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Abstract: Nitric oxide (NO) is a gaseous free radical endogenously generated in plant cells. 
Peroxisomes are cell organelles characterized by an active metabolism of reactive oxygen species 
(ROS) and are also one of the main cellular sites of NO production in higher plants. In this mini-
review, an updated and comprehensive overview is presented of the evidence available 
demonstrating that plant peroxisomes have the capacity to generate NO, and how this molecule and 
its derived products, peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO), can modulate the 
ROS metabolism of peroxisomes, mainly throughout protein posttranslational modifications 
(PTMs), including S-nitrosation and tyrosine nitration. Several peroxisomal antioxidant enzymes, 
such as catalase (CAT), copper-zinc superoxide dismutase (CuZnSOD), and monodehydroascorbate 
reductase (MDAR), have been demonstrated to be targets of NO-mediated PTMs. Accordingly, 
plant peroxisomes can be considered as a good example of the interconnection existing between 
ROS and reactive nitrogen species (RNS), where NO exerts a regulatory function of ROS metabolism 
acting upstream of H2O2. 
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1. Introduction 

Peroxisomes are organelles with an essential oxidative metabolism present in almost all 
categories of eukaryotic cells. In higher plants, these organelles are recognized to have a versatile 
metabolism because their enzymatic composition can adapt to different cell and organ types, stages 
of development, and environmental conditions [1–6]. However, there is a common battery of 
enzymes that are present in all types of plant peroxisomes. This includes a set of antioxidant systems 
whose functions are to keep under control the internal active metabolism of reactive oxygen species 
(ROS), mainly superoxide radicals (O2·-) and hydrogen peroxide (H2O2). These ROS are generated 
under physiological conditions by different pathways, such as purine catabolism, fatty acid β-
oxidation, and photorespiration [7–10]. These antioxidant systems acquire a special relevance in those 
situations where the ROS generation is intensified, like under plant stress conditions [11].  

In recent years, different experimental data have demonstrated that plant peroxisomes also have 
the capacity to generate another free radical—nitric oxide (NO)—and a family of derived molecules 
designated as reactive nitrogen species (RNS), including peroxynitrite (ONOO-) [12] and S-
nitrosoglutathione (GSNO) [13]. The production of these two families of reactive species—ROS and 
RNS—raises new questions about their potential functions in peroxisomes, either as simple 
byproducts of the peroxisomal metabolism or perhaps having a regulatory function in the 
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peroxisome and also outside these organelles, due to the characteristic signaling properties of ROS 
and RNS. 

In this work, the interconnections existing between the metabolism of ROS and RNS in 
peroxisomes are presented. In this relationship, NO exerts a regulatory function by controlling the 
activity of some target enzymes through posttranslational modifications (PTMs), mainly S-
nitrosation (or S-nitrosylation) and tyrosine nitration. It should be pointed out that the NO-
generating capacity of peroxisomes may have significant implications in the cellular metabolism of 
plants under physiological conditions, including leaf senescence [14], pollen tube growth [15], and 
auxin-induced root organogenesis [16]. However, peroxisomal NO metabolism is particularly 
exacerbated under oxidative stress situations induced by abiotic conditions like salinity [17], and the 
heavy-metals cadmium [12,18], and lead [19]. 

2. Nitric Oxide Generation in Plant Peroxisomes 

In higher plants, NO is a key signaling molecule [20,21] involved in numerous processes, 
including seed germination [22,23], primary and lateral root growth [24,25], plant development 
[26,27], stomatal closure [28], flowering [29], reproductive tissues [15,30,31], fruit ripening [32,33], 
senescence [14,34], abiotic stresses [35–39] and biotic stresses [40]. However, the enzymatic source(s) 
of NO in plant cells is still a controversial matter subject to intense discussions [41–43]. Different 
pieces of biochemical evidence have demonstrated the presence of L-arginine-dependent nitric oxide 
synthase (NOS)-like activity in plant peroxisomes. Data accumulated during the last twenty years 
indicate that the hypothetical protein responsible for the NO generation in peroxisomes has 
biochemical requirements similar to that of animal NOS, including substrate, cofactors and sensitivity 
to inhibitors [14,44], dependence on calcium and calmodulin [45], as well as dependence on the 
mechanism of the import system to peroxisomes through a peroxisomal targeting signal type 2 (PTS-
2) [46]. The known biochemical properties of the protein responsible for NO generation in plant 
peroxisomes, in comparison with those described for animal NOS, are summarized in Table 1. 
Additionally, there are experimental data that have corroborated the presence of NO in plant 
peroxisomes and that were obtained by complementary approaches, including electron paramagnetic 
resonance (EPR) spectroscopy, ozone chemiluminescence, and NO-specific fluorescence probes 
[14,19]. It should be mentioned that in other cellular compartments a reductive NO generation 
involving nitrite/nitrate or nitrate reductase (NR) has been described, as well as a non-enzymatic 
production of NO at acidic pH in the presence of reductants like ascorbate [43,47]. However, 
peroxisomes have at oxidative metabolism and, to our knowledge, there is not any experimental 
evidence of the presence of nitrite/nitrate or NR in these plant organelles. Moreover, it has been 
reported that peroxisomes have an alkaline pH [48], what suggests that the mentioned non-enzymatic 
generation of NO in peroxisomes is not likely under normal physiological conditions. 

Table 1. Biochemical requirements of the peroxisomal protein responsible for the L-arginine-
dependent nitric oxide synthase (NOS)-like activity in higher plants.  

Requirements Peroxisomal NOS-like protein 
Substrate  L-Arginine 
Cofactor requirement NADPH, Ca2+, FAD, FMN, BH4 

Sensitivity to inhibitor 
Aminiguanidine, L-NNA, L-NAME, L-
NMMA 

Peroxisomal targeting signal (PTS) Type 2 (PTS2) 
Dependence of peroxisomal protein import 
system 

PEX5, PEX7, PEX12, PEX13, Ca2+, CaM 

Localization Matrix 
BH4, tetrabiopterin; PEX, peroxin; L-NNA, L-NG-Nitroarginine; L-NAME, Nω-Nitro-L-arginine methyl 
ester hydrochloride; L-NMMA, NG-Monomethyl-L-arginine, monoacetate salt; CaM, calmodulin. 
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Similarly, in animal peroxisomes, the presence of an inducible NOS isozyme [49,50], which is 
imported to the peroxisomal matrix using a PTS2 [51], has also been demonstrated. In conclusion, the 
above data indicated for the protein responsible for NO generation in peroxisomes from plant origin 
are in good agreement with the data reported for the animal peroxisomal NOS activity. 

3. Peroxisomal Proteins: Targets of NO-mediated PTMs 

At present, the number of potential targets that undergo NO-mediated PTMs is increasing. This 
is due to the identifications obtained by specific proteomic methodologies combined with 
biochemical analyses, such as the biotin switch method and labeling with isotope-coded affinity tags 
(ICAT). These approaches have also allowed confirming whether a specific protein is S-nitrosated 
and/or nitrated. In some cases, even the affected amino acid residues of the protein have been 
identified [52]. Furthermore, the existence of any NO-derived PTM is additional evidence of, at least, 
the presence of NO and its derived molecules in a specific subcellular compartment [53]. So far, the 
number of identified plant peroxisomal proteins susceptible to undergo a specific NO-derived PTM 
has also increased with the development of the mentioned methodologies. The characteristic 
peroxisomal proteins that have been identified as targets of NO in higher plants are summarized in 
Table 2. Among the different peroxisomal proteins undergoing NO-derived PTMs, in this article, we 
have focused on some of the key antioxidant enzymes of peroxisomes, including catalase (CAT), 
monodehydroascorbate reductase (MDAR), and copper-zinc superoxide dismutase (CuZnSOD). 

Table 2. Some proteins from higher plant peroxisomes that undergo nitric oxide (NO)-derived 
posttranslational modifications (PTMs), either by S-nitrosation or tyrosine nitration. 

Peroxisomal enzyme NO-derived PTM References 
3-ketoacyl-CoA thiolase 1 S-nitrosation [52] 
Hydroxypyruvate reductase S-nitrosation/nitration [54–56] 
Glycolate oxidase S-nitrosation/nitration [55,57,58] 
Malate dehydrogenase S-nitrosation/nitration [55,59] 
Catalase S-nitrosation/nitration [55,56,60,61] 
CuZn superoxide dismutase (CSD3) Nitration [62] 
Monodehydroascorbate reductase S-nitrosation/nitration [63] 

3.1. Catalase (CAT, EC 1.11.1.6)  

CAT is a heme-containing protein and one of the key H2O2-scavenging enzymes present in 
prokaryotic and eukaryotic cells [64–67]. Additionally, CAT is recognized as a constitutive enzyme 
of all kinds of peroxisomes from eukaryotic cells, being used as a biochemical marker of these 
organelles. The information available, at present, indicates that this enzyme is the main target of NO 
in animals and plants. In fact, initial in vitro assays showed that the bovine liver CAT was rapidly and 
reversibly inhibited by NO [68,69]. In plants, using purified tobacco CAT, similar studies 
demonstrated that both NO donors and ONOO- (a nitrating molecule) had the capacity to inhibit the 
enzyme activity [70]. More recently, studies carried out in different plant species have shown that 
CAT is a target of S-nitrosation in sunflower hypocotyls [60], pea leaves [55], and Arabidopsis [56], 
and of tyrosine nitration in pepper fruits [61]. Moreover, it was demonstrated that both S-nitrosation 
and tyrosine nitration inhibited CAT activity in pea leaves and pepper fruits [55,61]. It has been 
proposed that the potential target of S-nitrosation in Arabidopsis CAT is Cys86 [56], although this 
should be corroborated by specific mass spectrometry analyses. However, it must be taken into 
account that NO could also interact with the Fe atoms present in the heme groups of CAT, forming a 
metal nitrosyl complex, that perhaps could affect its activity, although, to our knowledge, there is no 
information on this mechanism in plant CAT. In any case, all the data available suggest that NO acts 
upstream of H2O2, thereby regulating CAT activity. This inhibition of CAT by NO could imply a 
lower capacity to remove H2O2, and consequently it could be well correlated with those physiological 
or adverse processes that have associated an increase of their oxidative metabolism [18,61]. 
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3.2. Monodehydroascorbate Reductase (MDAR, EC 1.6.5.4)  
This enzyme is part of the ascorbate-glutathione (ASC-GSH) cycle, whose function is also to 

control the cellular content of H2O2 [71]. The ASC-GSH cycle is present in different subcellular 
compartments, including peroxisomes [72–74]. However, very little information is available on how 
RNS can regulate the specific isozymes of this cycle present in peroxisomes. MDAR catalyzes the 
NADH-dependent conversion of monodehydroascorbate to ascorbate, and peroxisomal MDAR has 
been characterized in pea leaves [75] and Arabidopsis [76]. Further in vitro analysis of recombinant 
MDAR from pea leaf peroxisomes in the presence of nitrating or S-nitrosylating agents (ONOO- or 
GSNO, respectively) demonstrated that both processes caused inhibition of the MDAR activity [63]. 
Mass spectrometric analysis and site-directed mutagenesis confirmed that Tyr345 was the primary 
site of nitration by ONOO– responsible for the inhibition of MDAR activity. On the other hand, in 
silico analysis of the MDAR indicated that Cys68 was the best candidate for S-nitrosylation [63]. This 
implies a possible modulation in peroxisomes of the ascorbate regeneration and the H2O2 scavenging 
by RNS. 

3.3. Superoxide Dismutase (SOD; EC 1.15.1.1)  

Superoxide dismutases (SODs) are a family of metalloenzymes that catalyze the 
disproportionation of O2·- radicals into H2O2 and O2. In higher plants, there are three main types of 
SODs, containing prosthetic metals Mn (Mn-SODs), Fe (Fe-SODs), or Cu plus Zn (Cu,Zn-SODs) 
[77,78]. The presence of SOD activity in peroxisomes was reported for the first time in plant tissues—
in pea (Pisum sativum L.) leaves—in the early 1980s [79]. However, this report, in general, passed 
unnoticed and was even questioned until it was described in human cells years later [80]. Since then, 
the occurrence of different types of SODs in plant peroxisomes has been described in at least ten 
distinct plant species [11,78]. At present, SOD is considered a constitutive enzyme in all types of 
peroxisomes, although the family of isozyme present depends on the organ and plant species.  

In relation to the susceptibility of SOD to different RNS-induced modifications, previous reports 
indicated that the recombinant human Mn-SOD and Cu,Zn-SOD were prone to be inactivated by 
ONOO- [81,82]. In the case of plant peroxisomes, recently the recombinant peroxisomal Cu,Zn-SOD 
(designated as CSD3) was obtained in Arabidopsis, and in vitro assays in the presence of nitrating or 
S-nitrosylating agents showed that 500 μM ONOO- provoked a 65% inhibition of the Cu,Zn-SOD 
activity, whereas GSNO did not cause any effect [62]. Regarding mass spectrometric analyses, Tyr115 
was identified as the potential target of nitration [62]. Accordingly, SOD seems to be a relevant 
protein to be further investigated as a target of NO-mediated PTMs, since it appears to be sensitive 
to exert some discrimination between nitration and nitrosation processes. 

4. Conclusion and Future Perspectives  

Plant peroxisomes have relevant antioxidant systems comprised mainly of CAT, SOD, and the 
ASC-GSH cycle, which are present in all types of plant peroxisomes [7]. Likewise, results obtained in 
previous research works have demonstrated that besides an active ROS metabolism in peroxisomes, 
these organelles also have an active RNS metabolism. Although there are few specific studies on how 
distinct RNS can regulate the different peroxisomal antioxidant systems, the data available suggest 
the NO may act upstream of the H2O2 metabolism. A scheme based on previous reports [7,11,83,84], 
showing how NO can modulate the activity of peroxisomal antioxidant enzymes throughout either 
nitration or S-nitrosation, is presented in Figure 1. The peroxisomal xanthine oxidoreductase (XOR) 
activity catalyzes the oxidation of xanthine with the production of uric acid and O2·- [85]. On the other 
hand, L-arginine-dependent NOS-like activity generates NO, which can react with O2·- to produce 
ONOO-, a powerful oxidant and strong nitrating molecule that can mediate PTMs through tyrosine 
nitration [86]. NO can also interact with reduced glutathione (GSH) to form GSNO, a NO donor that 
can mediate S-nitrosation of proteins [87]. Uric acid is a recognized inhibitor of ONOO--mediated 
toxicity [88,89], and this brings out a new potential mechanism of peroxisomal auto-regulation 
through this powerful nitrating molecule. In this scenario, the identified targets of NO-derived PTMs 
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in peroxisomes, CAT, CuZnSOD, and MDAR, which are either directly or indirectly linked to the 
H2O2 pool, are key points to be modulated by nitration or S-nitrosation.  

 
Figure 1. The interrelationship between nitric oxide (NO) metabolism and antioxidant enzymes in 
plant peroxisomes. Peroxisomal xanthine oxidoreductase (XOR) activity produces uric acid and 
superoxide radicals (O2·-). On the other hand, an L-arginine-dependent nitric oxide synthase (NOS)-
like activity generates NO, which can react with O2·- to give rise to peroxynitrite (ONOO-), which is a 
powerful oxidant and strong nitrating molecule that can mediate posttranslational modifications 
(PTMs), such as tyrosine nitration. NO can also interact with reduced glutathione (GSH) to form S-
nitrosoglutathione (GSNO), a NO donor that can mediate S-nitrosation reactions. Uric acid is a 
recognized ONOO- scavenger that could be part of a mechanism of peroxisomal auto-regulation. With 
all these components, the identified targets of NO-derived PTMs in peroxisomes, catalase (CAT), 
copper,zinc superoxide dismutase (CuZnSOD), and monodehydroascorbate reductase (MDAR) can 
undergo inhibition of their activity either by nitration or S-nitrosation. 

In summary, the data presently available indicate that plant peroxisomes contain multiple 
elements of ROS and RNS metabolism, where NO seems to act upstream of H2O2 routes throughout 
the regulation of the peroxisomal antioxidant enzymes. Nevertheless, it should be taken into account   
that both NO and H2O2 could be released to the cytosol, acting as signal molecules among the 
different subcellular compartments. However, in plants under certain abiotic stress conditions an 
overproduction of H2O2 and NO could take place in peroxisomes, and a high accumulation of these 
signal molecules can mediate a nitro-oxidative stress in plant cells [11,90].  
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