A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, is Activated by the Co-presence of Na⁺ and K⁺ and Permeates Na⁺ and K⁺ Non-selectively

Izumi C. Mori, Yuichi Nobukiyo, Yoshiki Nakahara, Mineo Shibasaka, Takuya Furuichi and Maki Katsuhara

Supplementary Materials: Table S1: Accession number of nucleotide sequence and peptide sequence of barley CNGCs, Table S2: Gene name of Arabidopsis CNGCs and their Arabidopsis Genome Initiative (AGI) code, Table S3: Comparison of deduced ion selective motifs and S4 domains in CNG and HCN channels in human and group 2 CNGC in barley, Figure S1: Current/voltage relationship of HvCNGC2-3 expressing oocytes in the presence of 8Br-cGMP, Figure S2: Current/voltage relationship of water-injected oocytes, Figure S3: Effects of substitution of Na⁺ and K⁺ on the current of *HvCNGC2-3* cRNA-injected oocyte, Figure S4: Putative ion-selective pore-forming motifs of representative subgroup II CNGCs of glasses, Figure S5: Secondary structure prediction of the cyclic nucleotide binding domains.

	5			
	Accession number			
Gene name	Nucleotide	Protein sequence		
	sequence			
HvCNGC1-1	AK366449.1	BAJ97652.1		
HvCNGC2-1	AK373237.1	BAK04434.1		
HvCNGC2-2	AK370933.1	BAK02131.1		
HvCNGC2-3	AK376248.1	BAK07443.1		
HvCNGC3-1	AK376248.1	BAK07912.1		
HvCNGC3-2	AK355803.1	BAJ86607.1		
HvCNGC3-3	AK371848.1	BAK03046.1		
HvCNGC4a-1	AK365205.1	BAJ96408.1		
HvCNGC4b-1	AK367927.1	BAJ99130.1		

Table S1. Accession number of nucleotide sequence andprotein sequence of barley CNGCs

Gene name	AGI code
AtCNGC1	At5g53130
AtCNGC2	At5g15410
AtCNGC3	At2g46430
AtCNGC4	At5g54250
AtCNGC5	At5g57940
AtCNGC6	At2g23980
AtCNGC7	At1g15990
AtCNGC8	At1g19780
AtCNGC9	At4g30560
AtCNGC10	At1g01340
AtCNGC11	At2g46440
AtCNGC12	At2g46450
AtCNGC13	At4g01010
AtCNGC14	At2g24610
AtCNGC15	At2g28260
AtCNGC16	At3g48010
AtCNGC17	At4g30360
AtCNGC18	At5g14870
AtCNGC19	At3g17690
AtCNGC20	A+3017700

Table S2. Gene name of Arabidopsis CNGCs and their Arabidopsis Genome Initiative (AGI) code

AtCNGC20 At3g17700 The data was acquired from The Arabidopsis Information Resource (http://www.arabidopsis.org).

CNG and HCN channels in human and group II CNGC in barley					
Gene	Ion selective	S4 domain			
	motif				
Human CNG channels					
(non-selective, voltage-ir	idependent)				
CNGA1	GGL	RLNRLLRFSRMFEFFQ R			
CNGA2	GGL	RFNRLLHFARMFEFFD			
CNGA3	GET	RFNRLLKFSRLFEFFD			
CNGA4	GET	RLNRFLRAPRLFEAFD R			
CNGB1	GET	RLPRCLKYMAFFEFNSR			
CNGB3	GDT	RANRMLKYTSFFEFNHH			
Human HCN channels					
(K ⁺ and Na ⁺ -permeable, y	voltage-dependent)				
HCN1*	GYG	RALRIVRFTKILSLLRLLRLSRLIR			
Barley group 2 CNGCs					
(K ⁺ and Na ⁺ -permeable, p	partially voltage-dependent	ndent)			
HvCNGC2-1	GQGL	KDRLLSIIIAQYVPRLVRIYPLS			
HvCNGC2-2	GQGF	KDALVWVVLCQYIPRLLRIFPVT			
HvCNGC2-3	AQGL	KTALFFIVLTQYLPRLVRFYPII			
Magenta and green indic	ate basic and acidic ar	nino acid residues, respectively.			
Accession numbers of hu	ıman genes are as follo	ow: CNGA1, NP 001136036.1;			

Table S3. Comparison of deduced ion selective motifs and S4 domains in

1

Magenta and green indicate basic and acidic amino acid residues, respectively. Accession numbers of human genes are as follow: CNGA1, NP_001136036.1; CNGA2, EAW99409.1; CNGA3, NP_001289.1; CNGA4, XP_016872706.1; CNGB1, XP_011521172.1; CNGB3, XP_011515440.1; and HCN1, NP_066550.2. Accession numbers of barley genes are shown in Table S1. *Amino acid sequences of ion selective motif and S4 domain in HCN2 (NP_001185.3), HCN3 (NP_065948.1) and HCN4 (NP_005468.1) are identical to HCN1.

Figure S1. Current/voltage relationship of HvCNGC2-3 expressing oocytes in the presence of 8Br-cGMP. Currents were recorded by the two-electrode voltage-clamp. Bath solution contained 96 mM NaCl (closed symbols) or 96 mM KCl (open symbols). Oocytes were treated with 10 μ M 8Br-cGMP 30 min before measurements. Current values are means (n=15 [NaCl] and 10 [KCl]) ± SD. *I*, membrane current. *E*_m, membrane potential.

Figure S2. Current/voltage relationship of water-injected oocytes. Currents were recorded by the two-electrode voltage-clamp in bath solution containing 19.2 mM NaCl and 76.8 mM KCl (open symbols, n = 10), and 48 mM NaCl and 48 mM KCl (closed symbols, n = 11) in the presence of 10 μ M 8Br-cAMP.

Figure S3. Effects of substitution of Na⁺ and K⁺ on the current of *HvCNGC2-3* cRNA-injected oocyte. Currents at –120 mV was plotted. Open circles indicate each measurement (n=10). Red lines indicate the median. Either of Na⁺ or K⁺ was substituted with Li⁺, Rb⁺ or Cs⁺. Mann-Whitney *u* test suggested that significant difference of the mean of current amplitude was observed in HvCNGC2-3-injected oocytes from water-injected control only in 48 mM K⁺ and 48 mM Na⁺ bathing solution (α = 0.05).

```
Triticeae
  Hordeum vulgare (Barley)
   HvCNGC2-1
                                                 CLWWGLANLSTLGOGLK-TTIYTGESLF
   HvCNGC2-2
                                                 CFWWGLQNLSTLGQGFV-TSTYPWEVLF
   HvCNGC2-3
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
  Aegilops tauschii (Tausch's goatgrass)
   XP 020165922.1
                                                 CLWWGLANLSTLGQGLK-TTIYTGESLF
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
   EMT29601.1
   EMT29672.1
                                                 CLWWGLONLSSGAOGLE-TTHYKGEALF
  Triticum urartu (Red wild einkorn)
   T1NH13 TRIUA
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
  Triticum aestivum (Common wheat)
   TRIAE CS42 2AL TGACv1 097035 AA0322740.1
                                                 CFWWGLQNLSTLGQGFV-TSTYPWEVLF
   TRIAE_CS42_2BL_TGACv1_130157_AA0405260.1
                                                 CFWWGLQNLSTLGQGFV-TSTYPWEVLF
   TRIAE_CS42_2DL_TGACv1_160734_AA0553580.1
TRIAE_CS42_1AS_TGACv1_019890_AA0072520.1
TRIAE_CS42_1BS_TGACv1_049361_AA0150610.1
                                                 CFWWGLONLSTLGOGFV-TSTYPWEVLF
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
   TRIAE_CS42_1DS_TGACv1_080801_AA0253910.1
                                                 CLWWGLQNLSTGAQGLE-TTHYKGEALF
   TRIAE_CS42_5AL_TGACv1_375657_AA1225250.1
                                                 CLWWGLQNLSSGAQGLE-TTHYKGEALF
   TRIAE_CS42_5BL_TGACv1_405743_AA1334310.1
                                                 CLWWGLQNLSSGAQGLE-TTHYKGEALF
   TRIAE CS42 5DL TGACv1 437676 AA1467100.1
                                                 CLWWGLQNLSSGAQGLE-TTHYKGEALF
Brachypodieae
  Brachypodium distachyon (Purple false brome)
                                                 CFWWGLQNLSTLGQGFT-TSTYPGEVLF
   Bradi5g23700.1
   Bradi1q13740.1
                                                 CLWWGLANLSTLGQGLK-TTIYTGEALF
   Bradi1g78010.1
                                                 CLWWGLQNLSTVGQGLDQTTHYKGEALF
Andropogoneae
  Zea mays (Maize)
   GRMZM2G023037
                                                 CFWWGLQNLSTLGQGLL-TSTYPGEVLF
   AC197150.3
                                                 CLWWGLQNLSTIGQGLE-TTHYKGEQLF
  Sorgham bicolor (Sorgham)
                                                 CLWWGLANLSTLGQGLK-TSIYTGEALF
   Sb01g013500.1
   Sb06g030420.1
                                                 CFWWGLQNLSTLGQGLM-TSTYTGEVLF
   Sb08g021830.1
                                                 CLWWGLQNLSTIGQGLE-TTHYKGEQLF
Orvzeae
  Oryza sativa (Rice)
   Os03g0646300
                                                 CLWWGLANLSTLGQGLQ-TSIYTGEALF
   Os04q0643600
                                                 CFWWGLQNLSTLGQGLQ-TSIYPGEVLF
   Os12g0468500
                                                 CLWWGLQNLSTVGQGLK-TTHYKGEALF
```

Figure S4. Putative ion-selective pore-forming motifs of representative subgroup II CNGCs of glasses. Twenty seven CNGCs showing >60% identity with HvCNGC2-3 was BLAST searched in two databases, EnsemblePlants (http://plants.ensembl.org) for *A. tauschii, T. urartu* and *T. aestivum* and PlantGDB (http://www.plantgdb.org) for *B. distachyon, Z. mays, S. bicolor* and *O. sativa.* Amino acid sequence of the putative ion-selective motif and their short flanking region were aligned manually. Glycine and alanine residues in the motif were highlighted blue and red, respectively. Gene names are as designated in each database.

	αA	β1	β2	β3	β4	β5	
HvCNGC2-3	LLDAICERLKE	SLCTEST	YVVREGDPVI	EMFFIIRG	RLESSTTDDG	I GFFNKGLLKEGD	577
ATCNGC5				JEMLFIIRG		CEVNDCL KECD	565
TALCINGCO							556
hHCN2	FVTAMI.TKI			KMYFTOHO			605
menz		d <mark>v</mark> igi (D					005
	β6 αΡ		β7	β8	αB	αC	
				→	×	<u> </u>	
HvCNGC2-3	FCGEELLTWAI	DKAAAN-	LPL <mark>STRTVK</mark>	A <mark>IS</mark> EVE <mark>G</mark> FA	LHADELKFVA	GOFRRLHS <mark>KO</mark> L	633
AtCNGC5	FCGEELLTWAI	DPKSGVN	LPS <mark>STRTVK</mark>	A <mark>LTEVEA</mark> FA	LTS <mark>EELKFVA</mark> S	SQFRRLHS <mark>RQV</mark>	622
AtCNGC6	FCGDELLTWAI	DPKSG	STRTVK	ALTEVEAFA	LIADELKFVAS	SQFRRLHSRQV	638
TAX4	VFGELSILNIA	GSKNGN-	RRTANVRS	SVGYTDLEV	LSKTDLWNAL	REYPDARKLLLAKG	613
nHCN2	YFGEICLLTR(;	––RRTA <mark>SVR</mark>	DTYCRLYS	SISVDNFNEVLE	S <mark>EY</mark> PMM <mark>RRA</mark> FETV <mark>A</mark>	656
	~						
HvCNGC2-3	OOTF-RF	639					
AtCNGC5	Q H TF - RF	628					
AtCNGC6	QHTF-RF	644					
TAX4	REILK <mark>K</mark> DNLL	623					
hHCN2	IDRLDRIGKK	666					
	•						

Figure S5. Secondary structure prediction of the cyclic nucleotide binding domains. Green and yellow boxes indicate identical and similar amino acid residues, respectively. Cyan cylinders and orange arrows indicate predicted α -helix and β -sheet structures. Red dots indicate amino acids responsible for interaction with cyclic nucleotides (ref [43, 44]).