this study. Red
terms represent common terms of shoots and roots.

Gene_Ontology_term Cluter_frequency p-Value

hyperosmotic salinity response (GO:0042538); 8.39% 0
response to cold (GO:0009409); 13.12% 0
response to cadmium ion (GO:0046686); 13.12% 0
response to salt stress (GO:0009651); 15.05% 0
response to oxidative stress (GO:0006979); 7.74% 0
response to nitrate (GO:0010167); 7.10% 2.164E-10
defense response to fungus (GO:0050832); 10.97% 5.793E-10
response to desiccation (GO:0009269); 4.30% 8.921E-10
nitrate transport (GO:0015706); 7.10% 1.275E-09
salicylic acid mediated signaling pathway (GO:0009863); 5.16% 2.674E-08
response to water deprivation (GO:0009414); 10.54% 3.62E-08
root hair elongation (GO:0048767); 6.88% 4.066E-08
response to abscisic acid (GO:0009737); 10.98% 4.342E-07
lateral root morphogenesis (GO:0010102); 2.80% 7.002E-07
oxidation-reduction process (GO:0055114); 12.69% 2.418E-06
response to auxin (GO:0009733); 7.31% 5.595E-06
defense response to nematode (GO:0002215); 1.94% 6.042E-06
oligopeptide transport (GO:0006857); 3.87% 2.173E-05
response to cyclopentenone (GO:0010583); 3.87% 2.421E-05
response to wounding (GO:0009611); 8.60% 2.649E-05
lipid transport (GO:0006869); 2.79% 0.0002419
plant-type cell wall organization (GO:0009664); 5.38% 0.0002581
transition metal ion transport (GO:0000041); 3.44% 0.0003009
selenate transport (GO:0080160); 1.075% 0.0005686
lignin biosynthetic process (GO:0009809); 3.23% 0.000737

Note: A total of 465 core salt-responsive genes in roots were enriched on GO terms. Cluter_frequency = enriched
gene numbers of each term/465.
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3.3. MapMan Analysis of All Core Salt-Reponsive Genes of Shoots and Roots

For a better understanding of core salt-stress-response mechanisms, all core salt-responsive genes
of shoots and roots (742 genes) were visualized by a biotic stress overview in MapMan 3.6.0. This
result showed that the salt-stress-response mechanisms in rice were very complicated and involved
multiple signal transductions, MAPK, TFs, and defense genes (Figure 3). For example, lots of signaling
receptor kinase genes, signaling calcium genes, signaling phosphoinositide genes, and signaling
G-protein genes were significantly upregulated. Similarly, Auxins, ABA, Ethylene, and jasmonic acid
(JA) signaling genes also showed significant upregulations. In addition, we found that ERF-, bZIP-,
WRKY-, and MYB-TFs were significantly upregulated. Defense genes, including heat shock protein
genes, secondary metabolite genes, and the others, also showed upregulation.
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in roots, are shown in Figure S6. ABA, abscisic acid; MAPK, mitogen-activated protein kinase; SA,
salicylic acid; JA, jasmonic acid; HSPs, heat shock proteins.

3.4. Identification of TFs, TRs, and PKs Involved in Salt Stress

In order to identify more salt-responsive TFs, TRs, and PKs, we conducted an identification
analysis of all core salt-responsive genes of shoots and roots (742 genes) using iTAK software. In this
study, a total of 555 DEGs-TFs were identified (74.80%). These contained 47 families, of which the
top seven families are NAC (66, 8.9%), MYB (60, 8.1%), bHLH (49, 6.6%), ERF (47, 6.3%), C2H2
(38, 5.1%), FHR1 (22, 3.0%), and HSF (22, 3.0%), respectively (Figure 4A and Table S7). In addition,
23 PK subfamilies and four TR families were identified (Figure 4B). Among them, the majority of PK
subfamilies belonged to the receptor-like kinases (RLK/Pelle) family. In TRs, three members of HMG,
two members of GNAT, two members of AUX/IAA, and one member of PHD were identified.



Plants 2019, 8, 64 8 of 16

Plants 2019, 8, x FOR PEER  8 of 17 

PK subfamilies and four TR families were identified (Figure 4B). Among them, the majority of PK 
subfamilies belonged to the receptor-like kinases (RLK/Pelle) family. In TRs, three members of 
HMG, two members of GNAT, two members of AUX/IAA, and one member of PHD were identified.  

 
Figure 4. The transcription factor (TF) classification of all core salt-responsive DEGs based on 
PlantTFDB 4.0 with an E-value cut off of ≤10−5 (A). The transcriptional regulator (TR) and protein 
kinase (PK) classifications of all core salt-responsive DEGs were performed by iTAK software (B). 
The Y-axis shows the numbers of TFs, TRs, and PKs. 

3.5. Key Genes Involved in the Response to Salt Stress 

3.5.1. DEGs Involved in the Ca2+ Signal Transduction Pathway 

The Ca2+ signal transduction pathway widely exists in eukaryotes [34]. Ca2+ acts as a second 
messenger through binding to Ca2+ sensors, causing a series of downstream reactions. At present, 
Ca2+ sensors can be divided into three types in plants: calmodulins (CAM/CML), calcium-dependent 
protein kinases (CDPKs), and calmodulins B-like proteins (CBLs) [35]. In this study, 63 DEGs related 
to the Ca2+ signaling pathway were identified, including genes encoding CMLs, CBLs, CDPKs, 
Ca2+-transporting ATPase, H+-ATPase, cation/Ca2+ exchangers (CCXs), SOS1, HKT, AKT1, 
calcineurin B-like–interacting protein kinases (CIPKs), and ABI (Figure 5A). Expression patterns 
revealed that three genes (LOC_Os10g25010, LOC_Os06g14030, and LOC_Os01g41510) were 
upregulated in shoots and roots of both genotypes at all time points and that three genes 
(LOC_Os12g12730, LOC_Os01g43410, and LOC_Os01g45990) were downregulated in shoots and 
roots of both genotypes at all time points. The remaining genes showed variable expression profiles 
under salt stress. 

Figure 4. The transcription factor (TF) classification of all core salt-responsive DEGs based on
PlantTFDB 4.0 with an E-value cut off of ≤10−5 (A). The transcriptional regulator (TR) and protein
kinase (PK) classifications of all core salt-responsive DEGs were performed by iTAK software (B). The
Y-axis shows the numbers of TFs, TRs, and PKs.

3.5. Key Genes Involved in the Response to Salt Stress

3.5.1. DEGs Involved in the Ca2+ Signal Transduction Pathway

The Ca2+ signal transduction pathway widely exists in eukaryotes [34]. Ca2+ acts as a second
messenger through binding to Ca2+ sensors, causing a series of downstream reactions. At present,
Ca2+ sensors can be divided into three types in plants: calmodulins (CAM/CML), calcium-dependent
protein kinases (CDPKs), and calmodulins B-like proteins (CBLs) [35]. In this study, 63 DEGs related
to the Ca2+ signaling pathway were identified, including genes encoding CMLs, CBLs, CDPKs,
Ca2+-transporting ATPase, H+-ATPase, cation/Ca2+ exchangers (CCXs), SOS1, HKT, AKT1, calcineurin
B-like–interacting protein kinases (CIPKs), and ABI (Figure 5A). Expression patterns revealed that
three genes (LOC_Os10g25010, LOC_Os06g14030, and LOC_Os01g41510) were upregulated in shoots
and roots of both genotypes at all time points and that three genes (LOC_Os12g12730, LOC_Os01g43410,
and LOC_Os01g45990) were downregulated in shoots and roots of both genotypes at all time points.
The remaining genes showed variable expression profiles under salt stress.

3.5.2. DEGs Involved in the ABA Signal Transduction Pathway

In total, 17 DEGs associated with the ABA signaling transduction pathway were identified: two
PYL genes, six PP2C genes, five SnRK2 genes, and four ABF genes (Figure 5B). The expression pattern
results revealed that two PYL genes showed different expression patterns. LOC_Os03g18600 was
downregulated under salt stress, while LOC_Os05g39580 was upregulated in TCN1 shoots under salt
stress. Interestingly, these two genes both showed upregulation in TGN67 roots during the recovery
process. Compared with PYL genes, the majority of PP2C genes showed upregulation in shoots and
roots under salt stress. Similarly, the majority of SnRK2 and ABF genes were also upregulated in shoots
and roots under salt stress.

3.5.3. DEGs Involved in the MAPK Cascade Pathway

In this study, 24 DEGs related to the MAPK cascade pathway were identified: three MPK
genes, one MEK gene, and 20 MAPKKK genes (Figure 5B). These genes showed unequal expression
patterns. For example, LOC_Os01g50400 (MAPKKK) was upregulated in shoots and roots under salt
stress. However, LOC_Os07g43900, LOC_Os01g54480, LOC_Os01g66860, and LOC_Os02g39560 showed
downregulation at all tested points.
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3.5.4. Key TFs and Functional Proteins Related to Salt Stress

We found that NAC (NAM, ATAF, and CUC) family genes formed the largest salt-responsive TF
family of this study, and the majority of NAC family genes showed upregulation under salt stress
(Figures 3 and 6). Of these NAC genes, 14 have been reported in previous studies (Figure 6A) and
their functions were associated with plant senescence delay [36], abiotic stress responses [37], cellulose
synthesis [38], and others [39,40]. These results imply that the NAC family is a multifunctional family
and also plays vital roles in regulating plant salt stress tolerance. Thus, NAC family genes may be
good candidate genes in salt stress tolerance for genetic engineering breeding.

Previous reports have indicated that many functional proteins, including AQPs (aquaporins),
HSPs (heat shock proteins), LEA (late embryogenesis abundant) proteins, F-box proteins, transporter
proteins, and other functional proteins are differentially expressed under salt stress and play key roles
in regulating plant salt tolerance [24,41]. In this study, seven HSPs and eight AQPs were identified in
DEGs (Figure 6B). In addition, 22 of the previously identified functional proteins also were found in
this study’s DEGs.

3.5.5. TRs and PKs Involved in Salt Stress

TRs and PKs play vital roles in rice tolerance to abiotic stresses [24]. However, they have been
rarely mentioned in previous salt stress studies. In this study, many TRs and PKs were differentially
expressed under salt stress (Figure 6C). For instance, one-third of the PK genes showed upregulation
under salt stress. In TRs, AUX/IAA and GNAT genes showed upregulation under salt stress, while
HMG and PHD genes were downregulated under salt stress.

3.6. Key Genes Associated with Higher Salt Stress Tolerance in TNG67

To investigate the possible reason for different salt stress tolerances between TCN1 and TNG67,
metabolic pathways were visualized by a metabolism overview in MapMan 3.6.0. For shoots,
these results revealed a greater enhancement of gene expression associated with light reactions in
TNG67 than in TCN1 under salt stress (Figure 7). For roots, there was a greater enhancement of
gene expression associated with starch, sucrose, and fermentation in TNG67 than in TCN1 under salt
stress (Figure 8). Interestingly, we observed that Calvin cycle genes had higher expression levels in
TNG67 than in TCN1 during the recovery process (Figure 8). Thus, we speculated that TNG67 shifted
to a fermentation pathway to produce energy for growth under salt stress and produced lots of starch
and sucrose for coping with osmotic stress. In addition, TNG67 may enhance the Calvin cycle to repair
a damaged photosystem during the recovery stage.
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4. Discussion

4.1. The Ca2+ Signaling Pathway, ABA Signaling Transduction Pathway, and MAPK Cascade Pathway Play
Important Roles under Salt Stress Conditions

Previous genetic and biochemical studies have revealed that many genes participate in salt
resistance via hormone and Ca2+ signal pathways, TFs, ion metabolism, ion transfer, nitrogen
metabolism, and secondary metabolism [3,8,24]. In this study, these genes were also identified. A total
of 63, 17, and 24 DEGs were identified in Ca2+ signaling pathway, the ABA signaling transduction
pathway, and the MAPK cascade pathway, respectively. These results support previous findings that



Plants 2019, 8, 64 12 of 16

these pathways can form a close-knit signaling network and play vital roles in plant salt stress tolerance
by interacting with each other or starting up downstream factors, such as TFs, TRs, and functional
protein genes (Figure 3) [41–43].

4.2. Many TFs and PKs May Be Good Candidate Genes for Plant Salt Stress Tolerance Breeding

Previous studies have reported that NAC, MYB, bHLH, and AP2/ERF are associated with salt
stress tolerance [44]. Of these TFs, some TFs are associated with stress-signal pathways. For example,
Zhang et al. (2017) reported that several bHLH-TFs are associated with the ABA signal pathway [44].
Jakoby et al. (2002) reported that bZIP-TFs are downstream factors of the ABA signal pathway and
regulate the pivotal cell process in the response to salt stress [45]. Zhang et al. (2012) reported that
HD-Zip-TFs affect ABA biosynthesis and regulate rice salt tolerance via the ABA signal pathway [46].
Similarly, we also found that TFs participate in the plant stress response via the ABA signal pathway.
In this study, we found that LOC_Os02g17500 (encoding a GRAS TF) was associated with SnRK
(LOC_Os03g27280, key genes for the ABA signal pathway). However, beyond that, TFs are also
regulators of salt stress. For example, Jiang et al. (2017) reported that WRKY-TFs are important
regulators for salt stress tolerance [47]. OsMYB2 is an important regulator for salt stress in rice [48].
Some previously reported TFs (associated with abiotic stress) were found to be DEG-TFs in this study.
These genes may also play vital roles in the salt stress tolerance of rice, such as LOC_Os03g48780,
LOC_Os05g49730, LOC_Os04g56430, LOC_Os03g48750, and LOC_Os09g31031 (Table S7). For instance,
several reported TFs in salt stress were present in the DEG-TFs identified in this study, such as
Oshox22 (LOC_Os04g45810, HD-ZIP) [46] and OsHsfB2b (LOC_Os08g43334, HSP) [49]. In this study,
many TFs were identified and can be important candidate genes for salt stress breeding. Among
them, two HD-ZIP genes (LOC_Os06g46740 and LOC_Os02g43330) showed high upregulation (LogFC
>2.0, Table S7). Similarly, two MYB genes (LOC_Os01g54030 and LOC_Os08g39730) also were highly
upregulated (LogFC >3.0, Table S7). These genes can be important for rice salt stress tolerance.

RLKs (receptor-like protein kinases), one of the largest gene families in plants, play vital roles
in the regulation of plant developmental processes, signaling networks, and disease resistance [50].
Previous studies have reported that many RLKs have been proved to be involved in abiotic stress
responses, including the ABA response, Ca2+ signaling, and antioxidant defense [50]. Vaid et al.
(2015) reported that Pisum sativum LecRLKs (PsLecRLKs) were upregulated under salt stress and
PsLecRLK-overexpressing plants had a greater tolerance to salt stress than wild-type plants due to
ROS-scavenging enzymes, reducing ROS accumulation and leading to lower membrane damage [51].
Li and Sun (2014) found that SIT1, a LecRLK gene mainly expressed in root epidermal cells, mediated
rice salt sensitivity [52]. In this study, many TR genes were upregulated under salt stress. RLKs may
be good candidate genes for rice salt stress tolerance breeding.

4.3. Common DEGs between This Study and Previous Studies Contain Important Salt-Responsive Genes

Common DEGs from multiple salt stress studies can help us to identify core salt-responsive
genes. In this study, we conducted a comparative analysis of this study with two previous salt stress
studies. This result showed that a total of 1738 and 1080 common DEGs were found with the Wang et al.
study [8] and the Zhou et al. study [23], respectively (Figure 9A,B, Tables S8 and S9). Next, 450 common
DEGs were found in these three studies (Figure 9C). Based on MSU7.0 description and expression data,
we noticed that several genes may be good candidate genes for future salt stress tolerance breeding.
For example, LOC_Os01g11730 (a GDSL-like lipase/acylhydrolase gene), LOC_Os05g31670 (encoding
AWPM-19-like membrane family protein), LOC_Os01g21420 (encoding pre-mRNA-splicing factor,
SF2), and LOC_Os05g31020 (encoding eukaryotic peptide chain release factor subunit 1-1) showed
significant upregulation under salt stress (Table S10). Moreover, we found that 100 salt-responsive
genes were reported in previous studies (Table S11). Of these genes, 34 were identified as DEGs in
this study (Table S12). This result revealed that many unreported salt-responsive genes were found in
this study.
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4.4. Multiple DEGs Mapped to the Previously Identified Salt-Stress-Related QTL Intervals and Could Be Good
Candidate Genes for Rice Salt Stress Tolerance Breeding

The previously identified salt-stress-related QTLs can help us to target candidate genes. A total of
17 QTLs were obtained from the Gramene QTL database [23]. The DEGs of this study were mapped to
12 QTLs (Table S13). Among them, AQGR001, AQEM001, AQEM008, and AQEM007 had the greatest
number of co-localized DEGs: 122, 93, 93, and 64, respectively (Figure 10). A previous study reported
that AQEM002 and AQGR001 are the most important QTLs related to rice salt stress tolerance at the
seedling stage [12,53]. In this study, 35 and 122 DEGs, respectively, were co-localized on these two
QTLs. These DEGs could be good candidate genes for rice salt stress tolerance breeding, such as
LOC_Os01g64360 (one MYB gene, in AQGR001), LOC_Os01g64790 (one AP2/ERF gene, in AQGR001),
LOC_Os01g62760 (one PP2C gene, in AQGR001), LOC_Os06g39040 (one dehydrogenase/reductase
SDR family gene). Interestingly, only one gene (LOC_Os03g41064) was mapped on AQGR002, which
encodes one natural-resistance-associated macrophage protein. Thus, LOC_Os03g41064 may play a
vital role under salt stress.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/3/64/s1,
Figure S1: Venn diagram of salt-responsive DEGs in shoots and in roots. Figure S2: Heat map of salt-responsive
genes (123 common DEGs in shoots and roots in both genotypes). Figure S3: Heat map of salt-responsive genes
in shoots (254 common DEGs in shoots in both genotypes). Figure S4: Heat map of salt-responsive genes in
roots (365 common DEGs in shoots in both genotypes). Figure S5: qRT-PCR results of DEGs in ‘Nipponbare’.
Figure S6: MapMan biotic stress overview of core salt-responsive genes (742 DEGs) in shoots after 3 h, 24 h,
and recovery 24 h in shoots, as well as 3 h, 24 h, and recovery 24 h in roots. Table S1: Detailed information of
GSE76613. Table S2: Primers of qRT-PCR for DEG validation. Table S3: All expression datasets of DEGs under
salt and recovery conditions in shoots and roots of the two genotypes. Table S4: Expression datasets of Figure
S2 DEGs. Table S5: Expression datasets of Figure S3 DEGs. Table S6: Expression datasets of Figure S4 DEGs.
Table S7: Expression datasets of TF genes (these genes are identified in 742 core salt-responsive genes). Table S8:
Common DEGs between this study and the Wang et al. study. Table S9: Common DEGs between this study and
the Zhou et al. study. Table S10: Common DEGs of this study, the Wang et al. study, and the Zhou et al. study.
Table S11: Details of previously reported salt responsive genes (100 genes). Table S12: The common genes between
this study and previously reported salt responsive genes. Table S13. Co-localization of DEGs onto the previously
detected QTLs responsible for salt treatment in rice.
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