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Abstract: Poliomintha longiflora is a Mexican oregano, which has not been widely studied. This work
aimed to describe the chemical composition, antimicrobial and antioxidant activities present in
P. longiflora essential oil (EO), the hydrosol from EO extraction and extracts from waste solid residues
(WSRs), identified as ethanol extract, ethyl acetate extract and the subfractions of ethanol and
ethyl acetate extracts. The chemical characterization of the EO, hydrosol and WSR extracts was
performed by GC–MS and HPLC. Their antioxidant activity was evaluated using two methods,
and their antimicrobial activity was evaluated against Escherichia coli, Staphylococcus aureus, Listeria
monocytogenes, Bacillus cereus, and Salmonella Typhimurium. Thirty-one chemical components were
identified in the EO. The subfractions from the ethanol and ethyl acetate extracts contain methylmaleic
anhydride, thymoquinone, thymol, carvacrol, thymol acetate, carvacrol acetate, and phenolic acids.
The EO presented the highest biological activities for antioxidant (136.05 mg equivalent of ascorbic
acid/g (AAE/g); IC50 83.70 µg/mL of 2, 2-diphenyl-1-picrylhydrazyl (DPPH)) and antimicrobial
tests (minimal inhibitory concentration (MIC) value of 250–750 mg/L), while the hydrosol and the
ethyl acetate extract from WSRs had the lowest antioxidant activity (14.16 and 12.29 mg AAE/g
respectively), and the hydrosol had the lowest antimicrobial activity (MIC of 3000 mg/L). The data
suggest that Mexican oregano P. longiflora hydrosol and extracts from waste solid residues can still
have compounds with antimicrobial and antioxidant capacities.

Keywords: Poliomintha longiflora; oregano essential oil; hydrosol; extracts from waste solid residues;
antioxidant activity; antimicrobial activity

1. Introduction

In recent years, the characterization of bioactive compounds from essential oils and plant extracts
has been widely investigated for their use in the food and pharmaceutical industries [1,2]. Oregano is
one of the aromatic plants used as a food additive to enhance the flavor of food. The most commonly
commercialized oregano species are Greek oregano (Origanum vulgare ssp Hirtum (Link) Ietswaart) and
Mexican oregano (Lippia graveolens Kunth or Lippia berlandieri Schauer) [3]. Mexico is the second largest
oregano exporter [4], and Mexican oregano represents 35–40% of worldwide oregano production [5–7].
On the other hand, Poliomintha longiflora is one of the less commercialized Mexican oregano species
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(native from Coahuila and Nuevo León, Mexico) and it is commonly used as a substitute spice for
European oregano [8].

Oregano essential oil (EO) quality depends on the thymol and carvacrol content; these isomers are
responsible for oregano flavor [9,10] and their different biological properties include antioxidant [11],
antimicrobial [12], acaricidal [13], antiparasitic [14], and antifungal [15] capacities. It is widely known
that oregano EO is applied as a natural preservative, extending the shelf life of food products [16,17].
However, the application of oregano EO is limited due to its strong flavor.

During the extraction of EOs from plants and spices, a large number of by-products is produced,
which are discarded although they can still contain a large number of bioactive compounds. As an
example, the bioactive compounds from waste solid residues (WSRs) from Salvia sp. after EO extraction
were obtained by solvent extraction aided with ultrasound [18]. The extraction of polyphenols
from waste solid materials from the preparation of essential oils of Lavandula intermedia and Thymus
mastichina, among other aromatic plants, demonstrated their antioxidant capacity [19]. Therefore,
this study aimed to characterize Mexican oregano (P. longiflora) EO and its by-products and evaluate
their antioxidant and antimicrobial activities.

2. Results and Discussion

2.1. Chemical Characterization of EO and Partial Chemical Characterization of Hydrosol and Extracts from
Waste Solid Residues

The extraction yield of P. longiflora EO was 0.92 ± 0.03%, which is in the range reported previously,
with yields of 0.7 and 1.67, respectively [20,21]. In general, the extraction yield of EO from oregano
may vary from 0.1% to 3.0% depending on several factors including moisture content, plant type,
morphology, and extraction conditions [22].

The analysis of the P. longiflora EO chromatogram (Figure 1) shows 31 different chemical
compounds. Qualitative analysis showed that thymol, carvacrol, terpinolene, and carvacrol methyl
ether are the major compounds of EO (Table 1). In 2009 [20], a total of 11 chemical compounds were
reported in P. longiflora EO; all of them were also found in this study. Another report includes the
concentration of the major components of P. longiflora (cultivated in 2010) and four compounds that
were not reported before [8]. In a previous report, a difference in chemical composition was reported,
with 36 and 31 chemical compounds in P. longiflora EO harvested in different years (2005 and 2006,
respectively) [21]. A similar result was observed in 2016 for the EO of O. vulgare subs glandulosum,
where the chemical composition depended on the harvest year, with 38, 33 and 28 compounds in
2007, 2008 and 2009, respectively [23]. Quantitative characterization of P. longiflora EO shows a higher
concentration of thymol (1.97 ± 0.05 mg/mL) than carvacrol (0.89 ± 0.10 mg/mL). The results are
comparable to those obtained by other reports, showing that thymol is the greatest compound in
oregano Labiatae EO [24].
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After EO extraction, the hydrosol or floral water was obtained (water remaining in the steam
distillation equipment after EO extraction), and dried bagasse was also used for the preparation of
ethanolic and ethyl acetate extracts, as identified in Figure 2. GC–MS analysis of the ethanol (EOH)
and ethyl acetate (EAc) extracts was not possible due to interference in the samples, but in subfractions,
six volatile components were characterized (Table 1). Thymoquinone, thymol, carvacrol, thymol
acetate, and carvacrol acetate were not identified in the WSR ethanolic and ethyl acetate extracts by
GC–MS analysis since their concentration was too low to be detected or it was not possible to separate
them from noise. However, the compounds were concentrated in the subfractions, and it was possible
to determine their relative abundance in the non-polar fractions.
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Figure 2. Flow diagram of P. longiflora essential oil (EO), hydrosol and extracts from the waste solid
residues preparation procedure.

In the polar subfraction of the ethyl acetate extract (PSAc) and the polar subfraction of the ethanol
extract (PSOH), methylmaleic anhydride was detected; meanwhile, in the non-polar subfraction of
the ethanol extract (NPSOH) and the non-polar subfraction of the ethyl acetate extract (NPSAc),
thymoquinone, thymol, carvacrol, thymol acetate, and carvacrol acetate were detected. These last four
compounds were also identified in the EO. A similar result was reported by Milos, which informed
that thymoquinone, thymol, and carvacrol were determined in O. vulgare L. subs. Hirtum aqueous
extract [25]. In this regard, it has been indicated that it is not possible to obtain the total extraction of
volatile compounds from herbs and spices by hydrodistillation [26]; therefore, it is possible to extract
volatile compounds from oregano bagasse using different solvents.

Caffeic and rosmarinic acids (non-volatile compounds) were determined in extracts by HPLC.
All extracts obtained from waste solid residues of oregano after EO extraction presented rosmarinic
acid (Table 1); however, caffeic acid was found only in residual water and polar subfractions. Regarding
extracts from waste solid residues from the extraction process in P. longiflora, it was not possible to detect
caffeic acid, but it was detected in the polar subfractions of the WSR solvent extracts. The concentration
achieved during subfraction preparation led to the detection of caffeic acid in these samples, while only
trace amounts that were undetected by the analytical method may have been present in the extracts.
This information is consistent with results described by various authors who determined that the
main phenolic acid of the Lamiaceae family is rosmarinic acid [27–29], while caffeic acid was found in
minimal concentrations in O. onites L. extracts [28]. High concentrations of rosmarinic acid and trace
concentrations of caffeic acid in ethanolic extracts of O. vulgare have also been reported before [30].
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Table 1. Chemical composition, retention index, and retention time (min) of P. longiflora Mexican oregano essential oil, hydrosol and extracts from waste solid residues.

Peak Component RI RT (min) EO% c HS% d EOH% e EAc% f PSOH% g PSAc% h NPSOH% i NPSAc% j

1 Thujene a 924 4.11 2.41 — — — — — — —
2 a-Pinene a 932 4.2 1.66 — — — — — — —
3 Methylmaleic anhydride a 949 4.39 ND — — — 2.17 9.45 — —
4 Octen-3-ol a 974 4.31 2.24 — — — — — — —
5 b-Pinene a 974 4.43 3.57 — — — — — — —
6 Myrcene a 988 4.53 0.3 — — — — — — —
7 Phellandrene a 1002 4.63 0.25 — — — — — — —
8 4-Carene a 1008 4.7 2.76 — — — — — — —
9 p-Cymene a 1020 4.76 6.7 — — — — — — —

10 Limonene a 1024 4.83 2.81 — — — — — — —
11 Ocimene a 1032 4.87 0.02 — — — — — — —
12 Terpinolene a 1086 5.02 6.96 — — — — — — —
13 Linalool a 1095 5.28 1.12 — — — — — — —
14 Sabinene hydrate a 1098 5.41 1.33 — — — — — — —
15 Borneol a 1165 6.14 4.36 — — — — — — —
16 Terpinen-4-ol a 1174 6.22 0.24 — — — — — — —
17 a-Terpineol a 1186 6.33 0.25 — — — — — — —
18 Thymol, methyl ether a 1232 6.58 0.22 — — — — — — —
19 Carvacrol, methyl ether a 1241 6.66 7.81 — — — — — — —
20 Thymoquinone a 1252 7.19 ND — — — — — 2.25 3.04
21 Thymol a 1289 7.33 28.31 — — — — — 35.44 42.12
22 Carvacrol a 1298 7.48 17.06 — — — — — 20.75 30.08
23 Thymol acetate a 1349 8.09 0.84 — — — — — 2.92 3.62
24 Carvacrol acetate a 1370 8.36 0.71 — — — — — 3.82 4.12
25 Bourbonene a 1387 8.88 0.10 — — — — — — —
26 b-Caryophyllene a 1408 9.47 1.31 — — — — — — —
27 Farnesene a 1440 9.58 0.08 — — — — — — —
28 Muurolene a 1478 10.04 0.08 — — — — — — —
29 Germacrene D a 1484 10.3 0.08 — — — — — — —
30 Germacrene A a 1508 10.51 0.1 — — — — — — —
31 a-Cadiene a 1537 11.17 0.09 — — — — — — —
32 Caffeic acid b — 20.92 — 1.56 — — 1.85 1.35 — —
33 Rosmarinic acid b — 37.98 — 25.34 27.82 6.5 34 33.86 21.02 17.86

a Detection of compounds by GC–MS. The results are expressed as the relative abundance based on the total area of the chromatograph. b Detection of compounds detected by HPLC by
chemical standards and listed in order of chromatographic elution. c Essential oil. d Hydrosol obtained from the hydrodistillation of the EO. e Ethanol extract. f Ethyl acetate extract. g Polar
subfraction of the ethanol extract. h Polar subfraction of the ethyl acetate extract. i Non-polar subfraction of the ethanol extract. j Non-polar subfraction of the ethyl acetate extract.
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2.2. Total Phenols and Antioxidant Activity

The quantification of total phenolic compounds in the hydrosol and WSR extracts from the
hydrodistillation of P. longiflora has not been reported before. Table 2 shows the total phenol (TP)
quantification and antioxidant activity of P. longiflora Mexican EO oil and its by-products. As expected,
the higher content of TPs was obtained in EO, followed by EOH and EAc. The results obtained in this
study for EO (27.85 mg equivalent of gallic acid/g (GAE/g)) were higher than those reported in 2013 for
O. vulgare EO (16.30 mg GAE/g) [31]. On the other hand, higher concentrations of phenolic compounds
(35.40–55.40 mg GAE/g) have been reported in the clonal and commercial oregano ethanolic extracts,
respectively [32]. As observed, the TPs obtained in each extract were significantly affected (p < 0.05)
by the solvent used; in this aspect, EOH showed the highest TPs, while EAc presented the lowest
concentration of TPs.

The antioxidant activity, expressed as the iron reduction of ferric ion, indicated that EO is the best
antioxidant agent with 136.07 mg of AAE/g, followed by EOH (26.10 mg equivalent of ascorbic acid
(AAE/g)) extract. Teixeira reported a lower reducing power of O. vulgare EO (74.5 µmol AAE/g) [31]
than what we present here. On the other hand, the EAc and non-polar extracts presented a similar
reducing power activity, while the polar subfractions had the lowest antioxidant values for this test.

The determination of 50% inhibition (IC50) in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging
activity is usually done to compare the antioxidant capacity of different antioxidant compounds.
Similar to the TPs and ferric ion reducing test, the EO showed the highest antioxidant capacity
(83.70 ± 4.12 µg/mL DPPH). In this regard, the values obtained in this study are lower (higher
antioxidant activity) than those reported in 2004 and 2010 for the EO of O. vulgare sbsp Hirtum
(500 µg/mL DPPH) [33] and O. onites L. (116.74–132.93 µg/mL DPPH) [28], respectively. This variation
may be attributed to the difference in the chemical composition of oregano. Moreover, the aqueous
and bagasse extracts still had antioxidant capacity due to the rosmarinic and caffeic acid (structure
4 hydroxyl and 2 hydroxyls groups, respectively) and trace compounds of EO. Although the aqueous
extract and bagasse are considered residues, in P. longiflora, these by-products present similar IC50
values to those reported in a methanolic extract of L. gravelolens (152–207 µg/mL DPPH) [34] and in
O. vulgare L. aqueous extract (335.0 µg/mL DPPH) [35].
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Table 2. Total phenols quantification and antioxidant activity of P. longiflora Mexican oregano essential oil, hydrosol and extracts from waste solid residues a.

Analysis EO c HS d EOH e EAc f PSOH g PSAc h NPSOH i NPSAc j

Total phenols b (mg GAE/g) 27.85 ± 0.15 a 0.04 ± 0.00 f 11.81 ± 0.08 b 6.13 ± 0.06 c 0.33 ± 0.00 g 0.06 ± 0.00 h 3.77 ± 0.05 e 4.66 ± 0.09 d

Iron reduction b (mg AAE/g) 136.05 ± 0.05 a 14.16 ± 0.01 e 26.10 ± 1.45 b 12.29 ± 1.26 c 2.84 ± 0.55 d 0.32 ± 0.08 e 16.95 ± 2.34 c 21.18 ± 2.33 b

IC50
b (µg/mL DPPH) 83.70 ± 4.12 c 225.00 ± 9.43 b 151.90 ± 6.65 b 208.60 ± 12.25 b ND ND 447.20 ± 7.17 a ND

a Different letters within the same line are statistically different (p > 0.05). b Mean ± standard deviation from three independent measurements. c Essential oil. d Hydrosol obtained by the
hydrodistillation of EO. e Ethanol extract. f Ethyl acetate extract. g Polar subfraction of the ethanol extract. h Polar subfraction of the ethyl acetate extract. i Non-polar subfraction of the
ethanol extract. j Non-polar subfraction of the ethyl acetate extract.
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2.3. Antimicrobial Activity

Different authors have concluded that the antimicrobial activity of oregano EO is attributed to its
hydrophobic phenolic compounds [36–38], which interact with phospholipids that are present in the
cell membrane. The results obtained (Table 3) indicated that P. longiflora EO showed better biological
activity against Gram-positive bacteria than Gram-negative bacteria. Similar results were obtained
by different researchers for O. vulgare EO [39–44]. The higher resistance of Gram-negative bacteria to
EO is attributed, in part, to the complexity of the double cell membrane present, in contrast to the
structure of Gram-positive bacteria [45].

Table 3. Antimicrobial activity of P. longiflora Mexican oregano essential oil (EO), hydrosol, and extracts
from waste solid residues, and the minimal inhibitory concentration and minimal cactericidal
concentration (mg/L).

Microorganisms EO a HS b EOH c EAc d PSOH e PSAc f NPSOH g NPSAc h

Minimal Inhibitory Concentration (mg/L)

S. aureus 250 1000 1000 750 750 500 ND j ND
B. cereus 250 3000 750 500 750 500 ND ND

L. monocytogenes 500 NI NI NI NI 750 ND ND
S. Typhimurium 500 NI NI NI NI 750 ND ND
E. coli O157:H7 500 NI 1000 750 1000 750 ND ND

Minimal Bactericidal Concentration (mg/L)

S. aureus 500 1000 1000 1000 1000 750 1000 750
B. cereus 500 3000 1000 750 1000 750 750 1000

L. monocytogenes 500 NI NI NI NI 1000 NI 1000
S. Typhimurium 750 NI NI NI NI 1000 NI 1000
E. coli O157:H7 750 NI 1000 1000 NI 1000 1000 1000

a Essential oil. b Hydrosol obtained by the hydrodistillation of EO. The highest concentration tested was 3000 mg/L.
c Ethanol extract. d Ethyl acetate extract. e Polar subfraction of the ethanol extract. f Polar subfraction of the ethyl
acetate extract, g Non-polar subfraction of the ethanol extract. h Non-polar subfraction of the ethyl acetate extract.
i No inhibition observed at the highest concentration tested. Except for hydrosol, the highest concentration tested
was 1000 mg/L. j Not determined. These are the results of three independent measurements.

Hydrosol had a mild antimicrobial activity and was more effective against S. aureus. Although the
volume needed for antimicrobial activity against most of the tested microorganisms can be considered
high (3000 mg/L or higher), the hydrosol was not concentrated, and the bioactive compounds
present can, therefore, be found in low concentrations. Regarding the ethanolic and ethyl acetate
extracts, the minimal inhibitory concentration (MIC) values were high as compared with the EO,
but antimicrobial activity can still be considered important for S. aureus and B. cereus.

The non-polar subfractions contained a small number of volatile components and a high
chlorophyll concentration, and the green color of the solution interfered with MIC determination;
therefore, only the minimal bactericidal concentrations (MBCs) are reported (Table 3). From the
subfractions, the PSAc had MIC values of 500–750 mg/L, while the NPSAc had a bactericidal activity
of 750 mg/L against S. aureus, and 1000 mg/L for all the other strains tested. On the other hand,
B. cereus was the most sensitive bacteria, followed by S. aureus and E. coli. Based on the data of MBC,
the hydrosol, the ethanolic and ethyl acetate extract as well as the subfractions from the ethanolic
extract, did not present bactericidal activity against L. monocytogenes and S. Typhimurium at the tested
concentration. The antimicrobial activity of the extracts and subfractions can also be attributed to
phenolic acids present in the samples, but not determined in this research.
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3. Materials and Methods

3.1. Plant Material

The leaves and stems of P. longiflora were provided by the Cirena (Centro de Investigación
en Recursos Naturales, Salaices López Chihuahua, Mexico). The P. longiflora was authenticated by
botanists of the Department of Biology of Benemérita Universidad Autónoma de Puebla, Puebla,
Mexico by visual inspection and comparison with the herbarium reference by a database. The plant
material was used to obtain the essential oil (EO), aqueous extract and bagasse.

3.2. Essential Oil Extraction

Four hundred grams of dry powder of P. longiflora was placed in a Clevenger-type apparatus for
3 h. The EO was dried using anhydrous sodium sulfate and stored at 4 ◦C until used. The EO yield was
obtained as the relation between the weight of dry EO and dry matter of P. longiflora Mexican oregano.

3.3. Preparation of Hydrosol and Waste Solid Residue Solvent Extracts

Hydrosol (HS) was considered as the water retained in the distillation flask at the end of the
oregano hydrodistillation process. The residual water was filtered (Whatman grade 4) two times
and kept in the dark at 4 ◦C in liquid form for further analysis. Oregano bagasse was considered
as the waste solid residues left after the distillation for EO preparation. The bagasse was used to
obtain both ethanol extract (EOH) and ethyl acetate extract (EAc) by maceration, according to the
methodology proposed in 2003 [30]. The waste solid residues (free of EO) were filtered from the
hydrosol and dried at room temperature for 24–48 h. The dried bagasse (18 g) was placed in an amber
flask, 160 mL of either ethanol or ethyl acetate (J.T. Baker, Mexico City, Mexico) was added, and the
flask was hermetically closed. The flask was left undisturbed for 24 h in a dry, dark place, and was
further filtered (Whatman grade 4) and concentrated in a rotary evaporator (total dryness) for its
analysis. The WSR extracts, EOH and EAc, showed a green coloration due to high chlorophyll content
(yield of 16.93 and 35.98 mg/g of oregano WSR, respectively).

The ethanol and ethyl acetate bagasse extracts were further separated by liquid–liquid extraction.
To an aliquot of 50 mL of the ethanol or ethyl acetate extract, without concentration, a formic acid
solution (1% v/v) was added to achieve a final pH value of 2. The mixture was placed in a separation
funnel and chloroform was added for the liquid–liquid extraction procedure. The formic acid-soluble
fraction was the polar phase and was transparent, i.e., chlorophyll-free; the organic non-polar phase
chloroform-soluble contained an elevated concentration of chlorophyll and was green. The subfractions
were identified as a polar subfraction of ethanol extract (PSOH), a polar subfraction of ethyl acetate
extract (PSAc), a non-polar subfraction of ethanol extract (NPSOH) and a non-polar subfraction of
ethyl acetate extract (NPSAc). The yields of the ethanolic subfractions, PSOH and NPSOH, were 19.91
and 25.13 mg/g of extract respectively, and the yield of the ethyl acetate subfractions was 12.76 mg/g
of PSAc and 40.5 mg/g of NPSAc. The polar and non-polar extracts were concentrated until total
dryness. Figure 2 illustrates the preparation of all extracts from P. longiflora.

3.4. Partial Chemical Characterization of EO, Hydrosol, and WSR Extracts

Mexican oregano EO, the hydrosol and the extracts and subfractions obtained from oregano
bagasse were analyzed using a GC Perkin Elmer Turbo Mass Gold MS-Auto system XLTM
(Perkin-Elmer, Norwalk, CT, USA) with a splitless injector and 70 eV electronic fragmentation detector,
equipped with an AT-1 capillary column (30 m × 0.25 I.D. × 0.25 µm). Helium was used as the
carrier gas, and the following conditions were set for the analysis: the temperature of the injector and
detector was 220 ◦C; the initial oven temperature was 120 ◦C held for 1 min, followed by a ramp-up
of 3 ◦C/min up to 180 ◦C, and a second ramp-up of 25 ◦C/min up to 225 ◦C, and held at the final
temperature for 7 min, with a flow of 10 mL/min. For all samples (EO and extracts, at an initial
concentration of 10 mg/mL), ethyl alcohol was used as solvent for GC–MS analysis; the volume
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used for injection was 1 µL, and the relative abundance was determined for each of the components
identified in the chromatogram. The spectra obtained were compared with the mass spectra for the
respective pure compounds and with the mass profile of the same compounds available from the
US National Institute of Standard Technology (NIST) library. For the MS analysis, the molecular
weight range was of 35–430 m/z. The chromatographic peaks were identified by comparison with
their Kovats retention indices (RI), based on mass spectral-retention index libraries, considering the
temperature of analysis [46]. Thymol and carvacrol were further quantified by external standard
calibration (0.5 to 5.0 mg/mL), using the pure compounds (Sigma-Aldrich, St. Louis, MO, USA).
In all extracts, the rosmarinic and caffeic acids were elucidated using HPLC (Agilent model 1000,
Palo Alto, CA, USA) with a zorbax eclipse C18 reverse phase column (5 µm in particle size, 250 mm
in length and 4.6 mm in inner diameter) at 30 ◦C, with a wavelength of 280–520 nm, and a flow rate
of 1 mL/min, using the following solvent gradients: gradient A—90% water-ATF 0.1%; and gradient
B—10% ethanol.

3.5. Determination of Total Phenolic Content

The quantification of total phenols (TPs) was done according to previous work with some
modifications [47]. For the extracts, ethanol was used as solvent. In an amber glass, (2.23 mL)
distilled water was mixed with (150 µL) Folin–Ciocalteau reagent (Sigma-Aldrich, St. Louis, MO,
USA) and (20 µL) the EO or extract. The mixture was left to stand for 10 min at room temperature.
Afterwards, (600 µL) the Na2CO3 (15% w/v) (Sigma-Aldrich, St Louis, MO, USA) was added.
The mixture was stirred and incubated at 40 ◦C for 20 min. The TPs were determined using a
UV–Vis spectrophotometer (Perkin Elmer, Lambda 25, Waltham, MA, USA) at 760 nm. The TPs
were calculated as mg equivalent of gallic acid (GAE) per g of EO or g of dry weight in extracts,
using a standard curve (slope = 0.0211 mL/mg GAE; intercept = 0.0155 abs; R2 = 0.993) of gallic acid
(Sigma-Aldrich, St. Louis, MO, USA). For the EO and extracts, an initial concentration of 10 mg/mL
diluted in alcohol was used.

3.6. Antioxidant Activity

The iron reduction assay was determined according to the technique previously reported [48].
For the extracts, ethanol was used as solvent. The EO or ethanolic extract (1 mL) was mixed with
(2.5 mL) phosphate buffer and (2.5 mL) a solution of K3[Fe(CN)6] (1%) in an amber glass tube.
The mixture was incubated in a water bath at 50 ◦C for 30 min, then (2.5 mL) trichloroacetic acid
(J.T. Baker, Mexico City, Mexico) was added to it before it was centrifuged (International Equipment,
4279M-6, Nashville, TN, USA) for 20 min at 1800 rpm. An aliquot (2.5 mL) of the supernatant was
taken and mixed with (2.5 mL) distilled water and (0.5 mL) FeCl3. The absorbance was determined
using a UV–Vis spectrophotometer at 700 nm (Perkin Elmer, Lambda 25, Waltham, MA, USA). Ascorbic
acid (J.T. Baker, Mexico City, Mexico) was used as the standard (slope = 8.66 mL/mg AAE; intercept =
0.017 abs; R2 = 0.991). The results were expressed as mg equivalent of ascorbic acid (AAE) per g of dry
weight. For the EO and extracts, an initial concentration of 10 mg/mL diluted in alcohol was used.

The free radical scavenging capacity was evaluated using the DPPH (2, 2-diphenyl-1-
picrylhydrazyl) radical. In an amber glass tube, an aliquot (50 µL) of EO or the extracts at different
concentrations (0.000, 0.025, 0.125, 0.250, 0.375, and 0.500 M) was added with (1.95 mL) DPPH
(Sigma-Aldrich, St. Louis, MO, USA) methanolic solution (9 × 10−5 M). The mixture was stored
in a dark environment at room temperature until the reaction was stable (1 h approximately).
The absorbance was determined using a UV–Vis spectrophotometer at 517 nm (Perkin Elmer, Lambda
25, Waltham, MA, USA). The results were expressed as IC50 (mg/mL DPPH) values.

3.7. In Vitro Antimicrobial Test

The P. longiflora EO and extracts were evaluated against Salmonella Typhimurium ATCC 14028,
Staphylococcus aureus ATCC 25923, Listeria monocytogenes, Bacillus cereus ATCC 11778 and Escherichia coli
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O:157H7 ATCC 43888 following the methodology proposed by Hammer et al. [49]. The microorganisms
were grown to exponential phase (1.5 × 108 CFU/mL) in nutrient broth (BIOXON, Mexico city, Mexico)
at 35 ◦C for 18 h. One milliliter of the inoculum was transferred to 9 mL of trypticase soy broth,
and the EO or extracts at different concentrations (50, 100, 250, 500, 750 and 1000 mg/L) were added.
The samples were incubated at 37 ◦C for 24 h. Minimal inhibitory concentration (MIC) values were
determined as the lowest concentration without observed growth. Inoculated tubes without EO or
extracts were used as the control. For the determination of the minimal bactericidal concentration
(MBC), a loopful of tubes with no visible growth after incubation was inoculated in Trypticase Soy
Agar and incubated at 37 ◦C for 24 h. The MBC was reported as the concentration without microbial
growth detected in plates.

3.8. Statistical Analysis

The experiments were done in triplicate. The results were statistically analyzed by ANOVA using
the Minitab 14 program (Minitab Inc., State College, PA, USA). A p-value of 0.05 was used to determine
significant differences among averages with Tukey’s test.

4. Conclusions

The chemical characterization of P. longiflora Mexican oregano essential oil has shown thymol and
carvacrol as the major components, along with other volatile compounds to sum a total of 31 identified
components. The partial chemical characterization of the hydrosol, as well as the solvent extracts and
subfractions obtained from waste solid residues, demonstrated the presence of caffeic acid, rosmarinic
acid, methylmaleic anhydride, thymoquinone thymol, carvacrol, thymol acetate, and carvacrol acetate;
these last four compounds were also identified in the EO. P. longiflora EO and the extracts presented an
antioxidant capacity and a mild antimicrobial activity. Therefore, the hydrosol and the waste solid
residue or bagasse left after EO extraction can be further used as a source of bioactive molecules.
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