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Abstract: Limonium is a genus represented in the Iberian Peninsula by numerous halophytic species
that are affected in nature by salinity, and often by prolonged drought episodes. Responses to
water deficit have been studied in four Mediterranean Limonium species, previously investigated
regarding salt tolerance mechanisms. The levels of biochemical markers, associated with specific
responses—photosynthetic pigments, mono- and divalent ions, osmolytes, antioxidant compounds
and enzymes—were determined in the control and water-stressed plants, and correlated with their
relative degree of stress-induced growth inhibition. All the tested Limonium taxa are relatively
resistant to drought on the basis of both the constitutive presence of high leaf ion levels that contribute
to osmotic adjustment, and the stress-induced accumulation of osmolytes and increased activity of
antioxidant enzymes, albeit with different qualitative and quantitative induction patterns. Limonium
santapolense activated the strongest responses and clearly differed from Limonium virgatum, Limonium
girardianum, and Limonium narbonense, as indicated by cluster and principal component analysis
(PCA) analyses in agreement with its drier natural habitat, and compared to that of the other plants.
Somewhat surprisingly, however, L. santapolense was the species most affected by water deficit in
growth inhibition terms, which suggests the existence of additional mechanisms of defense operating
in the field that cannot be mimicked in greenhouses.

Keywords: Limonium santapolense; Limonium virgatum; Limonium girardianum; Limonium narbonense;
drought; water deficit; oxidative stress; ions; osmolytes; antioxidant enzymes

1. Introduction

In general, Mediterranean plants are well adapted to drought, marked by drastic reduction in
summer rainfall and wide inter-annual variability, both of which characterize the Mediterranean
climate [1]. Nevertheless, forecasts estimate that environmental conditions will become more stressful
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from global warming, particularly in the Mediterranean region, and that droughts will become severer
and more frequent [2].

Drought induces water deficit in stressed plants, and this strongly impacts all plant organs
to a greater or lesser extent [3]. This shortage of water brings about a range of deleterious effects,
from reactive oxygen species (ROS) levels building up and producing oxidative stress [4], to a low
photosynthesis potential [5]. Almost every aspect of drought-affected plant homeostasis is negatively
altered, which implies reduced vegetative growth, yield, and eventually plant death [6].

However, plant roots resort to effective mechanisms that sense low water potential. This scenario
may emerge due to lack of water in the environment caused by low precipitation or excess salt ions
being present in soil, which leads to “physiological drought’ [7]. In both events, plants are unable to take
up enough water for normal development and growth, activating stress-related signal transduction
pathways [8], which is immediately followed by stunted shoot and leaf growth. This inhibited growth
is linked with a change in carbon dioxide and cellular oxygen levels prompted by partial stomata
closure [3].

Nevertheless, plants possess several tolerance mechanisms to alleviate effects of drought-induced
osmotic stress, including the synthesis of compatible solutes, for example, proline, glycine betaine, or
soluble carbohydrates [9-12]. Osmotic adjustment is also accomplished by inorganic ions accumulating.
High K* and Na* levels in water-stressed plants have been described in the stress-tolerant Atriplex
halimus [10], whereas Na* accumulation has been found to act as an important drought tolerance
strategy in a desert xerophyte [11].

Osmotic stress is linked with increased reactive oxygen species (ROS) production. Drought, thus,
comes with raised ROS levels, which brings about changes in cellular redox homeostasis and normal
cellular metabolism that trigger oxidative stress and the activation of antioxidant mechanisms [13-15].
The most common antioxidant metabolites include phenols, flavonoids, ascorbic acid, glutathione, and
carotenoids, whereas catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) (and
other peroxidases), or redox regulatory enzymes such as glutathione reductase (GR), are among the
most relevant antioxidant enzymatic systems activated in plants to respond to deleterious oxidative
stress effects [13].

The genus Limonium L. of the Plumbaginaceae family comprises over 400 species, includes many
endemic species in the present study area, and is well represented in the Mediterranean region [16]. The
Limonium species have been well documented for responding to salt stress because this is an emblematic
genus of halophytes that possesses salt excretory glands [17,18]. However, the mechanisms of response
and potential tolerance to drought of Limonium taxa, similarly to the majority of halophytes, have not
drawn much interest and are still largely unknown. Nonetheless, salinity is not the only constraint for
plants in salt marshes because, quite often, many other stressful factors occur simultaneously.

In this and former works, we examine the responses of four Limonium species to abiotic stress:
Limonium santapolense Erben, Limonium girardianum (Guss.) Fourr., Limonium virgatum (Willd.) Fourr.,
and Limonium narbonense Mill. All four are found in littoral salt marshes in southeastern Spain. They
are perennial, long day, and C3, and their leaves differ in size and shape. The first two are endemics
and have a high conservation value. L. santapolense is found on littoral sandy substrates in a small
zone in the Province of Alicante. L. girardianum is endemic to eastern Spain, southern France, and the
Balearic Isles, growing on cliffs and sandy coasts. The other two species are broadly distributed and
cover the Mediterranean region, with L. virgatum found on rocky coasts and sandy beaches reaching
North Africa and the Middle East, whereas L. narbonense is present in salt marshes throughout the
Mediterranean, including Spain, as well as on the Atlantic coast [16].

The objective of this work is to analyze the responses of all four Limonium species to water
stress generated artificially and under greenhouse conditions to plants grown from field-collected
seeds. We hypothesize that the drought tolerance mechanisms of L. santapolense plants, whose origin
lies in the aridest collection area, would be more efficient than those of the plants of the other
three chosen species. In our extensive study, growth inhibition, induced by not watering plants for
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1 month, correlated with (a) degradation of photosynthetic pigments; (b) ionic homeostasis being
maintained; (c) compatible solutes accumulating, for example, proline, glycine betaine, and soluble
carbohydrates; (d) leaf malondialdehyde (MDA, a reliable oxidative stress marker) and H,O, contents,
and «,x-diphenyl-B-picrylhydrazyl (DPPH) free radical scavenging activity; (e) antioxidant compound
(total phenolics and flavonoids) levels; and (f) antioxidant enzymes activities (CAT, GR, SOD, and APX).

2. Results

2.1. Substrate Moisture at the End of Treatments

After not irrigating the four analyzed species for 1 month, substrate humidity was significantly
lower than that recorded in the control treatments, in which plants were watered twice weekly (Table 1).
When comparing the four species, no significant differences were found in the moisture values of
substrates (Table 1).

Table 1. Substrate humidity (%) of the control (C) and water-stressed (WS) Limonium plants grown
in greenhouses. Asterisks indicate significant differences between treatments per species. Letters
denote significant differences between species per treatment (capital letters for the control plants and
lower-case letters for the plants subjected to 1 month water stress) at the 95% confidence level. Mean
values are followed by SE (1 = 5).

. Limonium Limonium Limonium Limonium
Variable Treatment . . .
santapolense virgatum girardianum narbonense
Humidity (%) C 4542 +1.43* 4542 +125*" 4539 +143*A 4367 £0.71*
WS 10.70 = 1.25* 14.01 = 1.43* 12.20 £ 1.10*2 12.26 + 0.34 *2

2.2. Effects of Drought on Plant Growth and Photosynthetic Pigments Levels

Water stress caused significantly inhibited vegetative plant growth in two of the selected species,
L. santapolense and L. narbonense, as shown by the reduced fresh weight (FW) of aerial plant parts by
about one third versus the corresponding controls (Figure 1, Table 2). Slight reduction (approximately
11%) was recorded in L. girardianum, whereas the mean FW of the water-stressed L. virgatum plants
was slightly higher than in the control. However, the differences found for the two latter species were
not significant (Table 2).

Control WS Control Wws

Control vWVS Control WS

5cm Scm

Figure 1. Effect of the 1 month water stress treatment (WS) in the four Limonium species under study:
L. santapolense (A), L. virgatum (B), L. girardianum (C), and L. narbonense (D).
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Table 2. The mean leaf fresh weight (FWL), leaf area (LA), leaf water content (WCL), root water content
(WCR), and photosynthetic pigments, chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids
(Caro) levels of the control (C) and water-stressed (WS) Limonium plants. DW: dry weight. Asterisks

indicate significant differences between treatments per species. Letters denote significant differences

between species per treatment (capital letters for the control plants and lower-case letters for the plants

subjected to 1 month water stress) at the 95% confidence level. Mean values are followed by SE (1 = 5).

Variable Treatment L. santapolense L. virgatum L. girardianum L. narbonense
C 502 + 0.42*B 233+£0474 249 + 0434 2.05+0.14 *A
FWL (g) b b b

WS 344 £0.12 % 254 + 0.66 2.19 £ 0.27 1.47 £0.18 %
LA (a2 C 17.01 £ 1.24 ¢ 445+0204  6.06+0.34 4B 8.60 + 0.65 B
(cm®) WS 10.26 + 0.74 *P 387+0252 6.27 +0.392 6.87 + 0.63 2P

WCL (%) C 84.55 + 0.26 *A 8750 +046C  86.88+0.37BC 8521 +0.97AB
WS 83.61 + 0.41 % 86.44 + (.88 bc 87.95 + 0.40 € 84.26 + 0.76 2P

o C 61.44 + 550 A 74.85+1.18 B 78.82 +1.478B 80.36 + 1.01 *B

WCR (%) s b b b
WS 52,74 + 5.08 77.68 +1.24 7346 +1.93 74.39 + 0.36 *

Chla C 237 +0.17 4B 1.74 £0.18 A 2.63+0138 1.97 £ 0.19 AB
(mg g~ DW) WS 227 +0213b 2.18 £ 0.2123b 2.75+0.17° 1.59 +0.132
Chlb C 1.11 £0.01 4 1.04 £ 0.06 A 1.07 £0.104 0.99 £0.144
(mg g~' DW) WS 1.14 £ 0252 1.22 +0.182 1.03 £ 0.06 2 0.76 + 0.09 2
Caro C 1.19 £ 0.07 A 136 £0.114 0.97 +0.08 4 130 £ 0214
(mg g1 DW) WS 1.02+0.112 1.12 +£0.092 0.99 +0.042 093+0.112

Regarding the reduced leaf area (LA), the effect of drought was statistically significant only in
L. santapolense, the species with broader leaves, which lost about 40% of its foliar area compared to the
non-stressed control. Despite complete withholding irrigation for 1 month, the dehydration of the
Limonium plants was very low. Once again, the drought-induced reduction of the leaf water content
(WCL) was significant only in L. santapolense and came to less than 2%. On the contrary, the root
water content (WCR) reduction was significant only in L. narbonense (Table 2). According to these
growth parameters, L. santapolense can be considered the species most affected by water stress under
our experimental conditions.

Water stress induced only minor, non-significant changes in the leaf contents of photosynthetic
pigments (chlorophylls a and b, and total carotenoids) in the four Limonium species (Table 2). Pigment
levels were similar in all four species, except for chlorophyll a in L. virgatum and L. girardianum, which
showed a significant difference when compared to the control (untreated) plants of the two species.

2.3. Ion Accumulation

No changes in the leaf contents of the mono- (Na*, K*, and C17) and divalent (Ca%* and Mg2+) ions
were induced under the water deficit conditions in any of the investigated Limonium species (Table 3).
Some significant differences between the control and stressed plants were, however, observed in roots,
but with no clear pattern of variation. For example, Na* and Cl~ generally increased in response to
water stress, although the differences with the corresponding controls were not significant in all the
Limonium taxa, whereas K* contents did not vary. The mean Ca®* and Mg?* levels drastically dropped
in L. santapolense, but rose in the other three species (Table 3). The K*/Na* ratio, which is considered
relevant for maintaining ionic homeostasis, did not vary in the plant leaves, but significantly decreased
in the roots of all the species, except L. virgatum, which showed a non-significant reduction. When
comparing ion contents in the roots and leaves of the same plants, they were all higher in leaves in
both the control and water-stressed plants—two- to fourfold, approximately, for the monovalent ions
in all four Limonium species, and for Ca** and Mg?* in L. narbonense. For the other three species, the
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divalent cation levels were about 6- to 15-fold higher in leaves than in roots (Table 3). The relatively
high Mg?* concentrations measured in the leaves of these species is also worth mentioning.

Table 3. Mono- and divalent ion contents (umol g_l DW) and K*/Na™ ratios in the roots and leaves

of the control (C) and water-stressed (WS) Limonium plants. Asterisks indicate significant differences

between treatments per species. Letters denote significant differences between species per treatment

(capital letters for the control plants and lower-case letters for the plants subjected to 1 month water
stress) at the 95% confidence level. Mean values are followed by SE (1 = 5).

Ion Treatment L. santapolense L. virgatum L. girardianum L. narbonense
Na* roots C 137.22 £23.17*A  127.99 £2194 11952 +1.68*A 17417 + 16.09 *A
WS 209.96 +42.13*P 11644 +17.762  184.18 + 11.05*®  238.37 + 22.70 *P
Na* jeaves C 450.01 £10.614  473.66 +27.324 53493 +29994 55211 +67.784
WS 499.65 + 25.75 b 426.83 +7.462 51347 +22.41P  416.29 +18.90 2
K* roots C 27985+ 35354 35333 +8864B 27878 £2464A  38272+32.19B
WS 24279 +35362 30029 +42.012P 32649 + 222323  406.74 + 36.69 P
K™ jeaves C 833.33 £20.98 4  977.25+43.11" 97447 +£32.05"  981.48 +97.454
WS 839.27 +27.832b 89779 +15.082>  1031.71 + 75.86P  823.25 + 60.43 2
K*/Na* roots C 2.08 +0.18 *A 275+ 0.01C 2.33 +0.05*B 2.20 + 0.02 *AB
WS 1.30 £ 0.16 %@ 2.60 £0.07 ¢ 1.77 +0.03 *P 1.72 +0.09 *P
K*/Na* |eaves C 1.85+0.044 2.08+0.264 1.83 £0.044 1.80 £ 0.09 A
WS 1.69 + 0.06 2 211+0.15P 1.99 + 0.06 P 1.96 + 0.06 P
Cl™ roots C 186.77 + 1828 *A 23695+ 5354  203.10 +28.32*4 35543 + 35.59 B
WS 203.10 £51.70*@ 22849 + 17342  299.01 + 20.26 P  456.98 + 41.80 P
Cl™ leaves C 727.78 +51.33 A 787.02+75.024 76727 +32364 97150 +79.81 4
WS 836.10 £ 47.452  892.80 +34.842  856.27 +17.342  999.35 + 82.48 2
CaZ* 1oots C 13.29 +2.03 *B 448 +0.64 *A 6.18 +1.20 *A 14.23 + 0.94 *B
WS 6.18 +2.20 * 10.35 + 1.14 *2 9.69 + 0.66 * 24.28 +2.67 *P
Ca?* |eaves C 84.88 +7.03 A 66.74 +10.43 A 61.93 +12.40 4 53.01 + 12.13 2
WS 97.12 + 5.66 b¢ 68.46 + 14902  117.57 +20.63P 3720+ 1.70b
Mg?* roots C 64.24 + 3.36 *C 40.05 + 0.36 *4 50.93 +3.01 B 76.33 +3.51 D
WS 50.93 + 5.51 *@ 57.21 + 6.28 %@ 64.07 + 5.07 ab 7834 +452b
Mg Jeaves C 456.63 £29.80 4  401.16 +40.36 4  486.11 £ 61294  320.88 + 34.63 4
WS 538.36 +22.53°  429.16 £49.70°  555.07 +13.81°  260.80 + 38.60 2

2.4. Water Stress-Induced Osmolyte Accumulation

The levels of the commonest plant osmolytes—proline (Pro), glycine betaine (GB), and total
soluble sugars (TSS)—were determined in the leaves of the investigated Limonium taxa when the
water deficit treatments ended (Figure 2). With the exception of L. narbonense, Pro levels increased
significantly compared to the untreated controls. However, this stress-induced increment was by far
more pronounced in L. santapolense, where Pro reached 122 pmol g~! DW, which represented a sixfold
increase over the control (Figure 2a).

The leaf GB contents in the control plants were similar to those of Pro (20-50 umol g~! DW),
except for L. virgatum, in which a concentration of 76 umol g~! DW was determined. These values only
slightly varied in general, and not significantly, in the plants subjected to the water deficit treatment
(Figure 2b).

Limonium santapolense showed higher leaf TSS contents than the other three species in the control
plants. For all four taxa, the water stress treatment induced only minimal changes in the TSS levels, as
observed for GB (Figure 2c¢).
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Figure 2. Osmolyte contents in the leaves of the four studied Limonium species. Proline (Pro) (a),
glycine betaine (GB) (b), and total soluble sugar (TSS) levels (c), after 1 month of water stress treatment
(WS) and in the control plants. The shown values are means with SE (n = 5). Different letters above the
bars indicate significant differences between species, for control (capital letters) and water-stressed
(lower-case letters) plants. Asterisks denote significant differences between treatments for each species,
according to Tukey’s test («x = 0.05).

To check the possibility that the leaf levels of particular sugars could vary in response to the
water deficit treatment, which cannot be detected by measuring TSS contents, soluble carbohydrates
in aqueous extracts of plants were separated, identified, and quantified by HPLC (Figure 3). Three
major peaks in the chromatograms were observed, corresponding to glucose (Glu), fructose (Fru),
and sucrose (Suc), but their concentrations showed entirely different patterns in the four analyzed
Limonium species. Glu was detected only in L. giradianum and L. narbonense, but its concentration
increased significantly in response to drought only in the former species by reaching 15.5 pmol g~!
DW (Figure 3a). In L. santapolense and L. virgatum, glucose levels were below the detection limit of the
evaporative light scattering detector (ELSD), both in control and stressed plants. Fru concentrations
were very low (<0.5 umol ¢! DW) in the non-stressed L. santapolense plants, and increased considerably
to ca. 38 umol g~! DW in response to water stress. The other three species had higher control Fru
values (8-17 umol g~! DW), which either lowered or did not change significantly in the stressed plants
(Figure 3b). Large differences in leaf Suc contents were also detected in the control plants of the four
analyzed species, which went from extremely low values (<0.2 pmol g_1 DW) in L. giradianum to
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2.2-2.4 umol g~! DW in L. narbonense and L. virgatum, and to ~17 umol g=' DW in L. santapolense. In
the latter species, water deficit stress induced a significant increase of 1.4-fold in the Suc concentration
(Figure 3c), which was much lower than that observed for Fru in any case (Figure 3b).
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Figure 3. Soluble sugar contents in the leaves of the four studied Limonium species. Glucose (Glu) (a),
fructose (Fru) (b), and sucrose (Suc) (c) levels after 1 month of water stress treatment (WS) and in the
control plants. The shown values are means with SE (n = 5). Different letters above the bars indicate
significant differences between species, for control (capital letters) and water-stressed (lower-case
letters) plants. Asterisks denote significant differences between treatments for each species, according
to Tukey’s test («x = 0.05).

2.5. Oxidative Stress and Activation of Antioxidant Systems

Malondialdehyde (MDA) levels did not significantly differ in the control plants of the four
Limonium species. After the water stress treatment, leaf MDA content increased in all cases, albeit
slightly, between 1.1- and 1.7-fold depending on the species. However, the differences with the
non-stressed controls were statistically significant only in L. narbonense (Table 4). Hydrogen peroxide
levels were similar in the control plants of all the Limonium taxa, and the water deficit-induced variations
were also non-significant (Table 4). The overall antioxidant activity of plant extracts, as determined
by the DPPH («,x-diphenyl-p-picrylhydrazyl) free radical scavenging assay, did not change in the
stressed plants compared to their corresponding controls. In this case, however, significant differences
between taxa were observed, with L. santapolense showing the greatest antioxidant activity (Table 4).
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Phenolic compounds, especially, the subclass of flavonoids, are well-established examples of
antioxidant metabolites. Leaf levels of total phenolic compounds (TPC) and total flavonoids (TF)
were determined in the control and water-stressed plants. Once again, TPC contents were higher
in L. santapolense than in the other three species, but did not change as a result of the water deficit
treatment in all cases. TF levels, however, were low and did not vary significantly either between
species or between the control and stressed plants (Table 4). The leaf levels of anthocyanins, which can
also be used to estimate the antioxidant activity of plant samples, were low in all the control plants and
did not vary significantly in response to the water deficit treatment (data not shown).

Table 4. Malondialdehyde (MDA) and hydrogen peroxide (H,O;) concentrations, «,x-diphenyl-
B-picrylhydrazyl (DPPH) free radical scavenging activity, total phenolic compounds (TPC, expressed
as mg equivalents of gallic acid), and total flavonoid (TFE, expressed as mg equivalents of catechin)
contents in the leaf extracts from the plants of the four selected Limonium species. Asterisks indicate
significant differences between treatments per species. Different letters (capital for the non-stressed
controls and lowercase for the plants subjected to 1 month of water deficit stress) indicate significant
differences between species per treatment at the 95% confidence level. Mean values are followed by SE

(n=>5).
Variable Treatment L. santapolense L. virgatum L. girardianum L. narbonense
C 103.58 £+ 16924 8393 +18.614  149.16+ 16742  80.09 + 7.60 *A
-1
MDA (nmol g™ DW) ws 152.59 + 28.692  138.82+21.2242 16253 +17.85% 135.28 + 14.73 *
C 17.93 +3.29 A 1721 +2264 20.86 + 3.49 A 26.68 +3.24 4
-1
H O (umol g™ DW) WS 2525 +3.80 P 12.89+1282  1859+0382  21.94+101P
DPPH C 84.72 £6.10€ 76.94 + 0.99 BC 1528 +2.97 A 5234 +11.278B
(%) WS 82.60 +9.86P 62.17 + 6.90 3 34.13 +7.974 41.81 +5.70 2
C 2441 + 4188 11.50 + 6.15 4 6.40 +1.314 12.57 +3.01 &
-1
TPC (mg eq. GA g~ DW) WS 2396+ 1.81° 6.15 + 0.40 @ 6.56 +1.18 2 9.25+2772
C 1.96 + 0.37 AB 1.26 £ 0.16 4 071 +£0.134 295+ 0.618
-1
TF (mg eq. C g™ DW) ws 1.80 £ 0.28 2 1.00 + 0.132 122 +0.182 1.90 + 0.45 2

The specific activities of the four tested antioxidant enzymes (SOD, CAT, APX, and GR) showed
different patterns in the four species for both basal values in the controls and quantitative changes in
response to water deficit. In most cases, however, the stress treatment led to greater antioxidant activities
(Figure 4). SOD activity, for example, increased significantly in L. santapolense and L. giradianum, but
did not change in L. virgatum and L. narbonense. The highest specific activity was measured in the
stressed L. santapolense plants (Figure 4a). CAT activity was very low in the control L. santapolense and
L. virgatum plants and slightly but significantly augmented in response to the drought treatment. The
control values were much higher in L. narbonense and also grew under stress conditions, but did not
vary in L. giradianum (Figure 4b). APX activity increased significantly in the four species, but reached
much higher values in L. santapolense than in the other three taxa (Figure 4c). GR activity increased
in response to the stress treatment in all the Limonium taxa, except for L. giradianum. Once again, the
greatest activity was measured in L. santapolense, but the relative increment over the control values was
lower than in L. virgatum and L. giradianum (Figure 4d).
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Figure 4. Activity of the antioxidant enzymes in the leaves of the four studied Limonium species after 1
month of water stress treatment (WS) and in the control plants. The graphs show the specific activities of
(a) superoxide dismutase (SOD), (b) catalase (CAT), (c) ascorbate preoxidase (APX), and (d) glutathione
reductase (GR) as mean values with SE (n = 5). Different letters above the bars indicate significant
differences between species, for control (capital letters) and water-stressed (lower-case letters) plants.
Asterisks denote significant differences between treatments for each species, according to the Tukey
test (o = 0.05).

2.6. Statistical Analysis of Data: Factorial ANOVA, Clustering of Species, and Principal Component Analysis

The results of a factorial ANOVA considering the effect of treatment, species, and their interaction
are shown in Table 5. Of the 31 parameters analyzed, 27 varied significantly according to the species,
but only 15 according to the treatment. The greatest variations between values measured in control
and water-stressed plants were registered for osmolytes and antioxidant enzymes. Interestingly, the
interactions between the two factors (treatment X species) were also significant for these parameters,
indicating that the tested species do not show the same patterns of response to water stress.

The cluster analysis performed using all the variables measured in the water-stressed plants
(including growth parameters) clearly distinguished L. santapolense individuals from the others as
they were present on a separate branch of the dendrogram (Figure 5). Of the remaining three species,
L. narbonense was the most distant, whereas the values recorded in L. virgatum and L. girardianum
were entangled. A principal component analysis (PCA) was also performed, including the growth
parameters, osmolytes, MDA, and enzyme activities determined in the water stress and control
treatments. Photosynthetic pigments, ions, H,O,, and antioxidant compounds were not included as
they did not vary significantly under stress. Ten components had an eigenvalue above 1. The biplot of
the two main principal components, which together explained 63% of total variability, is shown in
Figure 6. The first component, which explains the highest variability of the data (41.79%) was related
mostly to the treatment, whereas the second (20.18%) was related to the species. Water stress, reflected
as reduced substrate moisture after not watering pots for 1 month, correlated positively with changes
in water content in the plant roots and leaves, and negatively with proline and fructose (the osmolytes
that strongly increased under stress), and with antioxidant enzymes (especially GR and APX), whose
activity also increased as a response to water deficit. The PCA, like the cluster analysis, showed a clear
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separation of L. santapolense from the other taxa, which all appeared together in the negative sector
of the x-axis. L. santapolense was the only species for which the control and stress treatment values
were clearly distant. The latter correlated positively with changes in the Pro and Fru levels, and in the
activities of SOD, APX, and GR, which thus confirms the results of the above-described individual
experiments (Figures 2—4).

Table 5. Factorial ANOVA (F values) considering the effect of treatment (T), species (S) and their
interactions (T X S) on the measured variables. FW: fresh weight; LA: leaf area; WC}: water content of
leaves; WC;: water content of roots; Chl a: chlorophyll a; Chl b: chlorophyll b; Caro: carotenoids; Pro:
proline, GB: glycine betaine; TSS: total soluble sugars; Glu: glucose, Fru: fructose: Suc: sucrose; MDA:
malondialdehyde; TPC: total phenolic compounds; TF: total flavonoids; SOD, superoxide dismutase;
CAT, catalase; APX, ascorbate peroxidase, GR glutathione reductase. *, **, *** significant at p = 0.05,
0.01, and 0.001, respectively.

Parameter Treatment (T) Species (S) Interaction (T X S)
G h FW; 2.88 10.83 *** 1.36
rowt LA 11.59 ** 39.65 *** 2.96 *
WG 1.23 14.87 *** 1.45
WC; 14.16 *** 30.38 *** 4.11*
Chl a 0.01 10.87 *** 2.05
Photosynthtetic pigments Chlb 0.1 1.91 0.66
Caro 597 * 1.77 1.06
Nat*, 10.87 ** 6.06 ** 1.89
Na*| 3.01 191 2.96 %
Kt 1.37 133.84 *** 6.09 **
K™ 1.31 3.33 % 1.55
. . Cl~, 8.68 *** 14.07 *** 2.90*
Mono and divalent ions -y 545 * 330 * 133
Ca?t, 0.05 7.39 *** 1.37
Ca2+1 3.25 9.44 **** 2.80
Mg2+r 3.29 19.11 *** 6.44 **
Mg2+1 2.08 14.55 *** 1.48
Pro 172.75 *** 80.14 *** 86.56 ***
GB 1.68 22.21 *** 2.81
Compatible solutes TSS 0.27 37.72 % 0.23
Glu 551* 39.60 *** 6.09%*
Fru 25.67 *** 14.65 *** 79.13 ***
Suc 5.35* 3.27 * 1.15
Oxidative stress markers MDA 9.26 ** 2.40 0.50
and antioxidants H>,O, 0.29 433 % 2.29
TPC 2.23 27.97 *** 0.73
TF 1.05 10.06 ** 2.21
Antioxidant SOD 10.84 ** 28.29 *** 10.04 ***
oxidants CAT 12.63 * 73.30 ** 5.39 **
APX 71.35 *** 21.84 *** 28.95 *#**

GR 42.53 *** 16.83 *** 1.47
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Figure 5. Clustering of the analyzed Limonium species: L. santapolense (S.), L. virgatum (V.), L. girardianum
(G.), and L. narbonense (N.), by the nearest neighbor method, on the basis of squared Euclidean distances
according to all the parameters registered in the water-stressed plants.
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Figure 6. Principal component analysis (PCA). Changes in growth parameters, osmolyte levels, and
antioxidant enzyme activities in the plants grown under water stress conditions for 1 month (red
squares) versus the corresponding controls (blue squares); the non-stressed plants of the investigated
Limonium species: L. santapolense (S.), L. virgatum (V.), L. girardianum (G.), and L. narbonense (N.), in
correlation to substrate moisture. Each square corresponds to an individual analyzed plant. FWL, leaf
fresh weight; LA, leaf surface area; WCL, water content percentage in leaves; WCR, water content
percentage in roots; Pro, proline; GB, glycine betaine; TSS, total soluble sugars; Glu, glucose; Fru,
fructose; Suc, sucrose; MDA, malendialdehyde; SOD, superoxide dismutase; CAT, catalase; APX,
ascorbate peroxidase; GR, glutathione reductase.

3. Discussion

A considerable number of relevant physiological studies has been recently published on
Mediterranean plant species that are adapted to severe stressful environments. Several have specifically
centered on distinct Limonium species, or have included some taxa of this genus along with other
species [19,20]. With regards to the activation of specific stress responses at molecular and biochemical
levels, the majority of former research works into Limonium have centered on responses to salt
stress [17,18]. All this renders novel the data herein presented, and stresses the role played by
antioxidant enzymes and specific osmolytes in mechanisms of defense against water deficit of
Limonium plants.

Of all four studied species, L. santapolense was the most strongly affected in the greenhouse
experiments by water deficit stress, as indicated by its severely inhibited growth (reduced mean leaf
area and fresh weight vs. controls) under stress conditions. The only taxon to display a significant,
albeit low, degree of leaf dehydration in the unwatered plants was Limonium santapolense. Our
experiments revealed how the other three species tolerated water stress quite well. Of these, a
significantly reduced fresh weight in the stressed plants was evidenced only for L. narbonense. In
these two species, the apparently diminished water deficit tolerance could be associated with the
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morphological characteristics of all four taxa, specifically with their leaf size because their leaves
are larger and broader than those of L. girardianum and L. virgatum. This particular trait is generally
thought to enhance plant sensitivity to dehydration, and there are reports that plants can respond to
water deficit caused by the global warming by them diminishing their leaf areas [21].

Water stress had no effect on the levels of photosynthetic pigments in any studied Limonium taxon,
including L. santapolense. As inhibited photosynthesis and low chlorophyll contents are some frequent
effects of drought and other abiotic stresses [22,23], these results also indicate that the studied species
are quite resistant to water stress.

In the experiments performed herein, plant growth took place with low salt concentrations, those
present in the nutrient solution and the peat substrate, and no major changes were expected in the
plant ion contents in response to water stress. However, as inorganic ions can contribute to cellular
osmotic adjustment with drought [24], the levels of the mono- and divalent cations, and those of CI~,
were determined in the leaves and roots of the stressed and control plants. In roots, save L. virgatum,
Cl™ and Na™ content significantly rose in the plants undergoing the water stress treatment versus
the corresponding controls. This can be accounted for by the activation of ion transport in plants by
counteracting, at least in part, the osmotic stress produced by not watering the plants. Increasing
Na* concentrations are usually accompanied by loss of K*, as Na* interferes with K* uptake by
employing the same transport systems, and both cations compete for the same binding proteins [3].
These changes in K™ and Na* contents give rise to lower K*/Na* ratios. Indeed, we recorded this
reduction in the root K*/Na™* ratios in the Limonium plants (save L. virgatun), despite no significant
drop in the K* concentration being detected. Ion leaf contents displayed a distinct pattern. Firstly,
and most importantly, the levels of the three determined monovalent ions (K*, Na*, and CI7), and
those of divalent cations Mg?* and Ca?*, were significantly higher in leaves than in roots. This finding
clearly suggests the presence of active transport systems of these ions to aerial plant parts, which was
also found under salt stress in Limonium [18]. High leaf concentrations of K* and Na™ also play an
important role in osmotic adjustment under water stress in quinoa, as has been recently reported [25].
Secondly, significant differences were not found between the stressed and control plants in ion leaf
contents for any ions or any species. This would indicate that ion transport activation is not induced
by water deficit, but is likely a constitutive mechanism of response to stress that Limonium plants use
to help contribute to the cellular osmotic balance in leaves.

As for the biochemical responses of all four Limonium taxa, L. santapolense behaved differently
according to the cluster analysis, which showed a clear separation between this species and the
remaining three. The most striking differences to appear among them indicate the activation of
different antioxidant enzymes and the stress-induced accumulation of particular osmolytes. Water
deficit led to the considerable accumulation of both fructose and proline in L. santapolense leaves, at
concentrations around 40 and 120 pmol g~! DW, respectively, which were much higher than those
recorded in the controls. Sucrose levels also significantly increased, but by less than 1.5-fold, with
lower absolute values (<25 pmol g~! DW). We conclude that osmotic adjustment to protect plants from
dehydration in L. santapolense under water stress conditions is based on Fru and Pro accumulation, with
Suc contributing less. The other Limonium taxa exhibited a much weaker water stress response for the
mechanisms mediated by accumulating compatible solutes. In the three species, the leaf contents of all
the tested putative osmolytes slightly increased, or not at all, as a response to stress treatment, except
for glucose accumulation in L. girardianum, whereas the absolute concentrations of these compounds
were too low to have a strong osmotic effect.

The lack of glucose accumulation at detectable levels in L. santapolense and L. virgatum, both in
unstressed plants and in those subjected to water deficit, should be mentioned. Similarly, very low, in
most cases non-detectable, glucose leaf contents were determined in a previous study, in control and
salt-stressed plants of the same taxa [18]. These data suggest that glucose does not play any relevant
role in osmotic adjustment under stress in these particular species. The molecular basis of this behavior
is not known, but could be possibly related to a rapid turnover of glucose in these taxa, used as an
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energy source and/or as a building block for the synthesis of polysaccharides required under stress
conditions. For example, it has been recently reported that drought causes changes in the cell walls in
leaves and stems of miscanthus, a biofuel crop, with an increase in their hemicellulose contents [26].
In any case, Limonium taxa are characterized by a large diversity in the type of compatible solutes
that accumulate in response to abiotic stress treatments. The osmolytes herein identified have already
been reported in other Limonium species, including plant material from natural habitats [18,27], but
along with a considerable number of other compounds, such as choline-O-sulfate, alanine, betaine, or
distinct polyalcohols (e.g., myo-inositol, pinitol, or chiro-inositol) [17,28,29]. The simultaneous synthesis
of distinct osmolytes has been observed in Limonium [17] as in other Plumbaginaceae species [30].
The concomitant synthesis of distinct osmolytes is a helpful strategy adopted by stress-tolerant taxa
because it enables them to adapt better to the stressful environments they live in [31].

Drought, just like any other abiotic stress, increases levels of ROS, which, in excess, oxidize
unsaturated fatty acids in cell membranes, amino acid residues in proteins, and DNA molecules,
and thus provoke cellular damage [32]. Hydrogen peroxide is the most relevant stable non radical
among ROS that is produced in peroxisomes and chloroplasts, and is thought to be a good marker
of the extent of oxidative stress [33]. According to our experiments, the leaf H,O, levels showed no
marked variation in the stressed plants versus the non-stressed controls in the studied four species.
Malondialdehyde (MDA) is a lipid peroxidation product employed as a reliable oxidative stress marker
in both animals and plants [34]. The standard method followed to assess the ability of compounds
to act as hydrogen donors or free radical scavengers is DPPH free radical scavenging by indicating
specific biological samples’ general antioxidant activity [35]. For all four Limonium taxa herein analyzed,
neither the total free radical scavenging activity of the leaf extracts nor MDA contents significantly
differed between the water-stressed and control plants, except for a slight, but statistically significant,
increase in MDA levels in the leaves of L. narbonense. These findings indicate that the water deficit
treatment did not lead to a detectable degree of oxidative stress in the plants, which was likely owing
to the activation of efficient antioxidant systems. However, such systems do not include antioxidant
compounds such as flavonoids or phenolic compounds, in general, because their leaf concentrations
did not vary in response to stress treatment. We found similar results in halophytes sampled in the
wild, which did not show a seasonal variation of MDA, although environmental conditions drastically
changed in summer [36]. A review on ROS homeostasis in halophytes has demonstrated that they do
not require high antioxidant activity levels because they do not generate ROS in excess thanks to their
efficient mechanisms that avoid oxidative stress [37]. It is believed that enzymatic antioxidant systems
constitute the first line of defense against oxidative stress, whereas phenolic compounds (including
flavonoids and other metabolites with antioxidant activity) are a secondary ROS scavenging system
that is activated only under severe stress conditions when antioxidant enzymes do not suffice [38].
Thus, with the Limonium species chosen for this research, activation of antioxidant enzymes seemed
sufficient to counteract the oxidative stress that the water deficit treatment generated, as formerly
reported for other Limonium species under salt stress conditions [39].

SOD constitutes primary defense against ROS by catalyzing dismutation of superoxide radicals
into O, and HyO, [40]. SOD-specific activity is enhanced when the superoxide substrate is present
by the transcriptional activation of corresponding genes, that is, by the de novo synthesis of the
enzyme [41]. After SOD, CAT acts by decomposing the produced H,O; into O, and H,O, induced by its
substrate accumulating [42]. APX catalyzes the reduction of HyO,, coupled to ascorbate oxidation. GR
contributes to recover and maintain the adequate cellular redox state by reducing oxidized glutathione
(GSSG) to its reduced form (GSH), which it does by employing NADPH as a cofactor [43].

In general, the specific activities of these antioxidant enzymes were enhanced in response to water
stress in all four selected Limonium species, albeit quantitative differences were found in different taxa.
Limonium santapolense displayed the strongest response as the four activities significantly increased in
the stressed plants versus the controls. The induced SOD, APX, and GR levels were higher than those
of the other three species, and only CAT displayed less activity, which was below that measured in
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L. narbonense or L. girardianum. Different patterns were observed for enzymatic antioxidant responses in
the remaining taxa. SOD activity in L. virgatum did not vary in the water-stressed plants and remained
quite high in the non-stressed controls. APX, CAT, and GR activities significantly increased with stress,
but the absolute activity values remained very low for APX and CAT. In L. girardianum, antioxidant
defense was dependent on the constitutive presence of relatively strong GR and CAT activities, with
water stress-induced SOD and APX contributing less. Finally, water stress in L. narbonense did not
activate SOD, but instead induced marked increases in GR and CAT activities, and also in APX to a
much lesser extent.

In summary, the four analyzed Limonium taxa are relatively resistant to drought, partly on the
basis of the presence of constitutive stress tolerance mechanisms, such as the active transport of
mono an divalent cations to the leaves, contributing to osmotic balance, as well as on the water
deficit-induced accumulation of specific osmolytes and the increased activity of antioxidant enzymes.
These induced responses showed different qualitative and quantitative patterns, allowing a clear
separation of L. santapolense from the other three taxa; this species activated the strongest drought
responses through the specific accumulation of high levels of Pro and Fru, as functional osmolytes,
and the significant increase in the specific activities of the assayed antioxidant enzyme systems, SOD,
APX, GR, and, to a lesser extent, CAT.

4. Materials and Methods

4.1. Sampling Sites and Seed Sampling

Mature capsules of L. santapolense were collected from Clot de Galvany, a salt marsh located near
the city of Elche in the Province of Alicante (39.12° N/0.20° E), and those of the other three species came
from the ‘La Albufera’ Natural Park near the city of Valencia (38°15 N/0.42° W), Spain, in autumn 2016.
Seeds were separated from capsules and stored at room temperature for 2 months.

4.2. Plant Growth, Drought Treatments, and Sampling of Plant Material

Plants were obtained by directly sowing seeds on a mixture of commercial peat and vermiculite
(3:1). Seedlings were watered twice weekly with Hoagland nutrient solution [44]. After 3 weeks,
seedlings were transferred individually to 1 L pots and placed in plastic trays (five pots per tray).
One week later, stress treatments were initiated by entirely ceasing irrigation. The plants from the
control treatment were watered every 5 days with 1 L water added to each tray. After 1 month of
treatment, five stressed plants of each species and their control counterparts were harvested, together
with a fraction of the corresponding substrates. All the experiments were conducted in a controlled
environment chamber in a greenhouse under the following conditions: long-day photoperiod (16 h of
light), temperature set at 20 °C during the day and 17 °C at night, and relative humidity between 50%
and 80%, monitored by a Testo humidity data logger.

The leaves and roots of each harvested plant were collected and separately weighed. The following
plant growth parameters were measured in the leaf fraction: fresh weight of leaves (FWL), leaf water
content percentage (WCL), and leaf surface (LA). Five leaves from each plant were selected randomly
and scanned to measure the leaf surface with the Image]J software [45]. A fraction of the fresh material
was frozen in liquid N» and stored at —75 °C. Most of the remaining material was dried for several days
in an oven at 65 °C until constant weight was achieved. The water content percentage in leaves was
calculated as WCL (%) = [(FWL — DWL)/FWL] x 100 [36]. The root fraction of each harvested plant
was thoroughly cleaned by brushing with a fine paintbrush. Then, roots were briefly rinsed in Milli-Q
water, quickly blotted on filter paper, and dried at 65 °C to calculate the water content percentage of
roots (WCL), as for the leaf fraction. The total FW of roots could not be determined because it was not
possible to recover the whole root system of each plant.
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4.3. Substrate Analysis

Soil moisture was determined by the gravimetric method at the end of treatments—a fraction of
each soil sample was weighed (SFW), dried in an oven at 105 °C until reaching constant weight, and
then weighed again (DSW). Soil water content (in %) was calculated as

Soil humidity: WC% = [(FSW — DSW)/FSW] x 100. 1)

4.4. Photosynthetic Pigments

Chlorophylls a and b (Chl a, Chl b) and total carotenoids (Caro) were determined as previously
described [46]. Ten mL of ice-cold 80% (v/v) acetone was used to extract pigments from 0.05 g of
fresh leaf material. After mixing overnight and centrifuging for 10 min at 12,000 rpm, the supernatant
was collected, and its absorbance was measured at 663, 646, and 470 nm. Chl a, Chl b, and Caro
concentrations were calculated using described equations [46] and their contents were expressed in
mg g~! DW.

4.5. Ion Content Measurements

Ion contents were determined in root and leaf aqueous extracts, essentially as described by
Weimberg [47], by heating samples (0.05 g of dried ground plant material in 15 mL of water) for
15 min at 99 °C, followed by filtration through a 0.45 um filter (Gelman Laboratory, PALL Corporation,
Port Washington, NY, USA. Na* and K" were quantified with a PFP7 flame photometer (Jenway
Inc., Burlington, VT, USA). C1~ was measured using a chloride analyzer. Divalent cations (Ca?* and
Mg2+) were determined in an atomic absorption spectrometer SpectrAA 220 (Varian, Inc., Palo Alto,
CA, USA).

4.6. Osmolyte Quantification

Proline (Pro) was extracted from 0.05 g of leaf fresh material with 2 mL of a 3% (w/v) sulfosalicylic
acid solution to be quantified according to the acid ninhydrin method [48]. The extract, mixed with acid
ninhydrin, was heated at 95 °C for 1 h, cooled on ice, and extracted with toluene. The absorbance of the
organic phase was measured at 520 nm using toluene as a blank. Pro concentrations were expressed
as umol g~! DW. Glycine betaine (GB) was determined in 1-mL aqueous extracts prepared from 0.05 g
of the dry leaf material according to published procedures [49,50]. The extract was supplemented with
potassium iodide, kept on ice for 90 min, and then extracted with 1,2-dichlorethane (pre-cooled at
—20 °C). Finally, the absorbance of the sample was measured at 365 nm. GB content was expressed
as umol g~! DW. To quantify total soluble sugars (TSS), 0.05 g of the dry ground leaf material was
extracted with 3 mL of 80% (v/v) methanol and mixed on a rocker shaker for 24 h. The extract was
centrifuged, concentrated sulfuric acid and 5% phenol were added to the supernatant, and absorbance
was measured at 490 nm [51]. TSS contents were expressed as ‘milligram equivalents of glucose” (used
as the standard) per g DW.

4.7. HPLC Analysis of Soluble Carbohydrates

Plant fresh material (0.05 g) was boiled in 2 mL of milliQQ water for 10 min before being filtered
using 0.22 um filters. The soluble sugar fraction was analyzed using a Waters 1525 HPLC system
coupled to a 2424 evaporative light scattering detector (ELSD), as previously described [52]. The source
parameters of ELSD were the following: gain 75, data rate one point per second, nebulizer heating
60%, drift tube 50 °C, and gas pressure 2.8 Kg/cm?. Samples of 20 uL. were injected into a Prontosil
120-3-amino column (4.6 X 125 mm; 3 um particle size) and were maintained at room temperature with
a Waters 717 auto-sampler. An isocratic flux (1 mL/min) of 85% acetonitrile (J.T. Baker) was applied in
each run for 25 min. Glucose, fructose, and sucrose standards were employed to identify peaks by
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co-injection. Sugars were quantified with peak integration using the Waters Empower software, and
comparisons were made with the glucose, fructose, and sucrose standard calibration curves.

4.8. MDA, H,O,, DPPH, and Non-Enzymatic Antioxidants

MDA contents were determined essentially as described [53], with modifications [54]. Methanol
extracts (80% v/v) of the leaf material were mixed with 0.5% thiobarbituric acid (TBA) in 20% TCA, and
then incubated 15 min at 95 °C. The reaction was stopped on ice; the absorbance of the sample was
measured at 440, 600, and 532 nm; and the MDA concentration was determined using the described
equations [54].

The leaf hydrogen peroxide contents in both the control and treated plants were quantified as
previously described [55], with minor modifications. Dried leaf material (0.05 g) was extracted with a
0.1% (w/v) trichloroacetic acid (TCA) solution, followed by centrifuging the extract. The supernatant
was thoroughly mixed with one volume of 10 mM potassium phosphate buffer (pH 7) and two volumes
of 1 M potassium iodide. The absorbance of the sample was determined at 390 nm. Hydrogen
peroxide concentrations were calculated against an HyO, standard calibration curve and expressed as
umol g_1 DW.

The total antioxidant activity of extracts was evaluated by measuring the ability of samples to
quench the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), a synthetic free radical product whose
quenching by a scavenger substrate can be followed spectrophotometrically at 517 nm [35]. Plant dry
material (0.05 g) was extracted in 2 mL of 90% methanol, sonicated for 10 min, and centrifuged at
14,000 rpm for 15 min. Then, 50 pL of the soluble fraction was diluted with 2 mL of 96% ethanol. A
fraction of the resulting solution was diluted four times with 96% ethanol containing 125 uM DPPH.
The reaction mixture was incubated at 25 °C for 10 min, and the absorbance of the sample was measured
at 517 nm. A blank sample with no plant extract was included to check radical stability. The radical
scavenging activity (S) of each extract was expressed as a percentage and calculated as

S =100 — [(Ax/Ag) X 100] @)

where Ay is the absorbance of the DPPH solution in the presence of the extract, and A is the absorbance
of the blank.

Total phenolic compounds (TPC) and total flavonoid (TF) contents were determined in the same
methanol extracts used for the TSS measurements. TPC were quantified by running a reaction with the
Folin-Ciocalteu reagent [56]. Absorbance was measured at 765 nm, and the results were expressed as
equivalents of gallic acid, used as the standard (mg-eq-GA g~! DW). TF were measured following the
method described by Zhishen et al. [57] on the basis of the nitration of catechol groups in aromatic
rings and their reaction with AICl; at an alkaline pH. Absorbance was measured at 510 nm, and the
concentration of flavonoids was expressed in equivalents of the standard, catechin (mg eq C. g~! DW).

4.9. Enzymatic Antioxidant Activities

Crude protein extracts were prepared from the leaf material, frozen, and stored at —75 °C,
following the procedure described in Gil et al. [36]. The protein concentration in extracts was
determined according to Bradford [58] by the Bio-Rad reagent and bovine serum albumin (BSA) as
the standard. The specific activities of the four antioxidant enzymes in the protein extracts were
determined by spectrophotometric assays.

Superoxide dismutase (SOD) activity was determined by monitoring spectrophotometrically at
560 nm the inhibition of nitroblue tetrazolium (NBT) photoreduction in reaction mixtures containing
riboflavin as the source of superoxide radicals. One SOD unit was defined as the amount of enzyme to
cause 50% inhibition of the NBT photoreduction under the assay conditions [59].
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Catalase (CAT) activity was measured following the consumption of H,O, added to the extracts
by the decrease in absorbance at 240 nm. One CAT unit was defined as the amount of enzyme
decomposing 1 mmol of H,O, per minute at 25 °C [60].

Ascorbate peroxidase (APX) activity was determined following ascorbate oxidation in the presence
of the plant extract by the decrease in absorbance at 290 nm. One APX unit was defined as the amount
of enzyme to catalyze the consumption of 1 mmol of ascorbate per minute at 25 °C [61].

Glutathione reductase (GR) activity was quantified following the oxidation of NADPH, the
cofactor in the reaction of oxidized glutathione (GSSG) reduction, by a reduction in absorbance at
340 nm. One GR unit was defined as the amount of enzyme to oxidize 1 mmol of NADPH per minute
at 25 °C [62]. The minor modifications introduced into the originally published assays of CAT, SOD,
and GR are described in Gil et al. [36].

4.10. Statistics Analysis

Data were analyzed by program SPSS v. 16 and SYSTAT v. XVI. Before the analysis of variance,
the Shapiro-Wilk test was used to check for the validity of normality assumption and Levene’s test was
used for the homogeneity of variance. If the ANOVA requirements were accomplished, the significance
of the differences among treatments was tested by a one-way ANOVA at the 95% confidence level
and post hoc comparisons were made using the Tukey HSD (honestly significant difference) test. A
factorial ANOVA was performed for all parameters analyzed in the plants, considering two factors
of variability—treatment and species—and their interaction. A dendrogram according to all the
parameters recorded in the water-stressed plants was built by clustering the four species by the nearest
neighbor method, based on squared Euclidean distances. The parameters showing a significant
variation between the treatments measured in all plants (control and water-stressed) were correlated
using a PCA. All the means throughout the text are followed by SE.

5. Conclusions

The investigated Limonium species showed relatively good tolerance to water deficit stress under
controlled experimental conditions on the basis of some constitutive mechanisms of defense, such
as the active transport of mono- and divalent ions to aerial plant parts, which can help to maintain
cellular osmotic balance and avoid drought-induced leaf dehydration, or the marked activity of some
antioxidant enzymes detected in the non-stressed controls. In addition, water stress-induced responses
contributed to drought tolerance, including the accumulation of specific osmolytes and the activation of
enzymatic antioxidant systems. Interestingly, although the four species are closely related genetically,
their induced responses to water stress differed qualitatively and quantitatively with regard to the
contribution of different osmolytes and enzyme activities to those tolerance mechanisms.

The behavior of L. santapolense under stress differed from that of the other three species, as
indicated by the PCA and cluster analyses—L. santapolense was the species that showed the most
strongly induced responses to the water stress treatment, which agrees with the fact that it naturally
grows in a more arid environment than the habitats where the seeds of the other three taxa were
collected. Surprisingly, however, this apparently greater efficiency in the response to water deficit
did not lead to higher tolerance in our experiments. On the contrary, the determination of several
growth parameters demonstrated that L. santapolense was the most affected species by water stress.
These results strongly suggest that other mechanisms of defense that are not activated in greenhouse
experiments, most likely morphological adaptations of the plants, are responsible for this species’
tolerance to drought in its natural habitat. Further studies in the field, which combine biochemical
analyses of the plant material with morphological studies of plants, especially of their root system, are
required to confirm this hypothesis.
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