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Abstract: Most land plants can become infected by plant parasitic nematodes in the field.
Plant parasitic nematodes can be free-living or endoparasitic, and they usually infect plant roots.
Most damaging are endoparasites, which form feeding sites inside plant roots that damage the root
system and redirect nutrients towards the parasite. This process involves developmental changes
to the root in parallel with the induction of defense responses. Plant flavonoids are secondary
metabolites that have roles in both root development and plant defense responses against a range of
microorganisms. Here, we review our current knowledge of the roles of flavonoids in the interactions
between plants and plant parasitic nematodes. Flavonoids are induced during nematode infection
in plant roots, and more highly so in resistant compared with susceptible plant cultivars, but many
of their functions remain unclear. Flavonoids have been shown to alter feeding site development to
some extent, but so far have not been found to be essential for root–parasite interactions. However,
they likely contribute to chemotactic attraction or repulsion of nematodes towards or away from roots
and might help in the general plant defense against nematodes. Certain flavonoids have also been
associated with functions in nematode reproduction, although the mechanism remains unknown.
Much remains to be examined in this area, especially under field conditions.
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1. Introduction to Plant Parasitic Nematodes

Nematodes are small roundworms with a bilateral symmetry and unsegmented bodies [1].
Whilst most nematodes are free-living, ~7% (>4100 species) of the characterized nematodes belong
to the plant-parasitic nematode (PPN) group [2–4]. PPNs are agricultural pests that cause significant
crop damage and crop loss, estimated at up to $US 125 billion globally per annum [4–7]. This is due to
the diversion of host nutrients to PPNs and interference with transport processes, as well as physical
damage caused during feeding or migration, which can also result in secondary infections [8,9].

PPNs are classified into three orders—the Triplonchida, Dorylaimida, and Tylenchida—with the
majority of agriculturally damaging nematodes belonging to the last order [10]. These PPNs have
evolved a highly specialised feeding structure, termed the stylet, to feed on plant tissues, and often
display complex life-stages to suit their environment [11–13]. The tylenchids are classified based on
their trophic niche, either as aerial nematodes or root parasitic nematodes [10].

2. Plant–Nematode Interactions

Plant–nematode interactions often begin in the soil (Figure 1), where the PPNs perceive various
host cues using chemosensing, mechanosensing, thermosensing, redox potential sensing, humidity
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sensing, osmotic sensing, and electrosensing [14–16]. It is thought that PPNs possess similar
neuroanatomy and neurobiology as the free-living nematode model, Caenorhabditis elegans, and that
taxis towards a source of plant cues relies mainly on chemosensation, although these processes are
poorly understood in PPNs [14,17].
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Figure 1. Summary of interactions between plant hosts and plant-parasitic nematodes. Plant hosts
are infected by both root and aerial nematodes. Their interaction starts in the soil with the perception
of host cues by the nematode, followed by attraction or repulsion towards or away from the host.
Root nematodes include ecto- and endoparasites, with endoparasites causing the greatest damage due
to their induction of a complex feeding site, in which they reproduce.

Chemosensation in PPNs is strongly linked to their host range, with PPNs with narrow host
ranges thought to have sensitive chemosensation, such as the potato cyst nematode, Globodera pallida
and G. rostochiensis, and the soybean cyst nematode, Heterodera glycines, as they respond very strongly
to specific chemicals in the root exudates by hatching and moving towards the chemical [18,19].
In contrast, PPNs with a broad host range, such as the root-knot nematodes, Meloidogyne spp., also rely
on non-specific abiotic cues, namely low pH and CO2 gradients [20,21]. These signals are concurrently
analyzed by the chemoreceptors in the anterior receptors, the amphids, and in some PPNs, the posterior
receptors, the phasmids, to determine the orientation of the PPN [15,19]. In the event of a positive
response, the PPN orients itself towards the cue and begins its migration towards the source (Figure 1).
If the PPN does not find a compatible cue within its pre-parasitic life cycle (i.e., egg and juvenile
stages), it will reduce its metabolism, either by undergoing a quiescence process—e.g., the pre-parasitic
juvenile nematode ceases movement until stimulated—or it will enter a diapause process such as
delaying egg hatching [22,23].



Plants 2018, 7, 85 3 of 17

The next interaction occurs at the root interface, whereby root nematodes penetrate the root tissue
or remain external to the root, whereas aerial nematodes continue to migrate upwards to the stem
(Figure 1). Next, the PPNs commence feeding and mature, and finally start to reproduce inside or
outside the host. Aerial nematodes can feed on the bulb, stem, and foliage, whereas root nematodes
feed exclusively on the root [10,24]. Root PPNs deploy different parasitic strategies, being (1) either
migratory or sedentary during feeding, and (2) being either endoparasitic or ectoparasitic during
feeding and reproduction [10,25,26]. The most damaging PPNs belong to the sedentary endoparasitic
group, the root knot nematodes (Meloidogyne species) and cyst nematodes (Globodera and Heterodera
species), followed by the migratory endoparasites, the root lesion nematodes (Pratylenchus species)
and the burrowing nematodes (Radopholus species) [9,27]. The success of root sedentary endoparasites
can be attributed to the sophisticated exploitation of many different plant response pathways to alter
plant defense responses and to induce long-term feeding sites, and to the difficulty in diagnosing
infections due to below ground symptoms [24,27]. Overall, there has been limited success in controlling
PPNs via chemicals, biological control, or creating effective plant resistance [28–30]. Delivering
nematode resistance has included attempts at overexpression of specific genes, e.g., proteinase
inhibitors, or expression of RNAi constructs targeting nematode-specific genes in transgenic plants [28].
In addition, several resistance genes effective against parasitic nematodes have been cloned, many
of which resemble genes conferring resistance to other pathogens. For example, the Mi, Hiro A,
Gpa2, and Gro1-4 genes belong to the class of NBS-LRR genes and confer resistance to a number
of endoparasitic nematodes [31]. Other resistance genes, like Rhg1 and Rhg4 from soybean encode
proteins with extracellular LRR motifs, while others, like Hsp1pro1 do not show similarity to other
known genes [31]. So far, there has been limited success in transferring these resistance genes to
heterologous species. Resistance responses conferred by R genes include activation of a number of
defense responses, including hypersensitive response, to limit the spread of the pathogen. Flavonoids
are one class of plant metabolites that have been associated with enhanced resistance to pathogens,
including nematodes.

3. Flavonoids in Plants

Flavonoids constitute a large class of secondary carbon-based metabolites present in all land
plants. More than 10,000 different types of flavonoids have been described from a variety of
plant species. Flavonoids are a class of phenylpropanoids derived from the shikimate and acetate
pathways through the activity of a cytosolic multienzyme complex anchored to the endoplasmic
reticulum and typically contain a diphenylpropane backbone (C3-C6-C3), which forms the basis of
flavonoid subgroup classification [32]. There are several flavonoid subgroups based on their structural
properties, including the chalcones, flavones, flavonols, flavandiols, anthocyanins, condensed
tannins, aurones, isoflavonoids, and pterocarpans [33–35]. Flavonoids within the subgroups are
extensively modified through secondary modifications of the backbone, for example by hydroxylation,
glycosylation, methylation, malonylation, prenylation, acylation, dehydration, and polymerization [36].
The functions of individual flavonoids are strongly affected by their structure and include roles in plant
development via the control of auxin transport, flower pigmentation, as antioxidants (ROS scavengers),
as defense compounds, chemoattractants, signals for plant–microbe interactions (notably nodulation),
male fertility in some species and help in nutrient mining [35]. Flavonoids are actively exuded
into the rhizosphere, likely using ABC transporters and multidrug and toxic compound extrusion
(MATE) transporters in both aglycone and glycosidic forms [37–39]. Small amounts of flavonoids
also diffuse into the soil during root cap sloughing [40]. Most studies on flavonoid exudation have
measured flavonoid concentrations from the nano- to micromolar ranges in growth medium under
semi-sterile laboratory conditions [39]. Hence, their functions, bioavailability, mobility, concentrations,
and gradients in real soil situations with rhizosphere microorganisms are still poorly understood. Here,
we focus on the known roles of flavonoids as defense compounds and as developmental regulators
during feeding site formation.
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4. Flavonoids as Defense Compounds against Nematodes

A PPN will first encounter flavonoids in the soil when it is locating its host (Figure 1). This can
occur whilst the PPN is in the egg or juvenile stage. For PPNs in the egg stages, flavonoids can
inhibit egg hatching (Figure 2), as shown in a study by Wuyts and colleagues [41], in which kaempferol
inhibited Radopholus similis egg hatching. As for juvenile PPNs, flavonoids can: (1) induce quiescence by
slowing down their movement, resulting in periods of reversible inactivity; (2) modify their migration
towards the roots by repelling them; and (3) kill them (Figure 2). For example, the flavonols kaempferol,
quercetin, and myricetin repelled and slowed M. incognita juveniles at micromolar concentrations [41].
Patuletin, patulitrin, quercetin, and rutin were shown to kill the juveniles of H. zeae at various
concentrations and durations of exposure [42]. Flavonoid effects on PPNs are also species-specific.
Using similar concentrations of flavonols, kaempferol, quercetin, and myricetin repelled M. incognita
and R. similis juveniles, but not Pratylenchus penetrans, whereas the flavonols inhibited the motility of
M. incognita juveniles but not R. similis and P. pratylenchus juveniles [41]. Interestingly, in C. elegans
exposure of young adults (L4 stage) to 100µM flavonols, particularly kaempferol in liquid and plate
media, prolonged their lifespan through effects on an ageing-associated gene, the transcription factor
DAF-16, and by reducing mitochondrial reactive oxygen species (ROS) [43–45]. The differences
in flavonoid effects in different nematode species is likely due to the differences in chemosensory
receptors, flavonoid receptor binding affinities, cell signaling cascade, and solute permeability across
the cuticle in different species, although this has not been studied yet. Furthermore, not much is known
about the existence or functions of putative flavonoid receptors in any PPN.

Once the PPN has reached the plant, it inflicts mechanical damage to the plant tissue to penetrate
and/or to feed on the tissue. This is followed by the production and release of defense compounds
(i.e., phytoalexins and phytoanticipins) to respond to PPN attack (Figure 2). Although some flavonoids
such as (E)-chalcone, patuletin, and rutin killed pre-parasitic stages of cyst nematodes [42,46],
their accumulation, concentrations, and activity in planta is unclarified. In addition, numerous
studies have found increased flavonoid gene expression and flavonoid accumulation at infections
sites of both endo- and ectoparasitic PPNs, and induction of flavonoids has repeatedly been found to
be higher in resistant compared with susceptible host cultivars (summarised in Table 1). Flavonoids
that have most commonly been implicated as defense compounds against PPNs mostly belong to the
isoflavonoids and pterocarpan classes, (e.g., coumesterol, glyceollin (soybean-specific), formononetin,
and medicarpin) as well as the flavonols (e.g., kaempferol and quercetin) (Table 1). Some studies have
also shown that flavonoid glycosides are likely involved in defense, such as medicarpin glucoside
malonate and formononetin glucoside malonate [47].

The plant host and the PPN itself can manipulate the flavonoid biosynthesis pathway during
PPN pathogenesis directly or indirectly. One study suggested that yellow-coloured cyst nematodes,
G. pallida and G. rostochiensis, modified quercetin and kaempferol into a nematode-unique flavonoid,
quercentagetin [48]. Flavonoids are likely taken up by the PPN’s digestive system as the PPN feeds
on the cytoplasmic content. In endoparasitic PPNs, flavonoids may also diffuse through the cuticle
from nearby plant cells that surround the parasite within the root tissue. Nonetheless, it is not
well understood to what extent flavonoids accumulate inside nematodes, how they are processed,
or whether or not they play a role in the infection process.

The flavonoid biosynthesis pathway in the plant can be induced by a broad pathogenesis response
through jasmonic acid, salicylic acid, ethylene, auxin, and ROS cross-talks, likely triggered when the
PPNs cause mechanical damage and wounding during feeding and penetration [49,50]. Flavonoids
are also likely to be released from storage in the cytosol, vacuole, endoplasmic reticulum, chloroplast,
nucleus, and small vesicles during tissue damage or cell rupture [51]. Flavonoids have been found to
be induced in roots of plants only infected by nematodes in the shoot, suggesting that systemic signals
may induce flavonoid synthesis in infected plants, but so far it is unknown what these systemic signals
are [52]. Some of the flavonoid biosynthesis pathways can be manipulated by the PPN via the secreted
enzyme chorismate mutase, which regulates the shikimate pathway and thereby the downstream
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flavonoid, salicylic acid, auxin, and amino acid biosynthesis pathways in the plant [53]. Chorismate
mutase gene(s) or enzymes have been found in juveniles of endoparasitic PPNs such as M. javanica,
M. incognita, M. arenaria, H. glycines, H. schachtii, and G. pallida, in the esophageal glands, and are
potentially involved in the induction of their feeding sites, after being secreted into giant cells [54–60].

The flavonoids that accumulate at PPN feeding sites may affect nematode fertility and fecundity
(Figure 2) by limiting egg production or skewing the ratio of males to females, as more females are
formed under abundant nutrition and vice versa (e.g., Meloidogyne spp. and Heterodera spp.) [61].
A study by Jones et al. (2007) found that infection of transparent testa (tt) mutants of Arabidopsis,
which are defective in parts of the flavonoid pathway, i.e., tt4/tt6, tt4/tt5, and tt6, resulted in an
increased number of female cyst nematodes [62]. In contrast, a similar study by Wuyts et al. [63] using
different Arabidopsis flavonoid mutants, i.e., tt3, tt4, tt5, and tt7, infected with M. incognita, found
that the defects in the flavonoid pathway did not affect the number of adult females, egg masses,
eggs, or juveniles. A systematic dissection of the effects of specific flavonoid metabolites on fertility in
different types of nematodes still remains to be done.
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Figure 2. Flavonoids play multiple roles during plant–nematode interactions. The example shown
here is for root-knot nematodes. Flavonoids in the rhizosphere can have effects on the pre-parasitic
stages by inhibiting egg hatching, repelling hatched nematodes, inhibiting their movement and by
killing them. Synthesis of flavonoids is induced when the nematodes penetrate and migrate inside the
root; they can act as defense compounds or signals for defense via cross-talk with other defense/stress
pathways. Flavonoids can affect adult stages of nematodes by altering their fertility and/or fecundity.
The role(s) of flavonoids in feeding site development is less understood. They are postulated to be
involved in the inhibition of auxin transport, cell cycle regulation, and cell cytoskeleton rearrangement.
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Table 1. Summary of the involvement of plant flavonoids in plant–nematode interactions. Rows in red indicate studies demonstrating the role of flavonoids in
nematode defense responses, whereas rows in blue indicate studies demonstrating the role of flavonoids in nematode feeding sites and rows in purple indicate studies
intersecting across both roles.

Name of Enzyme/Gene/Metabolite Flavonoid
Accumulation Site Suggested Flavonoid Function Host Studied Nematode Studied Reference

Roots Glyceollin I and III accumulated more in the resistant cultivar
compared with the susceptible cultivar. Soybean, Glycine max Soybean cyst nematode,

Heterodera glycines [64]

Glyceollin

Stele in roots

Glyceollin was associated with the incompatible interaction
between the resistant cultivar and M. incognita: accumulation
was localised in the stele of resistant roots, high concentrations of
glyceollin in resistant cultivar and glyceollin inhibited the
motility of M. incognita.

Soybean, Glycine max
Root-knot nematodes,

Meloidogyne incognita. and M.
javanica

[65]

Leaves

Glyceollin accumulated at sufficiently high concentrations at
infection sites to result in a localised hypersensitive response. It
inhibited nematode motility and respiration as well as plant
tissue death via inhibition of mitochondrial electron transport
system.

In vitro system
Root-knot nematodes,

Meloidogyne incognita, and M.
javanica

[66]

Phaseollin Hypocotyl and root
Phaseollin found only in P. penetrans infected tissue. The survival
of P. penetrans juveniles incubated for 16 h in 47 µg/mL of
phaseollin solution was unaffected.

Common bean,
Phaseolus vulgaris

Root-lesion nematode,
Pratylenchus penetrans [67]

Sakuranetin Leaf Present only in resistant cultivars—suggested to be involved in
defense Rice Stem nematode, Ditylenchus

angustus [68]

White clover, Trifolium
repens

Stem nematode, Ditylenchus
dipsaci [47]

Lucerne, Medicago sativa Stem nematode, Ditylenchus
dipsaci [52]

i. Formononetin and
Formononetin-7-O-glu-coside-6”
-O-malonate

ii. Medicarpin-3-O-gluco-side-6”
-O-malonate

iii. Medicarpin
iv. Coumesterol glucosides

Roots, meristems,
leaves

Isoflavonoid and pterocarpan (conjugate) accumulation
correlated with nematode resistance.
Medicarpin inhibited P. penetrans in a concentration dependent
manner.

Lucerne, Medicago sativa Root-lesion nematode,
Pratylenchus penetrans [69]

i. O-methyl-apigenin-C-hexoside
-O-deoxyhexoside

ii. Apigenin-C-hexoside-O
-pentoside

iii. Luteolin-C-hexoside-O
-pentoside

Roots and shoots
during P. neglectus and

H. avenae infection

Flavonoids possibly acted as broad defense
compounds—induced in methyl jasmonate and
nematode-treated plants. Plants treated with root extracts from
methyl jasmonate-induced plants had reduced infection.

Oats, Avena sativa

Root lesion nematode,
Pratylenchus neglectus, Cereal

cyst nematode, Heterodera
avenae, Stem nematode,

Ditylenchus dipsaci

[70]

i. Coumesterol
ii. Psoralidin Roots

Coumesterol and psoralidin accumulated in roots and were
localised at lesion sites caused by nematodes only in lima bean.
Coumesterol significantly inhibited nematode motility at 10–15
µg/mL concentrations.

Lima bean, Phaseolus
lunatus and snap bean,

P. vulgaris

Root-lesion nematode,
Pratylenchus scribneri [71]
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Table 1. Cont.

Name of Enzyme/Gene/Metabolite Flavonoid
Accumulation Site Suggested Flavonoid Function Host Studied Nematode Studied Reference

i. Quercentagetin
(hydroxy-flavone)

ii. Aurone
iii. Chalcone

Adult female extracts
The yellow coloration in G. rostochiensis and G. pallida is
attributed to flavonoid quercetagetin, which was present in
pathotypes with yellow color and absent in paler pathotypes.

N/A
Potato cyst nematodes,

Globodera rostochiensis and
G. pallida

[48]

i. Flavan-3,4-diols
ii. Condensed tannins Roots Flavan-3,4-diols and condensed tannins accumulated after

nematode infection. Banana, Musa Burrowing nematode,
Radopholus similis [72]

i. Daidzein
ii. Genistein
iii. Other isoflavonoids

Roots

Daidzein and genistein increased in susceptible Sussex cultivar at
two and four days post inoculation. Isoflavonoid production was
enhanced in nematode infected plants in susceptible Sussex and
resistant Hartwig cultivar at two and three days post inoculation.

Soybean, Glycine max Soybean cyst nematode,
Heterodera glycines [73]

Several compounds from the chalcone,
flavone, flavanone, isoflavonoid and
flavonol pathways.

Purified compounds
and plant extracts.

Kaempferol, quercetin and myricetin repelled R. similis and M.
incognita juveniles at 60–84 µg/mL. Luteolin, daidzein and
genistein, repelled R. similis at 100–142 µg/mL. Kaempferol,
quercetin, myricetin, rutin and quercitrin inhibited 13–41% of M.
incognita juveniles after 48 h of incubation. Naringenin and
hesperetin, apigenin, daidzein, and kaempferol reduced egg
hatching in R. similis up to 21%.

N/A

Burrowing nematode,
Radopholus similis, root-lesion

nematode, Pratylenchus
penetrans and root-knot

nematode, Meloidogyne incognita

[41]

i. Patuletin
ii. Patulitrin
iii. Quercetin
iv. Rutin

Purified compounds
and marigold, Tagetes

patula L. flower
extracts

Patuletin killed 100% of nematodes at various dilutions after 72 h,
whereas patulitrin killed 10–50% and quercetin killed 70–80% of
nematodes. Rutin at 0.5–1% killed all nematodes within 24 h.

N/A Corn cyst nematode,
Heterodera zeae [42]

(E)-chalcone Purified compound (E)-chalcone killed nematodes at 33 µM within 24 h and
completely inhibited egg hatching at <10 µM within 15 days. N/A

Potato cyst nematodes,
Globodera rostochiensis and

G. pallida
[46]

Phenylalanine ammonia lyase (PAL) Roots
Plants grown at 27 ◦C had optimal PAL activity, which enabled
the plants to synthesise phenylpropanoids used in nematode
defense, as opposed to 32 ◦C, which inhibited enzyme activity.

Tomato, Lycopersi- cum
esculentum

Root-knot nematode,
Meloidogyne incognita [74]
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Table 1. Cont.

Name of Enzyme/Gene/Metabolite Flavonoid
Accumulation Site Suggested Flavonoid Function Host Studied Nematode Studied Reference

Alfalfa, Medicago sativa Root-lesion nematode,
Pratylenchus penetrans [69]

Soybean, Glycine max Heterodera glycines and
Meloidogyne incognita [75]

Cowpea. Vigna
unguiculata L. Walp Meloidogyne incognita [76]

i. Phenylalanine ammonia lyase
ii. Chalcone synthase
iii. Chalcone isomerase
iv. Isoflavone reductase
v. Caffeic acid

O-methyltransferase
vi. 4-coumarate-CoA ligase
vii. Cinnamoyl CoA reductase
viii. Dihydroflavonol 4-reductase

Roots
Gene expression levels generally induced by nematodes and
higher in resistant plants.

Soybean, Glycine max
genotype PI 88788

Soybean cyst nematode,
Heterodera glycines population

NL1-RHg/HG-type 7
[77]

Flavonoid pathways:

i. Arabidopsis: chalcone synthase,
chalcone isomerase and
flavonoid 3’ hydroxylase,
dihydroflavonol 4-reductase

ii. Tobacco: Phenylalanine
ammonia
lyase, anthocyanidins

Roots

M. incognita reproduction was significantly higher in tobacco
mutant with higher anthocyanidin content.
M. incognita reproduction in Arabidopsis tt mutants and wild-type
plants were similar.

Tobacco, Nicotiana
tabacum and Arabidopsis

thaliana

Root-knot nematode, M.
incognita [63]

i. Quercetin 7-glucoside and
other phenols Root extracts Root extracts inhibited nematode motility, reduced nematode egg

hatching and reduced gall numbers. Lantana camara L. Root-knot nematode,
Meloidogyne javanica [78]

Chalcone isomerase
Auxin-induced protein Roots Chalcone isomerase protein as well as an auxin-induced protein

were increased at 4, 5, and 6 days post inoculation.
Cowpea. Vigna

unguiculata L. Walp
Root-knot nematode,
Meloidogyne incognita [79]

i. Chalcone synthase
ii. Chalcone flavanone isomerase
iii. Isoflavone reductase (putative)
iv. Dihydroflavonol 4-reductase
v. Quercetin

3-O-methyltransferase
vi. 4-coumarate-CoA ligase
vii. PIN 2

Root tissue Upregulation of flavonoid synthesis and PIN 2 genes in
nematode infected roots.

Soybean, Glycine max L.
Merr. cv. Williams 82

Soybean cyst nematode,
Heterodera glycines Ichinohe [80]



Plants 2018, 7, 85 9 of 17

Table 1. Cont.

Name of Enzyme/Gene/Metabolite Flavonoid
Accumulation Site Suggested Flavonoid Function Host Studied Nematode Studied Reference

i. Chalcone synthase genes,
CHS1, CHS2, CHS3

ii. Auxin responsive gene, GH3
Root tissue

CHS1::gusA, CHS2::gusA and CHS3::gusA expressions overlapped
with GH3::gusA expression at 48 h, 72 h and 120 h post
inoculation.

White clover, Trifolium
repens cv. Haifa

Root-knot nematode,
Meloidogyne javanica [81]

i. tt4 (chalcone synthase) mutant,
ii. tt5 (chalcone

isomerase) mutant
iii. tt6 (flavonoid 3’

hydroxylase) mutant

N/A
Flavonoid deficiency in tt (transparent testa) mutant lines of single
and double tt4, tt5, and tt6 did not reduce the number of adult
females, with several lines producing more female nematodes.

Arabidopsis thaliana Sugar beet nematode,
Heterodera schachtii [62]

Chalcone synthase (silencing by RNA
interference) Root tissue

Flavonoid deficiency did not affect gall numbers. Flavonoid
deficient roots had shorter galls and less pericycle cell division
compared to roots with flavonoids.

Barrel medic, Medicago
truncatula

Root-knot nematode,
Meloidogyne javanica [82]
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5. Flavonoids Play Minor Roles in the Development of Nematode Feeding Sites

Feeding sites are essential to the survival and the establishment of PPN as parasites. The PPNs
feed on the cytoplasm of the cells, and sometimes mitochondria and plastids, using their stylet. Feeding
sites are usually established by the second-stage juvenile (pre-parasitic stage), with some exceptions in
Naccobus aberrans, Tylenchus semipenetrans, Rotylenchulus spp., whereby the adult females induce the
feeding sites [83].

PPNs form a variety of feeding sites, which are influenced by their life-style (e.g., migratory vs
sedentary), with different degrees of plant cell manipulation. Migratory PPNs such as Bursaphelenchus,
Aphelenchoides spp., and Pratylenchus spp. typically do not induce feeding sites, but rather feed off
plant material directly, causing physical wounding. Sedentary PPNs with extended feeding duration
induce specific and complex feeding sites inside their hosts. These include galls induced by root knot
nematodes, which are characterized by multinucleate giant cells, and syncytia induced by the cyst
nematodes. Inside the cells of the feeding site, PPNs cause multiple host cell responses to increase the
starch, sugar, and amino acid content, and turning the feeding cell into a metabolic sink by increasing
transporter and plasmodesmatal networks, increasing cell surface area by cell wall invagination, and
altering cell metabolism [84].

Feeding site formation also involves control of the plant cell cycle. Giant cells originate from
approximately 3–10 procambium cells within the root endodermis. These cells undergo multiple
rounds of endoreduplication and acytokinetic mitosis, resulting in enlarged, multi-nucleated cells with
dense cytoplasm and elaborate ingrowths [85,86]. The hypertrophy of giant cells and nematode
enlargement causes secondary cell divisions in the surrounding pericycle and cortical cells to
accommodate this growth [87]. As a result, galls, or ‘root knots’, are formed on the root. Similar to
giant cells, syncytia are also multinucleate but are formed from the protoplast fusion and cell wall
dissolution of several adjacent pericycle or procambium cells [88]. As there are no secondary cell
divisions, no gall is formed.

Flavonoids may be involved in the regulation of polar auxin transport to enhance auxin
accumulation in nematode feeding sites (Figure 2). Some flavonoids inhibit cell-to-cell polar
auxin transport and/or the inhibiting auxin efflux transporters, PIN (Pin-formed) and PGP
(P-Glycoprotein) [89,90]. In addition, some flavonoids can control auxin content by regulating
IAA (indoleacetic acid) oxidase [91]. The initiation and development of both types of feeding sites
requires local auxin accumulation and redistribution for cell division, cell differentiation, cell wall
loosening and the growth of new vascular tissue [92–94]. Studies by Kyndt and colleagues [95]
as well as Grunewald and colleagues [96] showed that root knot and cyst nematodes modulate
PIN protein localisation to redistribute auxin in feeding sites and neighboring cells. For example,
the expression of PIN2 and PIN7 was suppressed in giant cells and syncytia, presumably to increase
auxin transport into those cells. Furthermore, transcriptomic and proteomic analysis in root knot and
cyst nematode-infected roots demonstrated a correlation between flavonoid gene/protein expression
with auxin inducible gene/protein expression. For instance, Oliveira and colleagues [79] found the
chalcone flavone isomerase and an auxin-induced protein were upregulated in cowpea at four to
six days post inoculation with M. incognita, whereas Ithal and colleagues [80] found upregulation
of several flavonoids in soybean (e.g., chalcone synthase, chalcone isomerase, isoflavone reductase)
and PIN2 transcripts in cyst nematode-infected roots. A study by Hutangura and colleagues [81]
observed that the induction of CHS1 and CHS2 (chalcone synthase, the first enzyme in flavonoid
biosynthesis) in root-knot nematode galls coincided spatially and temporally with increased auxin
response, within 120 h of inoculation. These studies suggest that flavonoids could be employed by
nematodes early during feeding site development to facilitate auxin accumulation. Nevertheless,
there are gaps in the link between flavonoids and auxins in nematode feeding sites, as there has neither
been any research demonstrating that in vitro or in planta manipulation of flavonoids resulted in the
inhibition of PIN protein function. We also do not know which specific flavonoid metabolites are
active in this process. We suggest that flavonols such as kaempferol, quercetin and their glycosides
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would be likely used by these nematodes for auxin regulation as they have been shown to inhibit polar
auxin transport [94,97,98].

Even though flavonoids may be involved in feeding site development, they appeared not to be
essential and are unlikely to be involved in feeding site initiation, as Wasson and colleagues [82] showed
that root knot nematodes can still initiate galls in flavonoid-deficient roots of Medicago truncatula.
However, these galls were reported to be smaller, with reduced numbers of dividing pericycle cells,
perhaps due to reduced local auxin accumulation in the gall. This suggests that flavonoids may be
required to maintain local auxin maxima in feeding sites for long-term maintenance and development.
As mentioned above, Wuyts and colleagues [63] also showed that flavonoid deficiency in Arabidopsis
did not alter the infection and reproduction capacity of M. incognita.

Flavonoids may also be involved in the cell cycle regulation of PPN feeding sites (Figure 2).
PPN feeding sites commonly contain enlarged nuclei with higher DNA content compared with
other cells [99], a process achieved through endoreduplication in the S-phase of mitosis during cell
proliferation [100]. It is presumed that endoreduplication is a strategy used to increase DNA content
and gene dosage, thereby increasing cell metabolism and growth in feeding sites [101]. These processes
are mostly studied in giant cells and syncytia, in which endoreduplicating cells bypass the transition
from G2 to mitosis and remain in repeated transitions between G2-, G1-, and S-phases via the activity
of cyclin-dependent kinases and other regulators e.g., CCS52 [102,103]. Flavonoids such as quercetin,
genistein, persicogenin, artemetin, luteolin, penduletin, and vitexicarpin inhibit cell cycle progression
from G2 to mitosis and induce apoptosis in mammalian models [104]. It is plausible that flavonoids
could be used to regulate endoreduplication by PPNs with an additional regulation to prevent
apoptosis, but this has not been substantiated in plant models. Furthermore, the cell cycle regulation in
giant cells is complicated by the switch between endoreduplication and acytokinetic mitosis, indicating
the ability of root-knot nematodes to up and downregulate different sets of cyclin-dependent kinases
and potentially specific types of flavonoids.

Giant cells and syncytia undergo extensive cytoskeleton rearrangement for their initiation and
development. Root knot nematodes induce partial depolymerisation of actin filaments, particularly
in phragmoplasts (resulting in incomplete cytokinesis) in giant cells, whereas cyst nematodes induce
complete depolymerisation of actin filaments in syncytia, although it unknown how this occurs [105].
In addition, root knot and cyst nematodes can modify actin transcription. For instance, the actin genes
ACT2 and ACT7 were upregulated in giant cells and syncytia during early infection [106]. These PPNs
may partly achieve this via flavonoids (Figure 2), as Böhl and colleagues [107] discovered that
kaempferol, quercetin, fisetin, and genistein could depolymerise actin and inhibit actin transcription in
a dose-dependent manner at micromolar concentrations. In contrast, epigallocatechin stimulated actin
polymerisation and transcription [107]. So far, flavonoid deficient mutants have not been utilised to
study the effects of flavonoids on the cytoskeleton inside feeding sites in planta.

6. Summary and Outlook

Flavonoids can play multiple roles during plant–nematode interactions by acting as defense
compounds or signals that directly and indirectly affect nematode fitness at different life stages.
Several studies have shown effects of flavonoids on the survival of nematode eggs, on the fecundity of
nematodes and on the attraction of nematodes towards host roots. However, most of these studies
require validation in plants and utilising definitive flavonoid mutants of host plants. There is a general
trend that specific flavonoids are induced during plant–nematode interactions, especially in feeding
sites. There is also evidence in some interactions that more nematode-resistance plant genotypes
accumulate higher concentrations of flavonoids that might act as phytoalexins. However, absence of
flavonoids in host plants has been shown not to prevent the formation of feeding sites of sedentary
PPN. Therefore, it appears more likely that the roles of flavonoids in plant–nematode interactions
are in defense, rather than developmental control. Future research could be directed at identifying
mechanisms by which flavonoids directly act on nematode behavior and survival, as well as trying to
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enhance nematode resistance by engineering host plants with increased content of flavonoids acting
as phytoalexins.
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