

plants Supplementary:

(a)

Figure S1. (a) Nitrate and total alkaloid content (% of dry weight [DW]) at harvest and after air curing (45 days post-harvest). Data were collected from three biological replicates. The average data are summarised in histograms, with error bars representing the SD. (b) Total and free amino acid content (mg/g of dry weight [DW]) at harvest and after air curing. The average data are summarised in histograms, with error bars representing the SD. Asterisks indicate statistical significance when comparing harvest to air cured conditions (Welch's two-sample t-test; n = 3; p *** < 0.001; * < 0.05).

	Tota	ıl aa	Free aa			
	Harvested	Air Cured	Harvested	Air Cured		
Asp + Asn	11.4	32.6	24.2	76.1		
Glu + Gln	14.1	10.4	31.9	4.5		
Ser	4.9	5.1	3.3	3.0		
His	2.5	2.6	2.8	2.2		
Gly	6.0	4.6	0.4	0.6		
Thr	5.3	3.8	5.5	0.9		
Arg	6.3	4.8	1.2	1.2		
Ala	6.6	5.0	2.7	1.2		
Tyr	3.9	2.0	1.4	0.1		
Val	5.5	3.7	2.1	0.4		
Met	1.7	1.1	0.3	0.0		
Trp	0.0	0.0	7.7	3.3		
Phe	5.9	6.7	3.1	3.8		
IIE	4.8	3.0	1.2	0.1		
Leu	9.2	5.7	1.0	0.2		
Lys	6.9	4.4	1.8	0.5		
Pro	5.3	4.5	9.6	1.7		
		100%				

Table S1. Distribution of total and free amino acid (%) content in mature leaves of burley tobacco at harvest and after air curing.

Table S2. Number of senescence-activated protease genes significantly induced after 48 h of leaf curing. The transcript accumulation of known proteases was compared between harvest time and after 48 h of curing. The numbers of proteases significantly upregulated after 48 h curing are listed according to category (n = 3; p < 0.05).

Protease Coding Gene Families	
Alpha/beta-hydrolases superfamily protein	1
Aspartic proteinase A1 (APA1)	5
CLP proteas/crotonase family protein	2
Cysteine proteinases superfamily protein	10
DegP protease 3	0
Eukaryotic aspartyl protease family protein	9
FTSH protease 8	0
Gamma-glutamyl transpeptidase 4	1
Heat shock protein 101	2
Ion protease 1 & 3	0
Metallopeptidase M24 family protein	0
Papain family cysteine protease	1
Peptidase M20/M25/M40 family protein	1
Protease-related	1
SAG 12	1
Serine carboxypeptidase-like	4
SERPIN	2
Signal peptide peptidase	1
SITE-1 protease	1
Subtilisin-like ser endopeptidase fam prot.	5
Ubiquitin-specific proteases	3
Total	50

Figure S2. Dipeptide metabolite abundance during the curing time course. Arbitrary units are used for quantification of each metabolite. The abundance of alanylleucine, leucylalanine, leucylglutamine, leucylglycine, valylleucine, prolylglycine, lysylleucine, calylglutamine, and isoleucylglycine is

presented at harvest, after 48, 96, and 192 h of curing, and at the end of curing (Cured). Datapoints are the mean of three biological replicates (n = 3). Vertical bars are standard deviation (SD).

Figure S3. Asparagine (Asn) synthesis. The asparagine synthesis pathway involves adenosine triphosphate (ATP)-dependent transfer of the amino group of glutamine to aspartate by asparagine synthetase (ASN). This catalytic reaction generates glutamate and asparagine [24].

Table S3. (a) Percentage of identical residues in ungapped alignment regions between tobacco, tomato, and arabidopsis asparagine synthetase (ASN) gene products. (b) Percentage nucleotide sequence identity between *Nicotiana tabacum* asparagine genes.

	AtA SN1	AtA SN2	AtAS N3	NtA SN5- T	NtA SN5- S	NtA SN1- T	NtA SN1- S	NtA SN3- T	NtA SN3- S	Soly c06g 0071 80	Solyc0 4g0552 00
AtAS N1	100	76.91	77.26	83.01	83.73	85.1	85.27	76.17	76.17	83.9	77.44
AtAS N2	76.91	100	91.33	77.22	76.99	78.03	78.03	84.64	84.64	76.82	85.46
AtAS N3	77.26	91.33	100	77.4	76.99	78.37	78.37	85.14	85.14	76.99	85.96
NtAS N5-T	83.01	77.22	77.4	100	97.88	90.27	89.91	77.16	77.16	93.81	80.2
NtAS N5-S	83.73	76.99	76.99	97.88	100	90.85	90.51	77.28	77.28	95.08	79.7
NtAS N1-T	85.1	78.03	78.37	90.27	90.85	100	98.31	77.62	77.62	90.34	80.45
NtAS N1-S	85.27	78.03	78.37	89.91	90.51	98.31	100	77.45	77.45	89.83	80.2
NtAS N3-T	76.17	84.64	85.14	77.16	77.28	77.62	77.45	100	100	75.93	64.73
NtAS N3-S	76.17	84.64	85.14	77.16	77.28	77.62	77.45	100	100	75.93	64.73
Solyc0 6g0071 80	83.9	76.82	76.99	93.81	95.08	90.34	89.83	75.93	75.93	100	79.95
Solyc0 4g0552 00	77.44	85.46	85.96	80.2	79.7	80.45	80.2	64.73	64.73	79.95	100

(a)

(b)

	NtASN5-T	NtASN5-S	NtASN1-T	NtASN1-S	NtASN3-T	NtASN3-S
NtASN5-T	100	96, 88	87, 1	86, 93	71, 31	71, 25
NtASN5-S	96, 88	100	87, 65	87, 48	71, 34	71, 28
NtASN1-T	87, 1	87,65	100	97, 74	71, 86	71, 91
NtASN1-S	86, 93	87, 48	97, 74	100	72, 14	72, 2
NtASN3-T	71, 31	71, 34	71, 86	72, 14	100	99, 77
NtASN3-S	71, 25	71, 28	71, 91	72, 2	99, 77	100

(b)

Figure 4. (a) Expression of the senescence marker gene *SAG12* and the small subunit of the Rubisco (*RBCS*) during the first 96 h of leaf curing on string (detached leaf) or stalk (attached leaf). Gene expression levels were quantified at different time points during air curing (h = curing time in hours). Data were collected from three biological replicates. Each datapoint represents the averaged FPKM (Fragments Per Kilobase of exon per Million mapped reads) values, which indicate the relative expression levels of the gene. Vertical bars signify the standard deviation (SD). Asterisks indicate statistical significance when comparing gene expression levels between the stalk- and leaf-curing methods (n = 3; ***p < 0.0011 t-test). (b) Variation in abscisic acid content during the first 96 h of air curing of detached or attached leaves. Data were collected from three biological replicates. Each datapoint represents the average abundance of abscisic acid in an arbitrary unit. Vertical bars are SD.

(a)

ASN1-S	ATGTGCGGGATCTTGGCTGTTTTGGGTTGTTCTGATGATTCTCAGGCCAAAAGGGTTCGT
ASN1-T	ATGTGCGGGATCTTGGCTGTTTTGGGTTGTTCTGATGATTCTCAGGCCAAAAGGGTTCGT
ASN5-T	ATGTGTGGGATCTTGGCTTTGTTGGGTTGTCCAGATGATTCTCAAGCCAAAAGGGTTCGA
ASN5-S	ATGTGTGGAATCTTGGCTTTGTTGGGTTGTTCAGATGATTCTCAGGCCAAAAGGGTTCGA
ASN1-S	GTTCTCGAGCTCTCTCGCAGGTTGAAGCATCGTGGACCAGATTGGAGTGGGCTGTATCAA
ASN1-T	GTTCTCGAGCTCTCTCGCAGGTTGAAGCATCGTGGACCAGATTGGAGTGGGCTGTATCAA
ASN5-T	GTTCTTGAGCTCTCTCGCAGGTTGAAGCATCGTGGACCAGATTGGAGTGGGATATATCAA
ASN5-S	GTTCTTGAGCTCTCTCGCAGGTTGAAGCATCGTGGACCAGATTGGAGTGGGATATATCAA
	米米米米米 米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米
ASN1-S	CATGGGGACTGTTACTTGGCACATCAGCGTCTAGCTATTGTTGATCCTGCTTCCGGTGAT
ASN1-T	CATGGGGACTGTTACTTGGCACATCAGCGTCTAGCTATTGTTGATCCTGCTTCCGGTGAT
ASN5-T	CATGGTGATTTTTACTTAGCACATCAACGTTTAGCAATTATCGATCCTACTTCTGGTGAT
ASN5-S	CATGGTGATTTTTACTTAGCACATCAACGTTTAGCAATTATCGATCCTGCTTCTGGTGAT
	***** ** * ****** ******* *** *** *** ***
ASN1-S	CAACCTCTGTTTAACGAAGATAAGACGATTGTTGTTACGGTAAATGGAGAGAGTCTACAAT
ASN1-T	CAACCTCTGTTTAACGAAGATAAGACGATTGTTGTTACG
ASN5-T	CAGCCTCTGTTTAATCAAGATAAGACGATTGTTGTTACAGTCAATGGAGAAATTTACAAT
ASN5-S	CAGCCTCTGTTTAATCAAGATAAGACGATTGTTGTTACAGTCAATGGAGAGATTTACAAT
	** ********** ************
ASN1-S	CACGAGCAACTTCGTAAGCAAATGCCTAATCATAAGTTCCGGACTGGCAGTGACTGTGAT
ASN1-T	
ASN5-T	CATGAGAAACTTCGTAATCTTATGCCTAATCACAAGTTCAGAACCGGAAGTGATTGTGAT
ASN5-S	CATGAGAAACTTCGTAATCTTATGCCTAATCACAAGTTCAGAACTGGAAGTGATTGTGAT
ACN4 C	
ASN1-S	GICATIGCACACCIATATGAAGAACATGGAGAAGATTITGTGGACATGCTGGATGGGATC
ASNI-I	
ASIND-2	
ASN1-S	TTCGCTTTTGTGTTATTGGATACTCGAGATAACAGCTTTCTTGTTGCTCGTGATGCCATT
ASN1-T	TTCGCTTTTGTGTTACTGGATACTCGAGATAACAGCTTTCTTGTTGCTCGTGATGCCATT
ASN5-T	TTCTCTTTTGTATTGTTGGATACGCGCGATAACAGCTTTCTTGCTGCTCGTGATGCGATT
ASN5-S	TTCTCTTTTGTATTGTTGGATACGCGCGATAACAGCTTTCTTGCTGCTCGTGATGCAATT
	*** ****** ** ****** ** ***************
ASN1-S	GGAATTACTTCCCTTTATATTGGTTGGGGACTTGATGGGTCTGTATGGATATCATCTGAG
ASN1-T	GGAATTACTTCCCTTTATATTGGTTGGGGACTTGATGGGTCTGTATGGATATCATCTGAG
ASN5-T	GGAATTACTCCCCTCTATATTGGTTGGGGACTTGATGGCTCTGTGTGGATTTCATCTGAG
ASN5-S	GGAATTACTCCCCTATATATTGGTTGGGGACTTGATGGCTCTGTGTGGATTTCATCTGAG
	******* **** ****

ASN1-S	CTTAAGGGCTTGAATGATGACTGCGAACATTTTGAAGTTTTCCCACCAGGGCACTTGTAC
ASN1-T	CTTAAGGGCTTGAATGATGACTGCGAACATTTTGAAGTTTTCCCACCAGGACACTTGTAC
ASN5-T	CTAAAGGGCTTAAATGATGATGTGAACATTTTGAAGTTTTCCCTCCC
ASN5-S	CTAAAAGGATTAAATGGTGACTGTGAACATTTTGAAGTTTTCCCTCCC
	** ** ** ** **** *** ** ***************
ASN1-S	TCTAGCAAGAATGGCGGCTTTAGGAGGTGGTACAATCCTCCTTGGTTCTCTGAGGCCATT
ASN1-T	TCTAGCAAGAATGGCGGCTTTAGGAGGTGGTACAATCCTCTTTGGTTCTCTGAGGCTATT
ASN5-T	TCGAGCAAGAATGGCGGGTTTAGGAGATGGTACAATCCTCAATGGTTCTCTGAGGCTGTT
ASN5-S	TCGAGCAAGAATGGCGGGTTTAGGAGATGGTACAATCCTCAATGGTTCTCTGAGGCTATT
	** ************ ******* ***************
ASN1-S	CCTTCCACTCGTTATGATCCCTTAGTTCTCAGGCGTGCCTTTGAAAATGCTGTTATCAAA
ASN1-T	CCTTCCACTCCTTATGATCCCTTAGTTCTCAGGCGCGCCTTTGAAAATGCTGTTATCAAA
ASN5-T	CCATCAAATCCTTATGACCCCTTAGTTCTGAGGCGTGCCTTCGAAAATGCTGTTATTAAA
ASN5-S	CCATCAAATCCTTACGACCCCTTAGTTTTGAGACGTGCCTTCGAAAATGCTGTTATCAAA
	** ** * ** *** ** ******** * ** ** *****
ASN1-5	
ASND-5	* ******* ***** ***********************
45N1-5	GTTGCTTCGATTACTGCTCGCTACTTGGCTGGTACAAAGGCTGCCAAGCAGTGGGGAGCA
ΔSN1 - T	
ASN5-T	
ASN5-5	GTTGCTTCTGTCACTGCTCGCTACTTGGCTGGAACAAAAGCTGCTAAGCAATGGGGAGCA
2010-0	******* * ***** ***********************
ΔSN1-5	
ASN1_T	
ASN5_T	
ASID-5	***************************************
ΔSN1-5	GTTGCTGACTACTTGGGAACCGTTCACCACGAGTTTCACTTCACCGTTCAGGATGGAATT
ASN1_T	
ASN5_T	GTTGCTGACTACTTGGGAACCGTTCACCACGAGTTCACCTTCACAGTTCAGGACGGAATT
ASID-5	***************************************
ΔSN1-S	<u>GATGCAATTGAAGATGTTATTTACCATATTGAGACATACGATGTAACGACAATCAGAGCA</u>
ΔSN1 - T	GATGCAATTGAAGATGTTATTTACCATATTGAGACATACGATGTAACGACAATCAGAGA
ASN5-T	GATGCTATTGAAGATGTTATTTACCATATCGAGACGTATGATGTAACGACGATCAGAGCA
ASN5-5	
	***** ********************************

ASN1-S	AGCACTCCTATGTTCCTTATGTCGCGTAAGATTAAGTCACTAGGAGTGAAGATGGTCATA
ASN1-T	AGCACTCCTATGTTCCTTATGTCGCGTAAGATTAAGTCACTAGGAGTGAAGATGGTTATA
ASIND-2	
	***** *********************************
ASN1_5	TCTGGGGAAGGATCTGATGAAGTGTTTGGTGGCTACTTGTACTTTCACAAGGCTCCCAAC
ASN1-5 ASN1 T	
ASNI-T	
ASN5-1	
ASN5-S	I CAGGGGAAGGC I CAGA I GAAC I G I I I GGCGGC I A I I I G I AC I I CCACAAGGC I CCGAAC
	** ******** ** ****** ****** ****** ****
ΔSN1-5	ΔΔGGΔΔGΔGTTCCΔCΔΔGGΔΔΔCΔTGTCGCΔΔGΔTTΔΔΔGCGCTTCΔCCΔΔTΔTGΔCTGC
ASN1-T	AAAGAAGAGTTCCACAAGGAAACATGTCGCAAGATTAAAGCACTTCACCAATATGACTGT
ASIND-5	
	** ***** ***** *** *** ****** ****** ****
ASN1-S	TTAAGAGCAAATAAGTCAACATCTGCATGGGGTTTAGAAGCTAGAGTCCCTTTCCTAGAT
ASN1-T	TTAAGAGCAAATAAGTCAACATCTGCATGGGGCTTAGAAGCTAGAGTGCCTTTCCTAGAT
ASN5-T	TTGAGAGCAAATAAGGCAACATCAGCATGGGGCTTAGAAGCTAGAGTACCATTTCTGGAT
ASN5-S	TTGAGAGCAAATAAGGCAACATCAGCATGGGGCTTAGAAGCTAGAGTACCATTTCTGGAT
	** *********** ****** ****** *******
ASN1-S	AAGGAGTTCATCAATGTTGCCATGAGTATTGATCCAGAGTGGAAGTTGATTAAACCAGAG
ASN1-T	AAGGAGTTCATCAATGTTGCCATGAGTATTGATCCAGAGTGGAAGTTGATTAAACCAGAG
ASN5-T	ΔΔΔGΔGTTCΔTCΔΔTGTTGCTΔTGΔGTΔTCGΔTCCTGΔΔTGGΔΔGΔTGΔTTΔΔΔCΔCGΔT
ASIND-5	** ********* ***** ********************
ASN1-S	CAAAGGAGGATTGAAAAGTGGGCTCTAAGGAGGGCCTTTGATGATGAGGAGCATCCTTAT
ASN1-T	CAAAGGAGGATTGAGAAGTGGGCTCTAAGGAGGGCCTTTGATGATGAGGAGCATCCCTAT
ASN5-T	CAAGGTAGGATCGAGAAGTGGGTTCTTAGGAAGGCTTTTGATGATGAGGAGCACCCCTAT
ADID-D	** * ***** ** ******* *** **** *** *** ***
ASN1-S	CTCCCAAAGCACATCCTGTATAGGCAAAAAGAACAATTCAGTGATGGCGTGGGCTATAGT
ASN1-T	CTCCCAAAGCACATCCTATACAGGCAGAAAGAACAATTCAGTGATGGCGTAGGCTATAGT
ΔSN5-T	CTCCCΔΔΔGCΔTΔTTTTGTΔCCGGCΔGΔΔΔGΔΔCΔΔTTCΔGCGΔTGGTGTΔGGCTΔTΔGT
ASIND-2	
	********** ** * * ** ****
ASN1_5	Τος ΑΤΑ GATEGACTC ΑΛΑ GC ΑΓ ΑΤΟ CTG ΑΛΟ ΑΛΟ ΑΤΟ ΤΟ ΑΤΑ GATE ΑΤΟ
ACN1-J	
ASN1-1	TGGATAGATGGACTCAAAGCACATGCTGAACAACATGTGACCAATAGGATGATGCTTAAT
ASN5-T	TGGATTGATGGGCTCAAAGCACATGCTGAACAACATGTGACTGATAGGATGATGCTTAAT
ASN5-S	TGGATCGATGGACTCAAAGCACATGCTGAACAACATGTGACTGATAGGATGATGCTTAAT
	***** ***** ***************************
ASN1-S	GCTTCACATATATTCCCTCATAACACACCCATTACAAAGGAAGCATACTACTATAGGATG
ASN1-T	GCTTCACATATATTCCCTCATAACACACCGATTACAAAGGAAGCATACTATTATAGGATG
ASN5-T	GCTTCACATATCTTCCCTCACAACACTCCAACTACAAAGGAAGCATACTATTACAGGATG
ASN5-5	GCTGCACATATCTTCCCTCACAACACTCCAACTACAAAGGAAGCATACTATTACAGGATG
	*** ****** ******* ***** ** ** * ******

ASN1-S	ATTTTCGAGCGCTTTTTCCCACAGAATTCAGCTGGGCTAACCGTTCCTGGAGGAGCAAGT
ASN1-T	ATTTTCGAGCGCTTTTTCCCACAGAATTCAGCTGGGCTAACCGTTCCTGGAGGAGCGAGT
ASN5-T	ATTTTTGAGAGGTTCTTTCCACAGAATTCAGCAAGGCTAACTGTTCCTGGAGGACCGAGT
ASN5-S	ATTTTCGAGAGGTTCTTCCCACAGAATTCAGCAAGGCTAACTGTTCCTGGAGGACCGAGT
	***** *** * ** ** *********************
ASN1-S	GTGGCGTGTAGCACAGCTAAAGCTGTAGAGTGGGATGCTTCTTGGTCAAAGAACCTTGAT
ASN1-T	GTGGCGTGTAGCACAGCTAAAGCTGTAGAGTGGGATGCTTCTTGGTCAAAGAACCTTGAT
ASN5-T	ATAGCTTGCAGCACGGCTAAAGCTATTGAGTGGGACGCTTCTTGGTCGAACAACCTTGAT
ASN5-S	ATAGCTTGCAGCACAGCTAAAGCTATTGAGTGGGATGCTTCGTGGTCGAACAACCTTGAT
	* ** ** ***** ******** * ******* ******
ASN1-S	CCTTCAGGCAGGGCTGCTATTGGTGTACATAACTCGGCTTATGAGAATCATGTACCTGCT
ASN1-T	CCTTCAGGAAGGGCTGCTATTGGTGTACATAACTCAGCTTATGAGAATCATGAACCTGCT
ASN5-T	CCTTCCGGTAGGGCTGCTATCGGTGTACATAACTCGGCTTATGACGATCATCTACCCGAT
ASN5-S	CCTTCCGGTAGGGCTGCAATCGGTGTACATAACTCGGCTTATGACGATCATCTCCCCGAT
	**** ** ******* ** ********************
ASN1-S	ATGGCTAATGGGAATTTGACCAAAAAAATCATTGGTCGTGTGCCTTCTATGGTAGAAGTT
ASN1-T	ATGGCTAATGGGAATTTGGCCACAAAAATCATTGGCCGTGCGCCGTCTATGGTAGAAGTT
ASN5-T	GTTGGTAATGGGAATTTGGACACAACGATCATCGATAATGTGCCAAGGATGGTAGGAGTG
ASN5-S	GTTGGTAATGGGAATTTGGACACAACGATCATCGATAATGTGCCGAGGATGGTAGGAGTG
	* * *********** ** ** ** ***** ** ** **
ASN1-S	GGTGCTGCTCCCGAGCTCACAATAAAGAGTTAG
ASN1-T	GGTGCTGCTCATGAGCTCACAATAAGGAGTTAG
ASN5-T	GGTGCTTCTGCAGAGCTCACAATAAGGAGCTAG
ASN5-S	GGTGCTGCTGCAGAGCTCACAATAAGGAGCTAG
	***** ** **********

(b)

ASN5-T	MCGILALLGCPDDSQAKRVRVLELSRRLKHRGPDWSGIYQHGDFYLAHQRLAIIDPTSG
ASN5-S	MCGILALLGCSDDSQAKRVRVLELSRRLKHRGPDWSGIYOHGDFYLAHORLAIIDPASGE
ASN1-S	MCGILAVLGCSDDSOAKRVRVLELSRRLKHRGPDWSGLYOHGDCYLAHORLAIVDPASG
ASN1-T	MCGILAVLGCSDDSOAKRVRVLELSRRLKHRGPDWSGLYOHGDCYLAHORLAIVDPASGE
	****** *** **** ***********************
ASN5-T	QPLFNQDKTIVVTVNGEIYNHEKLRNLMPNHKFRTGSDCDVIAHLYEEYGENFVDMLDG
ASN5-S	QPLFNQDKTIVVTVNGEIYNHEKLRNLMPNHKFRTGSDCDVIAHLYEEYGENFVDMLDGV
ASN1-S	QPLFNEDKTIVVTVNGEIYNHEQLRKQMPNHKFRTGSDCDVIAHLYEEHGEDFVDMLDG3
ASN1-T	QPLFNEDKTIVVTYEEHGEDFVDMLDG3
	***** ******
ASN5-T	FSFVLLDTRDNSFLAARDAIGITPLYIGWGLDGSVWISSELKGLNDDCEHFEVFPPGHLY
ASN5-S	FSFVLLDTRDNSFLAARDAIGITPLYIGWGLDGSVWISSELKGLNGDCEHFEVFPPGHL
ASN1-S	FAFVLLDTRDNSFLVARDAIGITSLYIGWGLDGSVWISSELKGLNDDCEHFEVFPPGHL
ASN1-T	FAFVLLDTRDNSFLVARDAIGITSLYIGWGLDGSVWISSELKGLNDDCEHFEVFPPGHLY *:***********************************
ASN5-T	SSKNGGERRWYNPOWESEAVPSNPYDPLVLRRAFENAVIKRLMTDVPEGVLLSGGLDSSL
ASN5-S	SSKNGGERRWYNPOWESEATPSNPYDPI VI RRAFENAVTKRI MTDVPEGVI I SGGI DSS
ASN1-5	SSKNGGERBUYNPPWESEATPSTRYDPLVI RRAFENAVTKRI MTDVPEGVI I SGGI DSSL
ASN1-T	SKINGGERBIJVNDI WESEATDSTDVDI VI DDAFENAVTKDI MTDVDEGVI I SGGI DSSI
ASNI-T	************ *************************
ASN5-T	VASVTARYLAGTKAAKQWGAQLHSFCVGLEGSPDLKAAREVADYLGTVHHEFTFTVQDG
ASN5-S	VASVTARYLAGTKAAKQWGAQLHSFCVGLEGSPDLKAAREVADYLGTVHHEFTFTVQDG
ASN1-S	VASITARYLAGTKAAKQWGAQLHSFCVGLEGSPDLKAAREVADYLGTVHHEFHFTVQDG
ASN1-T	VASITARYLAGTKAAKQWGAQLHSFCVGLEGSPDLKAAREVADYLGTVHHEFHFTVQDG
	*** ***********************************
ASN5-T	DAIEDVIYHIETYDVTTIRASTPMFLMSRKIKSLGVKMVISGEGSDELFGGYLYFHKAPM
ASN5-S	DATEDVTYHTETYDVTTTRASTPMELMSRKTKSLGVKMVTSGEGSDELEGGYLYEHKAPN
ASN1-5	
ASN1-T	DATEDVTYHTETYDVTTTRASTPMELMSRKTKSLGVKMVTSGEGSDEVEGGYLYEHKAP

ASN5-T	KEEFHTETCHKIKALHQYDCLRANKATSAWGLEARVPFLDKEFINVAMSIDPEWKMIKH
ASN5-S	KEEFHVETCHKIKALHOYDCLRANKATSAWGLEARVPFLDKEFINVAMSIDPEWKMIKH
ASN1-S	KEEFHKETCRKIKALHOYDCLRANKSTSAWGLEARVPFLDKEFINVAMSIDPEWKLIKPE
ASN1-T	KEEFHKETCRKIKALHQYDCLRANKSTSAWGLEARVPFLDKEFINVAMSIDPEWKLIKPE
ASN5-T	QGRIEKWVLRKAFDDEEHPYLPKHILYRQKEQFSDGVGYSWIDGLKAHAEQHVTDRMMLN
ASN5-S	HGRIEKWVLRKAFDDEEQPYLPKHILYRQKEQFSDGVGYSWIDGLKAHAEQHVTDRMMLM
ASN1-S	QRRIEKWALRRAFDDEEHPYLPKHILYRQKEQFSDGVGYSWIDGLKAHAEQHVTNRMMFN
ASN1-T	QRRIEKWALRRAFDDEEHPYLPKHILYRQKEQFSDGVGYSWIDGLKAHAEQHVTNRMMLN : *****.**.****************************
ASN5-T	ASHIFPHNTPTTKEAYYYRMIFERFFPQNSARLTVPGGPSIACSTAKAIEWDASWSNNLD
ASN5-S	AAHIFPHNTPTTKEAYYYRMIFERFFPQNSARLTVPGGPSIACSTAKAIEWDASWSNNLD
ASN1-S	ASHIFPHNTPITKEAYYYRMIFERFFPQNSAGLTVPGGASVACSTAKAVEWDASWSKNLD
ASN1-T	ASHIFPHNTPITKEAYYYRMIFERFFPQNSAGLTVPGGASVACSTAKAVEWDASWSKNLC *:******* ****************************
ASN5-T	PSGRAAIGVHNSAYDDHLPDVGNGNLDTTIIDNVPRMVGVGASAELTIRS
ASN5-S	PSGRAAIGVHNSAYDDHLPDVGNGNLDTTIIDNVPRMVGVGAAAELTIRS
ASN1-S	PSGRAAIGVHNSAYENHVPAMANGNLTKKIIGRVPSMVEVGAAPELTIKS
ASN1-T	PSGRAAIGVHNSAYENHEPAMANGNLATKIIGRAPSMVEVGAAHELTIRS
	************ * * **** ** * ** * ** *

Figure S5. Nucleotide and amino acid sequences of *Nicotiana tabacum* ASN1 and ASN5. (a) Coding sequence alignments for *ASN1* and *ASN5*. (b) Amino acid sequence alignments for ASN1 and ASN5. * indicates identical residues.

Figure S6. (a) *ASN1* and *ASN5* transcript levels in burley tobacco leaves. The relative expression levels of *ASN1* and *ASN5* transcripts were estimated by qPCR with RNA isolated from lower leaves after 3 days of curing. Data were collected from four plants. These data are summarised in histogram bars, in which each bar signifies the expression levels of *ASN1* and *ASN5* in ASN-RNAi plants relative to the wild-type (WT, control), and the error bar represents the SD. Asterisks indicate statistical significance when comparing WT control plants to ASN-RNAi plants (n = 4; ***p < 0.001; t-test). **(b)** Biomass of tobacco leaf tissues during growth (green stage; middle leaf position). Data were collected from four biological replicates (n = 4). These data are summarised in histogram bars, in which each bar signifies the weight of leaf tissue in grams (g), and the error bar represents the SD. Data were analysed by the t-test, and no significant difference was observed between the RNAi lines and WT plants. **(c)** Nicotine content (Nic) in tobacco leaf tissues. Data were collected from four biological replicates in histogram bars, in which each bar signifies the percentage of nicotine (% dry weight [DW]), and the error bar represents the SD. Data were analysed by the t-test, and no significant difference was observed between the RNAi lines and WT plants.