Supplementary materials

Predictive Binding Affinity of plant-Derived Natural Products Towards the Protein Kinase G Enzyme of *Mycobacterium tuberculosis (Mt*PknG)

Rana M. Qasaymeh ¹, Dino Rotondo ¹, Carel B. Oosthuizen ², Namrita Lall ^{2,3,4} and Veronique Seidel ^{1,*}

- ¹ Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; rana-mohammad-mahmoud-qasaymeh@strath.ac.uk; d.rotondo@strath.ac.uk; veronique.seidel@strath.ac.uk
- ² Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; u04405765@tuks.co.za; namrita.lall@up.ac.za;
- ³ School of Natural Resources, University of Missouri, Columbia, MO 65211, United States
- ⁴ College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015,, India.
- * Correspondence: veronique.seidel@strath.ac.uk; Tel.: +44-141-548-2751 (V.S.)

Received: 10 October 2019; Accepted: 31 October 2019; Published: date

Company 1	Р.	Р.	Docking	Ligand Efficiency		
Compound	reniforme	sidoides	Score	_	Indices	-
	Pher	nolics				
				LE1	LE2	LE3
Shikimic acid 3,5-di-O-gallate	AP		-10.7	0.31	0.51	0.02
(α,β)-3,4-Di-O-	AР		-10.6 (α)	0.31	0.53	0.02
galloylglucopyranoside	AI			0.51	0.55	0.02
			-10.0 (β)	0.29	0.50	0.02
Salidroside-6"-O-gallate	AP		-10.2	0.32	0.46	0.02
Glucogallin	AP	AP	-9.3	0.40	0.72	0.03
Shikimic acid 3-O-gallate	R	R	-9.1	0.40	0.65	0.03
<i>p</i> -coumaroyl-4- <i>O</i> -β -D-glucoside	AP		-9.1	0.40	0.61	0.03
Gallic acid butyl ester	AP		-8.3	0.52	0.75	0.04
Glycerol-1-gallate	AP		-8.2	0.48	0.82	0.03
Caffeic acid	R		-7.6	0.58	0.84	0.04
Ethyle gallate	AP	AP	-7.6	0.54	0.84	0.04
Ferulic acid	R		-7.5	0.54	0.75	0.04
<i>p</i> -coumaric acid	R		-7.4	0.62	0.82	0.05
<i>p</i> -coumaraldehyde	R		-7.0	0.64	0.78	0.05
Methyl gallate	AP, R	AP, R	-6.9	0.53	0.86	0.04
<i>p</i> -hydroxyphenyl acetic acid	AP		-6.9	0.63	0.86	0.05
<i>p</i> -hydroxybenzyl alcohol	AP		-6.7	0.74	0.96	0.05
Vanillic acid	R		-6.6	0.55	0.83	0.04
Protocatechuic acid	R		-6.5	0.59	0.93	0.04
<i>p</i> -hydroxybenzoic acid	R		-6.2	0.62	0.89	0.04
<i>p</i> -hydroxyphenyl ethanol	AP		-5.8	0.58	0.73	0.04

Table 1. Origin of *Pelargonium* natural products and their predicted free binding energy (docking score ΔG in kcal/mol) and ligand efficiency indices towards *Mt*PknG^{a.}

AP= Aerial parts; R = Roots.

LE1 defines the ligand efficiency coefficient calculated as -(Δ G/number of heavy atoms in the ligand). LE2 defines the ligand efficiency coefficient calculated as -(Δ G/number of carbons in the ligand). LE3 defines the ligand efficiency coefficient calculated as -(Δ G/molecular weight of the ligand).

Compound	<i>P</i> .	<i>P</i> .	Docking	Ligand Efficiency Indices		
•	reniforme	sidoides	Score			
	Coum	arins		LE1	LEO	LEO
9 hardream E 7				LEI	LEZ	LE3
8-nydroxy-5,/-		R	-8.8	0.42	0.80	0.04
Magnaliasida		D	07	0.25	0.54	0.02
5.6 dimothoxycoumarin 7 sulfate		P	-0.7	0.33	0.34	0.02
7 hydroxycoumarin 68 higulfata		P	-0.7	0.44	0.79	0.04
7 mothoxycoumarin 68 bisulfata		P	-0.7	0.40	0.97	0.02
6-hydroxy 57		Κ	-0.7	0.50	0.07	0.02
dimethovycoumarin-8-sulfate		R	-8.5	0.40	0.77	0.04
7-hydroxy-5.6-						
dimethoxycoumarin-8-sulfate		R	-8.4	0.40	0.76	0.04
6.7-dihydroxycoumarin-8-sulfate		R	-8.3	0.46	0.92	0.03
Isofraxoside		R	-8.3	0.32	0.52	0.02
5.6.7.8-tetramethoxycoumarin		10	0.0	0.02	0.02	0.02
(Artelin)		R	-8.2	0.43	0.63	0.03
7.8-dihydroxycoumarin-6-sulfate		R	-8.2	0.46	0.91	0.03
6-methoxycoumarin-7-sulfate		R	-8.2	0.46	0.82	0.03
8-hvdroxy-7-methoxycoumarin-6-						
sulfate		R	-8.1	0.43	0.81	0.03
5,6-dihydroxy-7-methoxycoumarin			- 0			
(Isofraxetin)	R		-7.9	0.53	0.79	0.04
7,8-dihydroxy-5,6-		р	7.0	0.46	0.70	0.02
dimethoxycoumarin		K	-7.9	0.46	0.72	0.03
7-hydroxy-6-methoxycoumarin-8-		D	70	0.41	0.79	0.02
sulfate		K	-7.8	0.41	0.78	0.03
8-hydroxy-5,6,7-	P	p	77	0.43	0.64	0.03
trimethoxycoumarin	K	K	-7.7	0.43	0.04	0.03
7,8-dihydroxy-6-methoxycoumarin		p	77	0.51	0.77	0.04
(Fraxetin)		К	-7.7	0.51	0.77	0.04
6,7,8-trihydroxycoumarin	R	R	-7.7	0.55	0.86	0.04
7-acetoxy-5,6-dimethoxycoumarin		R	-7.6	0.40	0.58	0.03
6,8-dihydroxy-7-methoxycoumarin		R	-7.6	0.51	0.76	0.04
8-hydroxy-6,7-dimethoxycoumarin	R		-75	0.47	0.68	0.03
(Fraxidin)	К		-7.0	0.47	0.00	0.05
7- hydroxy-5,6-		R	-75	0.47	0.68	0.03
dimethoxycoumarin (Umckalin)		K	7.0	0.47	0.00	0.00
6,8-dihydroxy-5,7-		R	-7.5	0 44	0.68	0.03
dimethoxycoumarin		1	7.0	0.11	0.00	0.00
Umckalin-7-β-D-glucoside		R	-7.5	0.28	0.44	0.02
5,6,7-trimethoxycoumarin		R	-7.4	0.44	0.62	0.03
6-hydroxy-5,7-dimethoxycoumarin	R		-7.4	0.46	0.67	0.03
(Fraxinol)						
7- hydroxy-6-methoxycoumarin	R	R	-7.3	0.52	0.73	0.04
(Scopoletin)					-	
1	AP= Aerial par	rts; K = Roots	5.			

Table 1. (Cont.). Origin of *Pelargonium* natural products and their predicted free binding energy (docking score ΔG in kcal/mol) and ligand efficiency indices towards *Mt*PknG^a.

LE1 defines the ligand efficiency coefficient calculated as -(ΔG /number of heavy atoms in the ligand). LE2 defines the ligand efficiency coefficient calculated as -(ΔG /number of carbons in the ligand). LE3 defines the ligand efficiency coefficient calculated as -(ΔG /molecular weight of the ligand).

Compound	P. reniforme	P. sidoides	Docking Score	Ligand Efficiency Indices		
	Flavo					
				LE1	LE2	LE3
Isoorientin 2"-O-gallate	AP	AP	-13.2	0.31	0.47	0.02
Isovitexin 2"-O-gallate		AP	-12.6	0.30	0.45	0.02
Kaempferol 3-O-β-D-rutinoside (Nicotiflorin)	AP		-12.2	0.29	0.45	0.02
Orientin	AP	AP	-11.8	0.37	0.56	0.03
Kaempferol 7-O-β-D-glucoside (Populnin)	AP		-11.6	0.36	0.55	0.03
Quercetin 3-O-β-D-rutinoside (Rutin)	AP		-11.4	0.27	0.42	0.02
Quercetin 7-O-β-D-glucoside (Quercimeritrin)	AP		-11.2	0.34	0.53	0.02
Isoorientin	AP	AP	-11.2	0.35	0.53	0.02
Vitexin	AP	AP	-11.2	0.36	0.53	0.03
Luteolin-7-Ο-β-D-glucoside (Glucoluteolin)		AP	-11.1	0.35	0.53	0.02
Isovitexin	AP	AP	-10.4	0.34	0.50	0.02
Kaempferol-3-O-β-D-glucoside (Astragalin)	R		-10.3	0.32	0.49	0.02
Myricetin	R		-10.2	0.44	0.68	0.03
Quercetin		AP	-9.9	0.45	0.66	0.03
Orientin 2"-O-gallate	AP	AP	-9.9	0.23	0.35	0.02
Naringenin-7- <i>O</i> -β-D-glucoside (Prunin)	AP		-9.8	0.32	0.47	0.02
Quercetin-3-Ο-β-D-glucoside (Isoquercetin)	R		-9.8	0.30	0.47	0.02
Kaempferol-3-Ο-β-D-galactoside (Trifolin)	R		-9.7	0.30	0.46	0.02
Vitexin 2"-O-gallate		AP	-9.7	0.23	0.35	0.02
Taxifolin-3- <i>O</i> -β-D-glucoside		AP	-9.7	0.29	0.46	0.02
Myricetin-3- <i>O</i> -β-D-glucoside (Isomericitrin)	R		-9.4	0.28	0.45	0.02
Dihydrokaempferol 3-O-β-D- glucoside		AP	-9.2	0.29	0.44	0.02
Taxifolin-7-Ο-β-D-glucoside	AP		-9.2	0.28	0.44	0.02
Epigallocatechin-3-O-gallate		AP	-9.2	0.28	0.42	0.02
Gallocatechin	R	R	-8.5	0.39	0.57	0.03
Afzelechin	R		-8.1	0.41	0.54	0.03
Catechin	R	R	-8.1	0.39	0.54	0.03
Dihydroquercetin (Taxifolin)	AP		-8.0	0.36	0.53	0.03

Table 1. (Cont.). Origin of *Pelargonium* natural products and their predicted free binding energy (docking score ΔG in kcal/mol) and ligand efficiency indices towards *Mt*PknG^a.

Dihydrokaempferol (Aromadendrin)	AP	-7.9	0.38	0.53	0.03
-------------------------------------	----	------	------	------	------

AP= Aerial parts; R = Roots.

LE1 defines the ligand efficiency coefficient calculated as -(ΔG /number of heavy atoms in the ligand). LE2 defines the ligand efficiency coefficient calculated as -(ΔG /number of carbons in the ligand). LE3 defines the ligand efficiency coefficient calculated as -(ΔG /molecular weight of the ligand).

Compound	P. reniforme	P. sidoides	Docking Score	Ligand Efficiency Indices			
Miscellaneous							
				LE1	LE2	LE3	
β-sitosterol	R	R	-10.3	0.34	0.36	0.02	
Phyllantusiin E	AP		-10.1	0.48	0.78	0.03	
Brevifolin carboxylic acid	AP		-10.0	0.48	0.77	0.03	
Phyllantusiin E O-methyl ester	AP		-9.2	0.42	0.66	0.03	
Reniformin	R		-9.1	0.27	0.34	0.02	
β-sitosterol-3- <i>O</i> -β-D-glucoside	R		-8.4	0.20	0.24	0.01	
4,6-Dihydroxyacetophenone 2- <i>O</i> - β-D-glucoside		AP	-7.6	0.33	0.54	0.02	

Table 1. (Cont.). Origin of *Pelargonium* natural products and their predicted free binding energy (docking score ΔG in kcal/mol) and ligand efficiency indices towards *Mt*PknG^a.

AP= Aerial parts; R = Roots.

LE1 defines the ligand efficiency coefficient calculated as - (ΔG /number of heavy atoms in the ligand). LE2

defines the ligand efficiency coefficient calculated as - (ΔG /number of carbons in the ligand). LE3 defines the ligand efficiency coefficient calculated as - (ΔG /molecular weight of the ligand).

Figure 1. a) Docked pose of rigid nicotiflorin (**3**) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (**3**) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer. **b)** Docked pose of flexible nicotiflorin (**3**) in the *Mt*PknG binding site showing molecular interactions - hydrogenbonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (**3**) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer. **b)** Docked pose of flexible nicotiflorin (**3**) in the *Mt*PknG binding site showing molecular interactions - hydrogenbonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (**3**) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer.

Figure 2. a) Docked pose of rigid orientin (4) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (4) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer. **b)** Docked pose of flexible orientin (4) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (4) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer.

Figure 3. a) Docked pose of rigid populnin (5) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (5) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer. **b)** Docked pose of flexible populnin (5) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (5) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer. **b)** Docked pose of flexible populnin (5) in the *Mt*PknG binding site showing molecular interactions - hydrogen-bonds as green dashed lines and hydrophobic bonds as pink/purple dashed lines- between (5) and *Mt*PknG, generated by BIOVIA Discovery Studio visualizer.

Figure 4. Overlay of the docked poses of the control inhibitor (green), isoorientin 2"-O-gallate (1) (yellow) and isovitexin 2"-O-gallate (2) (purple) in the *Mt*PknG binding site following rigid ligand docking, generated by BIOVIA Discovery Studio visualizer.