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Abstract: Asymmetric changes of day and night temperature have already been observed because
of Climate Change. However, knowledge on environmental conditions either during day or night
serving as trigger for growth processes is scarce. In this study, one rice (Oryza sativa) variety (IR64)
was examined to assess the impact of varying temperatures and relative air humidities during day
and night periods on biomass, leaf area, and dry matter partitioning between organs. Three different
day and night temperature (30/20 ◦C, 25/25 ◦C, 20/30 ◦C) and relative air humidity (40/90%, 65/65%,
90/40%) regimes were established. The effect of relative air humidity on both plant dry matter and
leaf area was larger than the effect of temperature, in particular low humidity had a strong negative
impact during the night. With high day temperature, the shoot mass fraction increased, whereas
the root mass fraction decreased. Specific leaf area increased at high night temperatures and led,
along with the high leaf mass fraction at high night humidities, to higher growth rates. The results
emphasize the importance of considering relative air humidity when focusing on plant responses to
temperature, and strongly suggest that under asymmetric day and night temperature increases in the
future, biomass partitioning rather than biomass itself will be affected.

Keywords: growth chamber; leaf mass fraction; Oryza sativa; root mass fraction; specific leaf area;
stem mass fraction

1. Introduction

With climate change, temperature increases are not only expected in the coming decades,
but have already been observed [1]. Of particular concern is that average temperature increases could
compromise the world’s rice production. Masutomi et al. [2] predicted rice yield losses for most of the
rice growing regions in Asia in the near future, and Lobell et al. [3] identified rice in Southeast Asia as
one of the most important crops in need of climate change adaptation investment. Whereas the increase
of average temperature and its negative effects on rice yields are widely accepted, there is no consensus
about the effects of changes to the temperature range, the difference between day and night temperature
on a daily basis. Despite high uncertainty [1], a decrease in the daily temperature range is expected
in the world’s rice growing regions [4] as daily minimum temperatures increase more rapidly than
daily maximum temperatures [5]. Negative yield responses of rice to a narrowing daily temperature
range due to an increase in minimum temperature have been observed in field experiments in the
Philippines [6]. However, Lobell [4] projected impacts of a narrowing daily temperature range on rice
yield as positive, even if relatively small.

As shown by the contradictory results of the two studies, the role of night temperature per se is not
well understood [7]. Experimental approaches aiming at exploring the effect of high night temperature
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on plant growth face the difficulty that only increasing night temperature means an increase in daily
mean temperature, which also has an effect on plant growth and development, making it difficult
to discriminate between both effects. To exclude the effects of a higher mean temperature, varying
daily temperature ranges around the same mean temperature can be used to study plant responses.
In such an experimental setup, the possibility of including high night temperatures is limited, since
this would require a high mean temperature, which would lead to heat stress when using a large daily
temperature range. To avoid heat stress effects during the day, but to test plant responses to a wide
range of night temperatures, day and night temperature can be inverted, an approach that has been
used in this study.

Another constraint of studies on high night temperature under natural conditions is the physical
interaction of temperature and relative air humidity. Since minimum night temperature is usually
around the dew point, a smaller daily temperature range is directly correlated with higher relative
air humidity during the day. However, changes in relative air humidity have been associated to
changes in photosynthetic rates [8], dry matter and leaf area [9], and spikelet sterility [10] and thus,
the potential effect of relative air humidity on the rice plant should not be disregarded in studies on
temperature effects.

In a field study, high night temperature led to biomass reduction in one of the two rice
genotypes [11], whereas Peraudeau et al. [7] reported no changes in total dry matter, increased
leaf area for indica varieties in one out of the three experiments, but consistently lower SLA (specific
leaf area) under elevated night temperature. In a meta-analysis, Jing et al. [12] found that plant leaf
growth was increased by high night temperature as well as leaf area ratio (LAR) and specific leaf area
(SLA), while the effect on organ weight and total dry matter was less clear, and varied between plant
functional groups. As a result, it was concluded that complexities and challenges remain when seeking
general patterns of plant growth in response to high night temperature. Little information exists on
the effect of temperature on partitioning in rice plants. In a climate chamber experiment, high night
temperature during reproductive growth led to increased dry weight per hill, because of a higher
stem weight, whereas leaf and root dry weight was not affected by temperature [13]. Increased daily
temperature in open-top chambers in the field led to higher leaf area, but the effects on partitioning of
dry weight between organs was not consistent [14]. In summary, there seems to be a larger effect of
temperature on leaf area than on total dry matter, but the impact on dry matter partitioning between
organs remains unclear. In all cited studies, temperature was raised during the night, in one case
during day and night, with the result of a higher daily mean temperature compared to the control
treatment. Hence, effects of day, night, and mean temperature cannot be distinguished.

As plants must achieve a balance between carbon assimilation (occurring during the day) and
storage and growth (occurring during both day and night) [15], there are likely differential effects of
day and night temperature on carbon allocation. For example, high night temperature could enhance
growth processes during the night, which in turn could induce the buildup of more photosynthetic
tissue to meet the increased demand. Furthermore, high day temperature results in a higher water
demand, which in turn could favor root growth. However, these processes have hardly been studied
yet, even though greater insight into them could help predict the consequences of Climate Change for
rice production. Therefore, the objective of this study is to disentangle effects of day, night, and mean
temperature on dry matter and its partitioning between organs and leaf area, while also taking into
account the effects of relative air humidity by using inverted day/night temperatures and air humidities.

2. Results

Rice plants were grown at three different temperature regimes with either “natural” (30 ◦C/20 ◦C;
Tnat), constant (25/25 ◦C; Tcon), or inverted (20/30 ◦C; Tinv) day/night temperature in combination
with three different relative air humidity (RH) regimes with either “natural” (40/90%; RHnat), constant
(65/65%; RHcon), or inverted (90/40%; RHinv) day/night RH. Two additional treatments with either
constantly low (20/20 ◦C; Tcon-l) or high (30/30 ◦C; Tcon-h) temperature, both at RHcon, were established.
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After two weeks of different day/night temperature and RH treatment with the same mean temperature
and RH, total plant dry matter varied between 6.0 g for Tnat/RHcon and 10.4 g for Tnat/RHnat (Table 1).

Table 1. Total plant dry matter and plant leaf area at 49 days after sowing after two weeks exposure to
varying day and night temperature and RH regimes. Mean values of three replications are presented
including standard errors. Small letters indicate differences at p < 0.05 between temperature treatments;
capitals indicate differences at p < 0.05 between RH treatments.

RH Day/Night [%] T Day/Night [◦C] Total Dry Matter [g] Leaf Area [cm2]

40/90
30/20 10.4 ± 0.8 A 632 ± 14 A
25/25 10.2 ± 0.8 629 ± 20 A
20/30 8.6 ± 0.9 601 ± 36 B

65/65
30/20 6.0 ± 1.4 B 341 ± 29 c B
25/25 7.9 ± 1.3 558 ± 39 b A
20/30 9.4 ± 0.5 890 ± 11 a A

90/40
30/20 9.8 ± 0.3 AB 372 ± 5 B
25/25 7.6 ± 0.1 333 ± 51 B
20/30 7.0 ± 0.5 363 ± 22 C

Temperature had no statistically significant effect (Table 2), but RHnat led to a significantly higher
total dry matter per plant with an average 9.7 g versus 7.8 g and 8.1 g under RHcon and RHinv,
respectively. At Tnat, RHnat led to a statistically significant higher total dry matter compared to RHcon,
whereas RH had no statistically significant impact in the other temperature treatments.

Table 2. Analysis of variance for plant dry matter and plant leaf area under different day and night
temperature and RH regimes around the same daily mean temperature (25 ◦C) and RH (65%) in 3
replications. Abbreviations: T: temperature; d.f.: degree of freedom; MS: mean square.

Parameter Effect d.f MS p

Dry Matter
T 2 0.35 0.84

RH 2 9.76 0.02
T × RH 4 9.01 0.01

Leaf Area
T 2 6.7 × 104 <0.001

RH 2 1.9 × 105 <0.001
T × RH 4 8.2 × 104 <0.001

Much larger variation was observed in leaf area, which ranged from 333 cm2 under Tcon/RHinv to
890 cm2 under Tinv/RHcon. Temperature only had a significant effect under RHcon, with the highest
leaf area at Tinv (890 cm2), and the lowest at Tnat (341 cm2). RH had a larger effect on leaf area than
temperature, with RHinv leading to a significantly lower leaf area of 356 cm2 on average in comparison
to 621 cm2 and 596 cm2 under RHnat and RHcon, respectively. Under constant temperature and
relative humidity, both total dry matter and leaf area were significantly lower at 20 ◦C (2.9 g; 162 cm2)
than at 25 ◦C (7.9 g; 558 cm2) and 30 ◦C (9.2 g; 439 cm2) (Table 3).

Table 3. Total plant dry matter and plant leaf area at 49 days after sowing after two weeks exposure to
different constant day and night temperatures at 65% RH. Mean values of three replications are presented
including standard errors. Small letters indicate differences at p < 0.05 between temperature treatments.

RH Day/Night [%] T Day/Night [◦C] Total Dry Matter [g] Leaf Area [cm−2]

65/65
20/20 2.9 ± 1.4 b 162 ± 67 b
25/25 7.9 ± 1.3 a 558 ± 39 a
30/30 9.2 ± 0.4 a 439 ± 13 a

Leaf mass fraction (LMF), the leaf dry weight per plant dry weight, did not respond to temperature,
but RH had a statistically significant effect (Figure 1).
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Figure 1. Leaf, stem, dead leaves, and root mass fractions after two weeks of varying day and night
temperature and RH regimes. Light grey bars: RH day/night 40/90%; dark grey bars: RH day/night
65/65%; black bars: RH day/night 90/40%. Insert 1: Respective mass fractions at different constant day
and night temperatures and constant 65% RH. Asterisk indicates significant difference at p < 0.05. Insert
2: Analysis of variance for the respective mass fraction at different day and night temperature and RH
regimes. In both, main figure and insert 1, mean values with standard errors (n = 3) are presented.
Abbreviations: T: temperature; d.f.: degrees of freedom; MS: mean squares.

With an average of 0.20 g g−1, the LMF was significantly lower under RHinv than under RHnat
with 0.24 g g−1 and RHcon with 0.27 g g−1 (Figure 1). Under the constant temperature regimes, LMF
was significantly lower at 30 ◦C (0.19 g g−1), than at 20 ◦C (0.23 g g−1), and 25 ◦C (0.25 g g−1) (Figure 1,
Insert 1). Temperature had a significant effect on the stem mass fraction (SMF) (Figure 1, Insert 2),
which is the fraction of stem dry weight per plant dry weight. Under Tinv, it was significantly lower
(0.37 g g−1, on average) than under Tnat and Tcon, which both resulted in a SMF of 0.41 g g−1. Also
RH had an effect on SMF, which was significantly lower (0.38 g g−1) under RHcon than under RHnat
(0.40 g g−1) and RHinv (0.41 g g−1). Constant temperature between 20 and 30 ◦C did not have any
significant effect on SMF.

The root mass fraction (RMF), the root dry weight per plant dry weight, varied between 0.31 g g−1

for Tnat/RHnat and Tnat/RHcon and 0.38 g g−1 for Tinv/RHnat and Tinv/RHinv and was strongly
influenced by temperature. Under Tnat, RMF was on average 0.31 g g−1 and significantly lower than
under Tcon and Tinv with 0.34 g g−1 and 0.37 g g−1, respectively. RH as well as different constant
temperatures between 20 and 30 ◦C had no effect on RMF. The faction of dead leaves (DLMF) varied
between 0.00 g g−1 for Tinv/RHcon and 0.06 g g−1 for Tnat/RHcon and Tnat/RHinv. Nevertheless, there
were no significant differences because of large variation within treatments.

The SLA varied largely and ranged from 19.7 m2 kg−1 (Tnat/RHinv) to 32.5 m2 kg−1 (Tinv/RHcon)
(Figure 2).
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Figure 2. Average plant specific leaf area (SLA) after two weeks exposure to varying day and night
temperature and RH regimes. Light grey bars: RH day/night 40/90%; dark grey bars: RH day/night
65/65%; black bars: RH day/night 90/40%. Insert 1: SLA at different constant day and night temperatures
and constant 65% RH. Insert 2: Analysis of variance for SLA at different day and night temperatures
and RH regimes. In both, main figure and insert 1, mean values with standard errors (n = 3) are
presented. Abbreviations: T: temperature; d.f.: degrees of freedom; MS: mean squares.

Both temperature and RH had large effects on SLA. On average, Tnat led to the lowest SLA
with 22.6 m2 kg−1 followed by Tcon with 25.9 m2 kg−1 and Tinv with 28.8 m2 kg−1. Among the RH
treatments, SLA was significantly lower under RHinv with 22.8 m2 kg−1 than under RHnat and RHcon
with 26.6 and 28.0 m2 kg−1, respectively. Further, a significant interaction effect between temperature
and RH was found. Under Tnat, RHnat resulted in a significantly higher SLA compared to RHinv,
whereas under Tcon and Tinv, RHcon resulted in a significantly higher SLA compared to RHinv.
At RHnat, temperature had no significant effect on SLA, while at RHcon, Tinv and Tcon resulted in a
significantly higher SLA than Tnat and at RHinv, Tinv resulted in a significantly higher SLA than Tnat.
Among the constant temperature treatments, no significant difference was found in regard to SLA.

Regressing SLA and plant organ fractions versus day and night temperature and RH of all
treatments, including the different constant temperatures, resulted in a significant positive correlation
between SLA and night temperature (r = 0.65; p = 0.030) (Table 4).

Table 4. Pearson correlation coefficients for correlations between day and night growing conditions
and SLA and organ mass fractions, respectively, including mean values of all 11 treatments (n = 11).

Growing Conditions SLA LMF SMF RMF DLMF

T day −0.57 −0.30 0.76 ** −0.84 ** 0.47
RH day −0.43 −0.55 0.11 0.13 0.59
T night 0.65 * 0.01 −0.20 0.63 * −0.53

RH night 0.43 0.55 −0.11 −0.13 −0.59

**, *: significant at p < 0.01, < 0.05, respectively.

The stem mass fraction was positively correlated with day temperature (r = 0.76; p = 0.006) and the
root mass fraction was negatively correlated with day temperature (r = −0.84; p = 0.001) and positively
with night temperature (r = 0.63; p = 0.037). Leaf and dead leaf mass fractions were not correlated with
any of the parameters.
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3. Discussion

3.1. T and RH Effects on Plant Dry Matter and Leaf Area

Under constant RH, inverted day and night temperatures led to increased leaf area. Provided
that plant growth is driven by photosynthetic carbon fixation during the day [16], higher growth rates
could be expected under higher day temperature, at least in the temperature range of our experiment,
since maximal assimilation rates for rice were found in the range of 30–35 ◦C irrespective of the growth
temperature [17]. Furthermore, higher night temperature increases respiration, which consumes a
large fraction of daily available assimilates and thus limits biomass production [18]. Contrastingly,
stomatal conductance [19] and leaf area development [20] of rice were found to be positively correlated
with night temperature in a semi-arid environment. At this point in time, we cannot explain the larger
leaf area under inverted day and night temperature and further research is needed to elucidate the link
between diurnal temperature pattern, photosynthesis, and growth response.

Different day and night temperatures alone had no significant effect on total plant dry matter, but
significantly affected the partitioning between plant organs and leaf area. While Peraudeau et al. [7]
found increased leaf area and constant total plant dry weight under high night temperature, we
observed an increase in leaf area under high night temperature only under constant RH. Under
natural conditions, RH at night is usually close to 100% and substantially lower during the day.
In temperature-controlled/heated greenhouses or growth chambers, diurnal RH often fluctuates less,
since even though the absolute amount of water in the air remains constant, RH decreases with
increasing temperature because of heating. Therefore, our results indicate that temperature responses
observed in temperature-controlled environments may not be applicable to field-conditions.

However, RH not only influenced the plants’ growth response to temperature, it also had a strong
direct effect on dry matter and leaf area, which were both highest at low day/high night RH. In an
experiment conducted by Hirai et al. [21], high humidity during the light period in combination with
low humidity during the dark resulted in higher total dry matter than in other combinations of high
and low, day and night RH, but they found a positive effect of high RH on plant growth in general.
Equally, Kuwagata et al. [9] described a positive effect of high RH on dry matter production of rice and
found that low RH induced the upregulation of many PIP and TIP aquaporin genes. Since the mRNA
levels of root aquaporins reach a maximum 2 h after the onset of the light period [22], upregulation of
aquaporins may only occur in response to dry days and not to dry nights. If there is a positive effect of
low RH during the day or a negative effect of low RH during the night, it cannot be clearly answered
from our dataset. RH only directly affects the plant’s transpiration, which is only active during the day,
as stomatal opening is induced by light. Therefore, a negative effect of low RH during the night does
not seem likely. However, as the lowest leaf mass fraction, the highest fraction of dead leaves, and the
lowest SLA were observed under low RH at night (Figure 2), we hypothesize that low RH during the
night, rather than high RH during the day, resulted in strongly reduced biomass and leaf area under
the inverted RH regime.

3.2. T and RH Effects on Partitioning

Decreases in LMF, leaf abscission, and reduced SLA were found under RHinv. These are adaptation
strategies to reduce leaf area under water deficit. Thus, under the experimental setting these are likely
to occur only in low RH environments. Furthermore, dry weight of dead leaves and SLA were strongly
negatively correlated (Figure 3), indicating that both phenomena have a common cause.
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Figure 3. Correlation between SLA and dry weight of dead leaves per plant for plants subjected to
different day and night temperatures and RHs. Mean values with standard errors of three replications
are presented for 9 treatments, (n = 9), i.e., treatments with the same daily mean temperature.

Even though plants grown under low RH showed morphological adaptation to water deficit, it
was not because of the water stress, as transpiration happens during the day. SLA is instead likely
regulated via a plant parameter directly related to RH such as leaf water potential, triggered by low
RH at night.

SLA was not only highly affected by RH. Across all RH treatments, SLA was lowest under
“natural” and highest under inverted temperature. Although a significant positive correlation was
found between SLA and night temperature, we hypothesize that the relationship between day and
night temperature rather than night temperature itself controls SLA. This was supported by the lack of
difference in SLA in treatments with constant day and night temperatures. Published data on SLA
responses to temperature are contradictory. For example, Kuwagata et al. [9] reported that low root
zone temperatures decreased SLA, whereas Peraudeau et al. [7] showed a decrease in SLA under high
night temperatures. In contrast to the results presented here, Sunoj et al. [23] reported an increase in
SLA with increasing temperature amplitude and higher day time temperatures. Tardieu et al. [24]
argued that SLA decreases when leaf expansion is more affected by environmental conditions than
photosynthesis. Because of the decrease in SLA during warm and/or humid days, conditions that
should be beneficial to photosynthesis and leaf expansion, any reduction in SLA must be due to low
expansion rates during the night, triggered by low temperature and low RH.

The RMF increased with higher night temperature and decreased with higher day temperature.
The fraction of roots was not negatively correlated with total plant dry matter, a relationship described
as the ontogenetic drift, when larger plants invest a larger fraction of their biomass in support
structures [25]. This would support the hypothesis that changes in the RMF are actually temperature
driven. Since RH had no effect on the RMF, and the highest RMF was found at low day temperature,
water demand of the shoot can be excluded as the direct driving force for root growth in our experiment.
As a low RMF did not correspond with a reduction in growth, it suggests the presence of a compensation
mechanism, such as increased hydraulic conductivity per unit root weight. Kuwagata et al. [9] found
that low temperature reduced the quantity of roots and argued that the reduced surface area of the roots
was compensated by an increased water uptake per unit root volume facilitated by a higher expression
levels of root-specific aquaporin genes. Therefore, it seems more likely, that RMF increased with
higher night temperature than it decreased with higher day temperature. However, a final conclusion
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cannot be drawn from the dataset. The SMF increased with higher day temperature. In contrast to
the RMF, the SMF not only responded to a diurnal change in temperatures, but also to the constant
temperature treatments. We hypothesize that the higher SMF under the “natural” diurnal temperature
regime is a result of warm days and not from cool nights, because of the increase in the SMF at higher
temperatures when the day and night temperatures are constant. Cheng et al. [13] found an increased
stem weight under high night temperature, while root and leaf dry weight were unaffected. In maize,
an increased total dry matter was reported at a larger daily temperature range [23], but it is unclear if
this resulted from higher day temperature or from reduced respiration at lower night temperature.

Effects of the daily temperature and RH pattern on biomass partitioning and SLA were clearly
shown. Results are summarized in Figure 4.

Figure 4. Effects of temperature and relative air humidity during day and night on dry matter
partitioning and specific leaf area in rice. Orange pentagons represent temperature effects, blue
pentagons represent effects of relative air humidity. Arrow up: high; arrow down: low. Abbreviations:
LMF: leaf mass fraction; SMF: stem mass fraction; RMF: root mass fraction; DLMF: fraction of dead
leaves; SLA: specific leaf area.

In order to link the observed parameters with growth rates, regression analyses were performed
(Table 5).

Table 5. Pearson correlation coefficients for correlations between leaf area (LA) and dry weight (DW)
increases per day between 35 and 49 day after sowing and SLA and organ mass fractions, respectively,
including mean values all treatments (n = 9) with the same daily mean temperature.

Growth Rates SLA LMF SMF RMF DLMF

LA day−1 0.88 ** 0.85 ** −0.37 0.02 −0.86 **
DW day−1 0.39 0.39 0.30 −0.24 −0.66

**: significant at p < 0.01.

None of the parameters was significantly correlated with dry matter accumulation. However,
the increase in leaf area was significantly positively correlated with SLA and LMF, and negatively
correlated with DLMF. In wheat, higher SLA equated with faster leaf area production [26]. Since both,
high SLA and high LMF increase the photosynthetic area of a plant, light capture, and ultimately
carbon gains increase.
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3.3. Limitations of the Study

The main objective of this study was to evaluate the effect of high night temperature on biomass
partitioning between plant organs, an issue of particular interest for an important crop such as rice
as night temperature increases are predicted around the globe. Nevertheless, the most important
question, how the partitioning into reproductive organs will be affected, was not addressed. Across
different plant species, high night temperature was related to a reduction in biomass allocation to
reproduction organs [12]. For rice, a reduction in grain growth rate during grain filling was found using
inverted day and night temperatures [27]. However, under high night temperature, increased biomass
accumulation, because of higher growth rates during the vegetative stage could overcompensate an
impaired reserve partitioning into grains. Further research is needed to address this question.

Furthermore, in this study, different day and night temperatures were only tested around one
mean temperature. The temperature range 20–30 ◦C in this experiment was chosen because it represents
a large temperature range and does not lead to cold or heat stress effects. Under different mean
temperatures, temperature stresses would most probably lead to different results. Also only one variety
was used in this experiment. IR64 was ranked as medium tolerant to high night temperature [28], and
the test of different varieties differing in their temperature sensitivity would definitely improve our
understanding of crop responses to increasing night temperatures.

Finally, temperature fluctuations in the rooting zone are by far not as pronounced in the field,
as in our experimental set-up, and therefore responses to temperature will be less distinct, at least for
below-ground parts of the plant. On the other hand, temperature and RH probably affect the plant’s
water status to a larger degree when grown in soil, especially under water-limited conditions, and this
will be relevant for the entire plant.

4. Materials and Methods

4.1. Plant Cultivation

The experiment was conducted in plant growth chambers at the Institute of Agricultural Sciences
in the Tropics of the University of Hohenheim, Germany. In total, eleven sets of plants were used.
For each, seeds of one variety (IR64) were germinated in petri dishes on filter paper for one week.
Individual seedlings were transferred into pots containing 1 l of half strength nutrient solution in the
composition proposed by [29]. After another week, half strength nutrient solution was replaced by full
strength nutrient solution and, from then onward, full strength nutrient solution was exchanged every
week. Plants were grown in a growth chamber (Percival Intellus Environmental Controller—EA-75HIL)
at 28/22 ◦C day/night temperature, a mean temperature of 25 ◦C and a mean relative air humidity
(RH) of 75% for the first five weeks. Afterward, plants were transferred to another growth chamber
(Percival Intellus Ultra Controller—E-75L1), where each set of plants was cultivated under different
environmental conditions (Table 6) for a duration of two weeks: a day/night temperature regime of
30/20 ◦C, considered similar to natural conditions (Tnat); 25/25 ◦C, a constant temperature regime
(Tcon); and 20/30 ◦C, an inverted temperature regime (Tinv). The RH was set to a day/night regime of
40/90%, considered similar to natural conditions (RHnat); 65/65%, a constant RH (RHcon); and 90/40%,
an inverted RH regime (RHinv). The combination of three temperature and three RH settings resulted
in nine treatments, each experiencing a daily mean temperature of 25 ◦C and 65% RH. Additionally
two temperature settings were established with a constantly lower temperature of 20 ◦C (Tcon-l) and a
constantly higher temperature of 30 ◦C (Tcon-h) and constant RH of 65% in order to distinguish effects
of day/night and mean temperature. Temperature and RH were recorded with TinyTag TGP-4500 Dual
Channel data loggers (Gemini Co., Chichester, UK) in both chambers.
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Table 6. Cultivation conditions for rice plants starting 35 days after sowing until 49 days after sowing.

RH Day/Night [%] T Day/Night [◦C] Treatment

40/90
30/20 Tnat RHnat
25/25 Tcon RHnat
20/30 Tinv RHnat

65/65

30/20 Tnat RHcon
25/25 Tcon RHcon
20/30 Tinv RHcon

20/20 Tcon-l RHcon
30/30 Tcon-h RHcon

90/40
30/20 Tnat RHinv
25/25 Tcon RHinv
20/30 Tinv RHinv

4.2. Measurements

For each set of plants, destructive samplings were conducted on three plants at the onset of
treatments (0 DOT) and at 14 DOT. Plants were individually separated into green leaf blades (hereinafter
referred to as leaves), leaf sheaths (hereinafter referred to as stems), roots, and dead leaves. Leaves
were considered as dead, when the leaf blade was either completely yellow or by at least 50% dry
and dead. Leaf area of all green leaves was measured with a LI-COR leaf area meter (LI-3000C) in
combination with a belt conveyer accessory (LI-3050C). All plant material was dried at 70 ◦C for at
least 48 h and weighed. Specific leaf area (SLA) was calculated as green leaf area per kg of leaf dry
matter of the whole plant [m2 kg−1].

4.3. Data Analysis

Data analysis was carried out with STATISTICA 13 [30] using analysis of variance (ANOVA)
followed by a Tukey HSD post-hoc test to analyze differences between treatments for total dry matter,
leaf area, mass fractions, and SLA. For the comparisons of temperature and humidity effects at the
same mean temperature and humidity, a factorial ANOVA was used, while for the comparison of
temperature effects in the treatments of constant temperature a one-way ANOVA was used. All levels
of significance were set to p < 0.05.

5. Conclusions

High night temperature resulted in higher leaf area, but only under constant relative air humidity,
whereas under low air humidity during the day and high air humidity during the night, high night
temperature had no effect on biomass or leaf area. Nevertheless, diurnal temperatures highly affected
the partitioning between plant organs. The fraction of stems increased with higher day temperature,
whereas the fraction of roots increased with higher night temperature. The leaf mass fraction was only
affected by the day and night pattern of relative air humidity, but SLA strongly responded to both,
temperature and relative humidity. The higher leaf mass fraction during humid nights, and higher
SLA during warm nights were associated with higher leaf growth rates. Therefore, we argue that rice
plants might benefit from an asymmetric day/night temperature increase, at least during vegetative
growing phases.
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