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Abstract: Anthocyanins, a protective substance in plant leaves, can accumulate in large quantities
under low-temperature induction. In order to explore the effect of anthocyanins in Mikania micrantha
leaves, the Rubisco, photosynthesis, pigments, and antioxidative capacity in mature leaves (ML)
and young leaves (YL) of M. micrantha were investigated in winter. YL were red on both the
adaxial and abaxial surfaces, while ML was red on the abaxial surfaces and green on the adaxial
surfaces. Compared with ML, the relative expression of the genes related to anthocyanin synthesis
and anthocyanin content were significantly higher in YL. Antioxidants such as flavonoids and total
phenols were found in higher quantities, and the total antioxidant capacity was also significantly
higher in YL. However, in ML, the Rubisco and chlorophyll content related to photosynthesis were
significantly higher. The stomata of ML displayed a larger aperture than YL, and the stomatal
conductance and photosynthetic rate were significantly higher in ML. The results suggested that
M. micrantha leaves could better adapt to the winter environment through changing the distribution
of anthocyanins in leaves of different maturity.
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1. Introduction

Low-temperature environments in winter can cause stress and damage to many plants. It can
reduce the metabolic rates [1], induce degradation of proteins, and depress the activity of antioxidant
enzymes [2]. Low-temperature stress can reduce photosynthetic efficiency by damaging the
photosynthetic apparatus and inducing oxidative stress [3]. Many strategies have been developed
in higher plants to improve tolerance to low-temperature environments [4]. Under low-temperature
conditions, some plants exhibit different adaptation modes through various complex metabolic pathway
networks [5,6]. One such example of this is the accumulation of nonenzymatic substances (such
as anthocyanin, phenylpropanoid, and terpenoids), to reduce the oxidative stress caused by low
temperatures by enhancing the antioxidant capacity in plants [7,8], and previous studies have shown
that anthocyanin accumulation increased significantly in leaves of Acmena acuminatissima during low
winter temperatures [9].

Anthocyanin is a colored antioxidant that can protect plants against many stresses caused by
both biotic and abiotic factors [10]. For example, in many plant species, anthocyanin accumulation
increases significantly under environmental stresses associated with light, temperature, nutrition,
or drought [11–13]. A previous study showed that the antioxidant capacity can be improved significantly
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by the antioxidant function of anthocyanin in plants [14]. Overexpression of chalcone synthase (CHS)
gene, a major enzyme gene in anthocyanin biosynthesis, increased anthocyanin content and reduced
oxidative stress caused by high light levels in Arabidopsis [15]. Anthocyanidin synthase (ANS) gene,
another major enzyme gene in anthocyanin biosynthesis, was found to contribute to greater sensitivity
to high light levels in ANS-deficient Arabidopsis. Furthermore, the expression of dihydroflavonol
4-reductase (DFR) gene, a major enzyme in anthocyanin biosynthesis, increased significantly under
high light stress [13]. Anthocyanin, a red substance, can absorb about 530 nm wavelength, playing
an important role in photoprotection. Research in woody species found that anthocyanins on the
surface of young leaves (YL) could filter part of the light energy, thus reducing the absorbance of light
energy and increasing the photoprotective ability [12]. However, low light intensity leads to an inability
of plants to grow because of insufficient energy [16]. Under low light conditions, the accumulation
of anthocyanin in plant leaves decreased significantly [17]. In order to adapt to changes in light
intensity, plants have developed certain strategies to capture and use light efficiently; for example,
the chlorophyll (Chl) a/b ratio and leaf thickness in many plant species change under different light
conditions [16,18]. There was also a reduction in the accumulation of colored substances, such as
anthocyanin, under low light conditions [17].

Mikania micrantha H. B. K., belonging to the Asteraceae family, is a plant native to Central and
South America. Currently, it is a common invasive species in many countries in Southeast Asia and
the Pacific region [19]. It is a species that prefers higher temperatures and high-light environments.
In order to adapt to the low-temperature (below 15 ◦C) environment in the winter in South China
(a region where M. micrantha had spread into), anthocyanins were accumulated in M. micrantha
leaves [20]. However, anthocyanin can reduce the absorbance of light by plant leaves [12], and through
this mechanism, the low-light environment can affect the growth of M. micrantha [21]. In this study,
we aimed to illustrate that the different distribution of anthocyanin in mature leaves (ML) and YL of
M. micrantha affected the adaption to low temperatures in winter.

2. Results

2.1. Morphology Characteristics of Mature Leaves and Young Leaves

The morphology characteristics of leaves showed that the color of YL was different from that
of ML. Both the adaxial and abaxial surfaces of YL were red, while the ML adaxial surfaces (MLD)
were green, and the ML abaxial surfaces (MLB) were red (Figure 1A,B). The absorbance of YL was
significantly higher than that of ML (Figure 1C) at 530 nm, suggesting that the anthocyanin content in
YL was higher.
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Figure 1. The morphology characteristics of leaves. (A) Adaxial surfaces of the mature leaves (MLD)
and young leaves (YLD). (B) Abaxial surfaces of the mature leaves (MLB) and young leaves (YLB).
(C) The absorbance of anthocyanin from mature leaves (ML) and young leaves (YL) (n = 5).

2.2. Antioxidants and Related Gene Expression of Mature Leaves and Young Leaves

The anthocyanin content in YL was significantly higher than in ML (Figure 2C). The contents of
flavonoids were higher in YL, and total phenols were also higher in YL (Figure 2A,B). The relative
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expressions of genes in the pathway of anthocyanin biosynthesis (CHS, DFR, and ANS) were significantly
higher in YL (Figure 2E–G). In addition, the results showed that the total antioxidant capacity in YL
was also significantly higher than in ML (Figure 2D).
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Figure 2. Antioxidant content of the leaves. Contents of flavonoids (A), total phenols (B), and
anthocyanins (C) of ML and YL (n = 5). Total antioxidant capacity (TAC) of ML and YL (G) (n = 5).
Relative expression of genes related to anthocyanin biosynthesis chalcone synthase (CHS), dihydroflavonol
4-reductase (DFR), and anthocyanidin synthase (ANS) (D–F) in ML and YL (n = 6). The error bars represent
standard errors for five to six biological replicates. Asterisks indicate different significant differences
(* P < 0.05, ** P < 0.01, *** P < 0.001) according to two-sided Student’s t-tests.

2.3. Contents of Chl and Rubisco in Mature Leaves and Young Leaves

The contents of Chl and Rubisco related to photosynthesis in ML were evidently higher than in
YL (Figure 3A,B). The values of Rubisco/Chl in YL were significantly lower than in ML (Figure 3C).
By contrast, the values of Chl a/b in YL were significantly higher than in ML (Figure 3D). In Figure 3E,
we can see Ponceau-stained membrane before Western blot analysis. The Rubisco large subunit (RL)
was analyzed using Western blotting, and it showed more RL in ML than in YL (Figure 3F).Plants 2019, 8, x FOR PEER REVIEW 4 of 11 
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2.4. Stomata and Gas Exchange of Mature Leaves and Young Leaves

The morphology characteristics of stomata and the parameters of gas exchange are presented
in Figure 4. There were more stomata in ML compared with YL, and stomatal apertures were larger
in ML (Figure 4A,B,G,H). As the main structure mediating gas exchange between leaves and the
environment, stomatal aperture can directly affect gas exchange. The results showed that stomatal
conductance (Gs) was lower in YL and higher in ML (Figure 4E). The values of net photosynthetic
rate (Pn), and transpiration rate (E) were consistent with the Gs (Figure 4C,F). By contrast, intercellular
carbon dioxide concentration (Ci) was higher in YL (Figure 4D).Plants 2019, 8, x FOR PEER REVIEW 5 of 11 
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Figure 4. Stomata and gas exchange of leaves. Phenotypic characteristics of stomata in ML and YL
(A,B). The net photosynthetic rate (Pn) (C), intercellular carbon dioxide concentration (Ci) (D), stomatal
conductance (Gs) (E), and transpiration rate (E) (F) of ML and YL (n = 10). Stomatal aperture and
density (G,H) of ML and YL (n = 5). The error bars represent standard errors for ten biological replicates.
Asterisks indicate different significant differences (* P < 0.05, ** P < 0.01, *** P < 0.001) according to
two-sided Student’s t-tests.
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3. Discussion

Mikania micrantha, a plant native to Central and South America, is both photophilic and
thermophilic [20–22]. It turned red in order to adapt to the winter environment of the area into
which it is spreading (Figure 1A,B). The reddening of M. micrantha leaves was mainly due to the
accumulation of anthocyanin (Figure 1C). Anthocyanin accumulation can be induced by a variety of
environmental factors, improving plant tolerance to biotic and abiotic stresses [8]. Our previous study
showed that M. micrantha leaves turn red in winter in low temperatures [20]. It indicated that the
low temperatures could induce the accumulation of anthocyanin in plant leaves. In winter, the YL
of M. micrantha turned red on both the adaxial and abaxial surfaces, while the ML only turned red
on the abaxial surfaces, with the adaxial surfaces turning green (Figure 1A,B). This is similar to the
results of woody plants, that is, from YL to ML, the red color gradually receded [12]; however, there
was also a difference—the abaxial surfaces of the ML of M. micrantha remained red, which may be
because M. micrantha is sensitive to low temperatures [20]. There are two main roles of anthocyanin
in plant leaves. Firstly, anthocyanin, being a colored substance, can filter light energy. Studies have
shown that anthocyanin attached to the surface of YL can play a role in photoprotection [23]. Secondly,
anthocyanin, being an antioxidant, can effectively scavenge reactive oxygen species; thus, it has been
shown that increasing the content of anthocyanin in leaves can increase the antioxidant capacity [9].

The major enzyme genes (CHS, DFR, and ANS) in the anthocyanin biosynthesis pathway [24] had
high levels of expression in YL (Figure 2E–G). Anthocyanins accumulated in YL and decreased
significantly in ML (Figure 2C). These results may be related to the photoprotective function
of anthocyanins [9]. Compared with ML, the content of Rubisco in YL was significantly lower
(Figure 3B,E,F). The content of Chl related to energy capture was significantly higher in ML, and the
value of Chl a/b also decreased in ML (Figure 3A,D), which may be due to the photosynthetic system of
ML being more efficient and needing to capture more light, while YL needs relatively low light energy.
It is important to maintain the balance between light reaction and carbon reaction to avoid the negative
effects of excessive light [25]. The value of Rubisco/Chl increased with the maturation of leaves,
indicating that the accumulation of Rubisco was slower than that of Chl during the maturation of
leaves, which has also been found in previous studies on woody plants [12]. Because the accumulation
rate of Chl is faster than Rubisco, it may be more likely to cause excessive light energy in YL and result
in photoinhibition. Therefore, increasing anthocyanins content in YL with less efficient photosynthesis
can effectively reduce light absorbance and increase the photoprotective ability. This has also been
confirmed in other plants [26,27].

Compared with YL, the MLD was green, but the MLB was red (Figure 1A,B). This may be related
to the low-temperature resistance in winter. Low-temperature stress can reduce the photosynthetic
efficiency by damaging the photosynthetic apparatus and inducing oxidative stress [3]. Anthocyanin
accumulation increased significantly in different plant tissues after low-temperature stress [11,20].
Therefore, the tolerance of plant leaves to low-temperature stress can be improved by the accumulation
of anthocyanin. In this study, the anthocyanin accumulated in both YL and ML of M. micrantha in winter
were significantly higher in immature YL (Figures 1C and 2C), which may be because anthocyanin was
also accumulated in the adaxial surfaces of YL to reduce the absorbance of light energy. The result was
consistent with the phenotypic characteristics. Flavonoids and total phenols, which are antioxidants,
accumulated in the ML and YL of M. micrantha in winter; the contents in YL were significantly higher
than in ML, and total antioxidant capacity was also higher in YL (Figure 2A,B,D). This indicates that
YL need more antioxidants in winter.

Photosynthesis is the main way for higher plants to accumulate organic matter. It is also the
basis for the rapid growth and high invasiveness of M. micrantha. The lower Pn of YL was due to the
fewer opened stomata, as was the lower content of Chl and Rubisco. The Pn of ML was significantly
higher than that of YL in winter (Figure 4C), which was also consistent with the results of Rubisco and
Chl. Low temperature damage to the photosynthetic apparatus limits photosynthesis in plants [17,28].
In winter, in order to improve the tolerance of leaves to low temperature, anthocyanins in ML of M.
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micrantha did not disappear completely but were retained in the abaxial surfaces of leaves (Figure 1B),
which meant a large number of antioxidants were accumulated in the leaves, thus improving the
antioxidant capacity. The results of Gs and E were consistent with Pn in YL because the stomata
apertures were smaller [29]. However, the Ci was significantly higher in YL due to the lower Pn of YL;
however, YL had a higher respiratory rate than ML [9,12].

4. Materials and methods

4.1. Plant Materials

M. micrantha was planted in the biological garden of South China Normal University, Guangzhou,
China. The method of planting was that of vegetative reproduction. The M. micrantha branches were
cut into lengths of about 10 cm with two stem nodes after the leaves had been cut off; these were
planted into soft soil that had been turned over, weeded, and routinely watered. The YL and ML of
M. micrantha exhibited a striking redness in December (the mean temperature and photosynthetic
photon flux density were 12.6 ◦C and 1100 µmol m−2 s−1, respectively). YL were red on both the
adaxial and abaxial surfaces, while ML were green on the adaxial surfaces and red on the abaxial
surfaces. ML and YL of M. micrantha were selected as research materials.

4.2. Pigment Estimation

Firstly, 0.1 g fresh leaves of M. micrantha were weighed, put into a 5 mL centrifugal tube with
4 mL 1% methanol hydrochloride (v/v), and then left in darkness at 4 ◦C for 24 h [30,31]. A new
4 mL centrifugal tube was selected, and a 2 mL sample with 2 mL chloroform and 1 mL ddH2O were
added successively. After mixing, the mixture was divided into two parts and the anthocyanin was
dissolved in the upper. The absorbance of the anthocyanin extract at 420–700 nm was determined by
ultraviolet spectrophotometer UV-2450 (Shimadzu, Tokyo, Japan). The anthocyanin content in the
leaves was calculated by the absorbance of anthocyanin extract at 530 nm using different concentrations
of cyanidin-3-glucoside as a standard curve.

The quantity of total phenols was determined by the Folin–Ciocalteu method, as described in
a previous study [32]. Firstly, 0.1 g fresh leaves of M. micrantha were weighed and put into a 2 mL
centrifugal tube with 1.5 mL 95% methanol and then left in darkness at 4 ◦C for 24 h. A new 4 mL
centrifugal tube was selected, and a 0.5 mL sample with 1 mL 10% Folin–Ciocalteu and 2 mL Na2CO3

were added successively. After mixing for 5 min, the ultraviolet spectrophotometer UV-2450 (Shimadzu,
Tokyo, Japan) was used to detect the absorbance of the mixture at 765 nm. The standard curves of
different concentration of Gallic acid were drawn, and the absorbance of the mixture at 765 nm was
used to calculate the total phenol content in the leaves using the standard curves.

The content of flavonoids was determined using the method described by Heimler et al. (2005) [33].
Firstly, 0.1 g fresh leaves of M. micrantha were weighed, put into a 2 mL centrifugal tube with 1.5 mL
95% methanol, and then left in darkness at 4 ◦C for 24 h. A new 4 mL centrifugal tube was selected, and
a 0.15 mL sample with 1.85 mL ddH2O, 0.2 mL 5%NaNO2, 0.3 mL 10% AlCl3, and 1 mL 1 M NaOH
were added successively. After mixing, the mixture was analyzed by ultraviolet spectrophotometer
UV-2450 (Shimadzu, Tokyo, Japan) at 510 nm. The standard curves of different concentrations of
Catechin were drawn, and the absorbance of the mixture at 510 nm was used to calculate flavonoids
contents in the leaves using the standard curves.

The content of chlorophyll was determined as follows. Firstly, 0.1 g fresh leaves of M. micrantha
were weighed, put into a 5 mL centrifugal tube with 4 mL 80% acetone, and then left in darkness at
4 ◦C for 24 h. Ultraviolet spectrophotometer UV-2450 (Shimadzu, Tokyo, Japan) was used to detect the
absorbance of the extract at 663 and 645 nm. The chlorophyll (Chl) content in the leaves was calculated
according to Wellburn (1994) [34].
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4.3. Total Antioxidant Capacity Determination

The total antioxidant capacity (TAC) of the leaves was determined according the method
described by Saha et al. (2008) [35]. Firstly, 0.1 g fresh leaves of M. micrantha were weighed, put
into a 2 mL centrifugal tube with 1.5 mL 95% methanol, and then left in darkness at 4 ◦C for
24 h. A new 4 mL centrifugal tube was selected, and a 0.1 mL sample extract and 2.9 mL 120 µM
1,1-diphenyl-2-picrylhydrazyl (DPPH) were added successively. After mixing for 10 min, an ultraviolet
spectrophotometer UV-2450 (Shimadzu, Tokyo, Japan) was used to detect the absorbance of the mixture
at 517 nm. The standard curve was drawn using DPPH of different concentrations, and the standard
curve was used to calculate the TAC of the leaves for the absorbance at 517 nm.

4.4. Gene Expression Analysis

Firstly, 0.1 g fresh leaves were weighed and ground in a mortar with liquid nitrogen. The RNA
in the leaves was extracted by TRIzol (Invitrogen, California, MA, USA) reagent, according to the
manufacturer’s instructions. The TopScript RT DryMIX (dT18) Kit (Enzynomic, Daejeon, Korea) was
used to synthesis the cDNA. The relative expression of the genes was detected using a Real-Time
PCR System (CFX96, Bio-Rad, California, USA). The reaction system and the SYBR Premix Ex TaqTM
II Kit (Takara, Tokyo, Japan), according to the manufacturer’s instructions, were used to analyze
the relative expression of the chalcone synthase protein gene (CHS), the dihydroflavonol 4-reductase
protein gene (DFR), and the anthocyanidin synthase protein gene (ANS). Relative gene expression
was calculated according to the 2−∆∆CT method [36]. The Actin gene was used as an internal
reference; the primer pairs were: forward: 5′-TGAAATACCCCATTGAGCATGG-3′, and reverse:
5′-GAATCCAGTACAATACCTGTGGTAG-3′. The primer pairs for the CHS gene were forward:
5′-ACATGCCTGGTGCAGATTACCA-3′, and reverse: 5′-AAGTGGGAATCGGAAGGTCCAC-3′.
The primer pairs for the DFR gene were forward: 5′-AGCTTTGATGAAGCCATTSAAGGTTGC-3′,
and reverse: 5′-TTCTTCACTGTCTTGGCTTT-3′. The primer pairs for the ANS gene were forward:
5′-TCAGCCGGTTGAAGAGAAGGAG-3′, and reverse: 5′-GAGGGCCAAATGGTCAAATCACGT-3′.

4.5. Rubisco Content

Firstly, 0.05 g fresh leaves of M. micrantha were weighed into a mortar, 1.5 mL of protein extract
(60 mM Tris-HCl (pH 7.8)) buffer was added, containing 0.1% (w/v) NaCl, 2% (v/v) glycerol, 5% (w/v)
polyvinyl pyrrolidone (PVP), which was then ground on ice. After grinding, the protein extract was
put into a 2 mL centrifugal tube at 4 ◦C centrifugation for 10 min at 12,000× g, and the supernatant was
the protein extract. Thereafter, 100 µL protein extract was absorbed, 100 µL protein loading buffer was
added, and it was then boiled for 5 min. The boiled protein mixture was added to 12% SDS-PAGE gel
and separated by Mini-PROTEAN 3 system (Bio-Rad, California, USA). Then, 12% SDS-PAGE was
photographed with GelDoc-It Imaging System (UVP, Upland, CA, USA). The location of Rubisco size
subunits was determined using a protein marker, and the Rubisco content was calculated by Total Lab
Quant software (Total Lab, Newcastle upon Tyne, UK).

The detection of the Rubisco large subunit (RL) was performed by Western blotting.
The polyvinylidene fluoride (PVDF) membrane was used to blot the proteins in 12% SDS-PAGE
gel. The PVDF membrane with RL was dyed with Ponceau, and the protein bands were recorded using
a digital camera. After cleaning the Ponceau dye on the PVDF membrane with TBST buffer (0.5 mL
of Tween20, 20 mL of 1 M Tris-HCl pH = 8.0, and 8.8 g of NaCl were added to 1 L of water), it was
soaked in 5% skimmed milk powder with TBST buffer for 1.5 h at 25 ◦C. After cleaning the PVDF
membrane with TBST buffer twice (4 min each time), the PVDF membrane was soaked in anti-Rubisco
antibody (Bioss, Beijing, China), which had been diluted 1500 times, for 50 min at 25 ◦C. After cleaning
the PVDF membrane with TBST buffer 3 times (4 min each time), the PVDF membrane was soaked in
goat antirabbit horseradish peroxidase-conjugated secondary antibody (Bioss, Beijing, China), which
had been 3000 times diluted, for 45 min at 25 ◦C. After cleaning the PVDF membrane with TBST buffer
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twice (4 min each time), RL on the PVDF membrane was illuminated by HRP substrate (Millipore,
Billerica, USA) and recorded with Tanon 5200 (Tanon, Shanghai, China).

4.6. Gas Exchange

The gas exchange parameters of M. micrantha leaves were measured by Li-6800 Portable
Photosynthesis System (LI-COR, Lincoln, Nebraska, USA). The time of measurement was from
9:00 to 11:00 in the morning on a sunny day. The temperature and humidity of the leaf measurement
chamber were set at 20 ◦C and 45%, respectively, and the light intensity was set at 800 µmol m−2 s−1

(the ratio of red to blue light was 9:1). The gas exchange parameters of the leaves were recorded when
they were relatively stable.

4.7. Stomatal Observations

Leaves of M. micrantha were immersed in a fixed solution (consisting of 2% polyformaldehyde
and 2.5% glutaraldehyde) at 4 ◦C for 12 h. Stepwise dehydration of fixed M. micrantha leaves was
carried out with different concentrations of alcohol (30–100%). Then, the critical-point-dried (using
CO2) leaves were sprayed with 30 nm gold. The stomatal phenotypic characteristics were observed
and recorded by scanning electron microscopy (SEM) (Q25, FEI, Oregon, USA), and stomatal aperture
and density were measured with ImageJ software.

4.8. Statistical Analysis

SPSS Statistics 19.0 (IBM, New York, NY, USA) software was used to analyze the data. The method
adopted was Student’s t-test. Mean results were considered to be significantly different at the level
p < 0.05. Sigmaplot 12.5 (Systat Software Inc., Richmond, USA) software was used to map the statistical
data. The data shown in the figure are means ± standard errors.

5. Conclusions

In summary, in order to adapt to the winter environment in the region into which it was spreading,
M. micrantha leaves accumulated anthocyanin, a red colored substance, showing redness in their leaves
because of it. The contents of anthocyanin and antioxidants were significantly higher in YL than in ML,
which improved the low-temperature protection. However, the photosynthetic system of YL was less
efficient due to less protection by the epidermis during the maturation of YL. Increasing anthocyanin
content on the adaxial surfaces of YL can reduce light absorbance and improve photoprotection. In ML,
the photosynthetic system of M. micrantha leaves is more efficient, and more light energy is needed
to increase the accumulation of organic matter, fade the anthocyanins on the adaxial surfaces of the
leaves, and improve the ability of light capture. However, low temperatures in winter can cause
oxidative stress on leaves, so the abaxial surfaces of ML retained anthocyanins. This additionally
increased the contents of other antioxidants in the leaves, which improved the antioxidant capacity of
ML. M. micrantha leaves, from young to mature, can better adapt to the winter environment of the areas
into which they are spreading through the change of anthocyanins at different stages of development,
which is conducive to the invasive nature of M. micrantha.
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