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Abstract: The interactive effects of drought and ozone on the physiology and leaf membrane lipid 
content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in 
two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment 
(three-week water deprivation) did not cause leaf injury but restricted growth through stomatal 
closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited 
impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and 
galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed 
specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyl-
diacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and 
ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under 
ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the 
stomatal response to drought and the observed effects on whole-plant physiology were essentially 
the same as when drought was applied alone. Conversely, the drought-induced stomatal closure 
appeared to alleviate ozone effects through the reduction of ozone uptake. 

Keywords: drought; ozone; stress combination; membrane lipids; cowpea 
 

1. Introduction 

Plants, as sessile organisms, are permanently subjected to changing environmental conditions 
that might compromise homeostasis, growth and even survival. As a consequence, plants have 
developed elaborate mechanisms to sense and respond to changes in their environment through 
appropriate adjustments. Water availability constitutes a major limiting factor for plant productivity 
and drought is considered one of the most influent abiotic constraint to crop yield [1]. Rising 
temperatures and altered precipitation patterns are two main components of climate change and both 
contribute to increase the frequency and intensity of drought episodes regionally. Air pollution is 
another aspect of the anthropogenic alteration of the environment. Among air pollutants, 
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tropospheric ozone is considered the most detrimental to plants [2]. Ozone is a secondary product of 
photochemical reactions that involve nitrogen oxides and volatile organic compounds. Due to the 
increased emissions of these precursors from vehicle and industrial sources, tropospheric ozone has 
increased since the 1950s [3]. Although emission reduction policies have successfully limited the 
frequency and extent of high ozone episodes and despite recent evidence that tropospheric ozone has 
leveled off in the last decade, at least in the Northern hemisphere [4], background concentrations 
have now reached levels potentially damaging to crop production in several regions of the world [5]. 

As high temperature and irradiance promote both ozone production and water deficit, the 
occurrence of high ozone exposure during drought episodes is common in semi-arid regions. It is 
clear that the response of plants to a combination of stress conditions is unique and cannot be 
predicted from the response to the stresses applied individually [6]. The interacting effects of ozone 
and drought are still unclear as contradictory findings are reported in the literature [7]. Meta-analyses 
of the effects of ozone on trees [8] and crops [9] showed that drought tended to mitigate the adverse 
effects of the pollutant. It is assumed that the drought-induced stomatal closure limits ozone uptake, 
thereby protecting leaf tissues from the oxidative stress caused by the pollutant. Reciprocal cross-
protection was observed in Medicago truncatula [10] but ozone can also in some cases exacerbate the 
effects of water stress [11]. For instance, in oak seedlings, ozone combined with drought caused a 
stronger malondialdehyde accumulation and larger biomass losses than drought applied alone [12]. 
Ozone can also cause stomatal sluggishness [13]: recent results suggest that ozone can disrupt the 
ABA-induced signal transduction pathway for stomatal control, which could in turn impair the 
ability of plants to respond to water stress [14]. Overall, the interactions between ozone and drought 
depend largely on the temporal distribution of ozone and drought episodes [7]. 

At the cellular level, drought promotes the production of reactive oxygen species (ROS), 
essentially in the chloroplasts where the drought-induced over-reduction of the electron transport 
chain can lead to the formation of singlet oxygen (1O2) and superoxide (O2−•) [15]. Ozone is itself a 
strong oxidant and its decomposition in the apoplast generates a range of ROS. In all cases, if the 
oxidative load exceeds the apoplastic antioxidant capacity, ROS can spread within the cell and add 
to the ROS produced endogenously [16]. ROS, being reactive molecules, can oxidize all types of 
cellular components [15]. In addition, ROS play a role in signaling and induce defense responses [17]. 
Potential interacting effects between drought and ozone may thus arise from the stimulation of ROS 
production as a common feature of the two environmental stresses.  

Membranes are among the first cellular components to perceive drought stress and the role of 
phospholipases and lipid-derived messengers in triggering signaling cascades has been largely 
demonstrated [18]. Likewise, the ozone-triggered intracellular signal transduction is initiated at the 
plasma membrane through mechanisms that involve lipid peroxidation and subsequent formation of 
signal molecules such as jasmonates, although the primary site of ozone reaction within leaf tissues 
is the extracellular matrix [19]. Besides their role in cell signaling, membrane lipids may also 
contribute to stress tolerance through the adjusting of membrane fluidity and the reorganization of 
cell components [20]. From this perspective, the effects of drought and ozone on leaf membrane lipids 
share many similarities. Both stresses induce a decrease in membrane lipid content [21,22], an 
inhibition of lipid biosynthesis [23,24], a stimulation of lipolytic activities [25,26] and a decrease in 
linolenic acid (18:3) content [27,28]. It appears that changes in membrane lipid metabolism play an 
essential part in plant responses to the combination of ozone and drought stresses. 

In the present work, we examined the effects of drought, ozone and the combination of these 
stresses on cowpea (Vigna unguiculata (L.) Walp.). Cowpea is a staple legume crop in semi-arid 
regions of the tropics and subtropics, where meteorological conditions promote the co-occurrence of 
drought and ozone stresses. While the impact of water stress on cowpea has been extensively studied 
[21,29–31], the response of this crop to ozone is less documented [32]. In recent studies, the responses 
of cowpea to ozone have been investigated in Asian and African cultivars with respect to biomass 
production, yield, photosynthesis, nitrogen fixation and ROS detoxification [33–37]. Here, we 
investigated the response of a Southamerican (EPACE-1) and an Asian cultivar (IT83-D) to the 
combination of ozone and drought stresses. In addition to the characterization of the physiological 
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responses of the two cultivars to ozone and drought, a specific attention was drawn to plastidial 
membrane lipid content and fatty acid composition as well as to the expression of genes encoding 
enzymes involved in membrane lipid biosynthesis and degradation. The results show that ozone and 
drought stresses induced contrasting responses in cowpea plants and bring new insights into the 
interplay between general and specific multi-stress responses. 

2. Results 

2.1. Physiological Responses of Cowpea Plants to Ozone and Drought Stresses 

The individual and interactive effects of ozone and drought stresses on the two cowpea cultivars 
were first assessed at the whole-plant level on aerial parts by evaluating shoot biomass production 
(shoot dry weight, SDW), leaf water content (relative water content, RWC), stomatal conductance (gs) 
and chlorophyll fluorescence (effective quantum yield of photosystem II (ΦPSII) (Figure 1). Damage at 
the leaf level were evaluated by monitoring visible symptoms of damage, by detecting hydrogen 
peroxide (H2O2) (Figure A1) and by measuring plastidial membrane lipid contents (Figure 2). From 
now on, treatments will be referred to as C for control, O for ozone, D for drought and OD for the 
combination of ozone and drought. During the 14 d of experiment, plants of the O and OD treatments 
were exposed to an average of 130.4 ppb of ozone 12 h daily (Table 1). At the end of the experiment, 
the concentration-based index of ozone exposure AOT40 reached 16.7 ppm·h on average. The 
stomatal uptake of ozone (or Phytotoxic Ozone Dose, POD0) was 3.8 and 4.6 mmol·m−2 in EPACE-1 
and IT83-D, respectively. Visible symptoms of leaf injury (dark/brown necrosis) and H2O2 
accumulation were observed in both cultivars in response to the O treatment, to a greater extent in 
IT83-D than in EPACE-1 (Figure A1). However, no significant effect on biomass production, leaf 
water content, stomatal conductance or chlorophyll fluorescence could be observed in response to 
the O treatment, except a 40% decrease in shoot dry weight in IT83-D as compared to the control after 
7 day (Figure 1a). 

Table 1. Twelve-hour mean ozone concentration and indices of ozone exposure (AOT40, ozone 
concentrations accumulated over a threshold of 40 ppb) and stomatal uptake (POD0, phytotoxic ozone 
dose, expressed as the accumulated stomatal flux of ozone) to which cowpea plants were subjected 
in the following treatments: Control (C), Drought (D), Ozone (O), Ozone + Drought (OD). Mean ± SD 
are shown (n = 4). Ozone concentration and AOT40 were averaged from the values recorded in 4 
identical chambers. Ozone stomatal uptake (POD0) was averaged from 4 biological replicates. Control 
(C) and drought-treated (D) plants were supplied with activated charcoal-filtered air and ozone 
concentration was close to zero (nd, not detected). 

Cultivar Treatment 12-h Mean (O3)  
(ppb) 

AOT40  
(ppm·h) 

POD0  
(mmol·m−2) 

EPACE-1 

C 
nd nd 

nd 
D nd 
O 

130.4 ± 5.2 16.7 ± 1.0 
3.8 ± 0.7 

OD 2.9 ± 0.5 

IT83-D 

C 
nd nd 

nd 
D nd 
O 

130.4 ± 5.2 16.7 ± 1.0 
4.6 ± 1.2 

OD 3.1 ± 1.4 

In contrast to the O treatment, the drought treatment alone (D) did not cause leaf injury or H2O2 
accumulation (Figure A1) but had strong effects at the whole-plant level. Most of these effects were 
of the same degree in the two cowpea cultivars. First, the drought treatment induced stomatal closure 
as compared to the control, already after 7 day in EPACE-1 (−50%) and to a larger degree after 14 day 
in both cultivars (−90%) (Figure 1b). This response limited water loss as RWC was only 20% lower 
than in control plants after 14 day of drought stress (Figure 1c), but correlated with a severe restriction 
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of plant growth: the aerial biomass of the drought-treated plants was 50% and 70% lower than that 
of the control plants after 7 and 14 day of experiment, respectively (Figure 1a). This strong restriction 
of above-ground biomass production was associated to a 35% decrease in the quantum yield of PSII 
(ΦPSII) in drought-stressed plants as compared to control plants for both cultivars (Figure 1d). 

When the plants were exposed to drought in combination with ozone, the POD0 was 24% (2.9 
mmol·m−2) and 33% (3.1 mmol·m−2) lower in EPACE-1 and IT83-D, respectively, as compared to plants 
treated with ozone only (Table 1). Consistently, the extent of leaf injury was less important in OD-
treated than in O-treated plants and no H2O2 could be detected in leaves of the in OD-treated plants 
(Figure A1). At the whole-plant level, the effects of the combination of ozone and drought stresses 
were essentially the same as those of the drought treatment alone (Figure 1). 

 
Figure 1. (a) Shoot dry weight; (b) stomatal conductance (gs); (c) relative water content and (d) 
quantum yield of PSII (ΦPSII) of Vigna unguiculata plants subjected to the following treatments: Control 
(C, black bars), Drought (D, dark grey bars), Ozone (O, light grey bars), Ozone + Drought (OD, white 
bars). Measurements were performed 7 and 14 days after the onset of the stress treatments. Means ± 
SEM are shown (n = 3–4). When significant differences were found, letters indicate homogenous 
subsets at each time point for a given cultivar (one-way ANOVA and Tukey post-hoc tests, α = 0.05). 

2.2. Galactolipid Content and Fatty Acid Composition 

To examine further the interactive and individual effects of ozone and drought, we investigated 
the impact of the two stresses applied alone or in combination on pastidial galactolipids, which are 
known cellular targets of environmental stresses. We analyzed plastidial galactolipid content and 
fatty acid composition (Figure 2) as well as the transcript abundance of genes encoding enzymes 
involved in galactolipid synthesis, desaturation and degradation (Figure 3). 

Galactolipids (monogalactosyl-diacylglycerol, MGDG and digalactosyl-diacylglycerol, DGDG) 
were the dominant lipid classes in cowpea leaf tissues, where their presence in plastidial membranes 
supports the bioenergetic and metabolic functions of the chloroplasts. The D treatment had no effect 
either on MGDG and DGDG contents (Figure 2a,b) or on their fatty acid composition and insaturation 
level (Tables A1 and A3). In contrast, the O treatment affected plastidial galactolipids, in a significant 
manner in IT-83D (Figure 2a,b). In this cultivar, after 14 day of O treatment, MGDG and DGDG 
contents were reduced by 77% and 64%, respectively, as compared to the controls (Figure 2a,b), and 
these effects correlated with a 3-fold increase in the DGDG:MGDG ratio (Figure 2c). In the EPACE-1 
cultivar, plastidial galactolipids were also affected by ozone (after 14 day MGDG and DGDG contents 
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c.

b.
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were reduced by 48% and 32%, respectively, as compared to the control), but these effects were not 
significant (Figure 2a,b) and the DGDG:MGDG ratio remained unchanged (Figure 2c). The 
polyunsaturated fatty acid 18:3 was predominant in the fatty acid composition of MGDG (ca. 95%) 
and DGDG (ca. 88%) in the leaves of both cultivars (Table A1). In EPACE-1, the FA composition of 
galactolipids was not significantly modified by the various treatments (Tables A1 and A3). In IT83-
D, the proportion of 18:3 in MGDG decreased from 95% in the control to 81% after 14 day of ozone 
treatment alone. This ozone-induced decrease in 18:3% was balanced by increases in the other FA % 
in MGDG, mainly the saturated FA 16:0 and 18:0 (Table A1) and translated into a decrease in the 
omega-3 index (Figure 2d). No apparent modification in FA % was observed in DGDG (Table A1). 

 
Figure 2. (a) MGDG contents; (b) DGDG contents; (c) DGDG:MGDG ratio and (d) normalized omega-
3 index in the leaves of Vigna unguiculata plants subjected to the following treatments: Control (C, 
black bars), Drought (D, dark grey bars), Ozone (O, light grey bars), Ozone + Drought (OD, white 
bars). Measurements were performed 7 and 14 days after the onset of the stress treatments. Means ± 
SEM are shown (n = 3). When significant differences were found, letters indicate homogenous subsets 
at each time point for a given cultivar (one-way ANOVA and Tukey post-hoc tests, α = 0.05). MGDG, 
Monogalactosyl-diacylglycerol; DGDG, digalactosyl-diacylglycerol, omega-3 index 18:3/(18:0 + 18:1 + 
18:2). 

2.3. Expression of Genes Coding Enzymes Involved in Lipid Metabolism 

To better understand the observed modifications in plastidial galactolipid, the abundance of 
transcripts encoding enzymes involved in their biosynthesis, desaturation and degradation were 
analyzed using quantitative real-time PCR (Figure 3). The genes studied encoded two enzymes of the 
galactolipid biosynthesis pathway (MGDG synthase, EC 2.4.1.46: VuMGD1 and VuMGD2; DGDG 
synthase, EC 2.4.1.241: VuDGD1 and VuDGD2), two chloroplastic ω-3 fatty acid desaturases (EC 
1.14.19.3, VuFAD7 and VuFAD8) and the patatin-like lipid acyl hydrolase (EC 3.1.1.26: VuPAT1). 
Values obtained for the target genes were normalized with respect to the expression of the reference 
gene VuEF1-α. 

In the control leaves of both cultivars, the expression level of most genes was higher at 14 day 
than at 7 day, by a factor of 2 to 10 (Figure 3). The O treatment had limited effects on the expression 
of the tested genes, except a down regulation of VuMGD1 in EPACE-1 and VuDGD1 in IT83-D at 7 
day (Figure 3a,c), and a 27-fold up-regulation of VuDGD2 in IT83-D at 14 day (Figure 3d). In contrast, 
the genes tested were globally down regulated in response to the D treatment, although a relatively 
high variability in the data limited the significance of the observed effects (Figure 3). Among the 
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genes tested, VuMGD2, VuDGD1 and VuFAD8 showed the earliest and strongest repression under 
the drought treatment. As seen with most parameters that were analyzed in this study, the effects on 
transcipt levels of the analyzed genes of the OD treatment were essentially the same as those of the 
D treatment. In both cultivars, the expression of VuPAT1 was unchanged, or slightly repressed, in 
response to the various treatments as compared to the control (Figure 3). 

 

Figure 3. Relative expression of genes involved in lipid metabolism in leaves of (a,b) EPACE-1 and 
(c,d) IT83-D plants exposed to the following treatments: Control (C, black bars), Drought (D, dark 
grey bars), Ozone (O, light grey bars), Ozone + Drought (OD, white bars). Measurements were 
performed 7 and 14 days after the onset of the stress treatments. Means ± SEM are shown (n = 3). Each 
value is the average of two technical replicates. Expression of target genes was normalized to the 
expression of the reference gene VuEF-1α. When significant differences were found, letters indicate 
homogenous subsets at each time point for a given cultivar (one-way ANOVA and Tukey post-hoc 
tests, α = 0.05). VuMGD1, type 1 monogalactosyl-diacylglycerol synthase; VuMGD2, type 2 
monogalactosyl-diacylglycerol synthase; VuDGD1, type 1 digalactosyl-diacylglycerol synthase; 
VuDGD2, type 2 digalactosyl-diacylglycerol synthase; VuFAD7, ω-3 fatty acid desaturase 7; VuFAD8, 
ω-3 fatty acid desaturase 8; VuPAT1, patatin-like lipid acyl hydrolase; VuEF-1α, elongation factor 1 
alpha. 

3. Discussion 

3.1. The Drought Treament Restricted Plant Biomass Production but Did Not Cause Cellular Damage 

The drought treatment caused an early and progressive stomatal closure in both cowpea 
cultivars (Figure 1b). As described in [30], the two cultivars showed a drought avoidance strategy 
through the early regulation of stomatal aperture, which allowed them to limit water loss as shown 
by the moderate reductions in RWC (Figure 1c). This, in turn, most likely restricted CO2 assimilation 
and explain the dramatic reduction in shoot biomass production after the first week of treatment 
(Figure 1a). Despite this strong restriction on plant growth and although the water-deprived plants 
showed signs of wilting, the results obtained on the first mature trifoliate leaves indicate that both 
cultivars were able to maintain cellular integrity under drought stress. First, leaves of drought-
stressed plants did not display visible symptoms of injury or H2O2 accumulation (Figure A1); Second, 
membrane lipid content and composition were not modified in leaf tissues of plants submitted to the 
drought treatment alone (Figures 2 and 3; Tables A1 and A3). Contrary to the results of previous 
studies [29,30,38], IT83-D did not appear more sensitive to water stress than EPACE-1. It is likely that, 
in our experimental conditions, the severity of the drought treatment was not sufficient to reveal 
differences in drought tolerance between the two cultivars. Indeed, when compared to previous data 
obtained with the same cowpea cultivars submitted to drought, the RWC of 60%–70% measured at 
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14 day corresponds to a leaf water potential of −1.5 MPa [29], which is equivalent to a water stress 
defined as moderate in [31,39]. Consistent with this, several features of the responses of cowpea to 
severe drought, such as the decrease in leaf membrane lipid content [21,31] and the induction of 
VuPAT1 expression [26], were not observed in the present work. Both cultivars maintained the FA 
unsaturation level of membrane lipids under drought stress (Tables A1 and A3), even though 
VuFAD7 and VuFAD8 were repressed (Figure 3), which might indicate a capacity for stress 
acclimation [20]. 

3.2. The Ozone Treatment Caused Leaf Injury and Decreased Plastidial Galactolipid Content but Had 
Limited Effect at the Whole-Plant Level 

In contrast with drought, the 14-day ozone treatment had a limited impact on photosynthesis 
and biomass production. These results are consistent with references [34,35]), where these parameters 
were strongly reduced but only after 40–50 days of treatment. Umponstira et al. [36] found strong 
ozone effects on cowpea biomass production after only 7 days of treatment, but subsequent results 
showed that cowpea plants at the vegetative growth stage, as in the present study, were less sensitive 
to ozone than plants at later growth stages [37]. In the present paper, significant effects of ozone were 
observed at the cellular level. Some of these effects were found in both cowpea cultivars. First, ozone 
exposure provoked symptoms of leaf injury and H2O2 accumulation (Figure A1). Ozone-induced cell 
death has been reported in various plant species and is associated to ROS accumulation [40]; Second, 
the ozone treatment induced decreases in the plastidial galactolipids MGDG and DGDG in both 
cultivars (Figure 2a,b). Reductions in galactolipid contents have also been reported in leaves of 
spinach [41] and snapbean [42] plants exposed to acute ozone exposure, and in pea and wheat plants 
subjected to moderate ozone concentrations [22,43]. Studies on the effects of short-term, acute 
exposure showed that the decrease in plastidial galactolipids did not result from the direct oxidative 
damage of ozone but rather from secondary effects on lipid metabolism [44,45]. The putative 
pathways for the degradation of galactolipids in ozone-treated leaves involves a number of enzymes, 
including one or several deacylating enzymes capable of hydrolyzing galactolipids, presumably lipid 
acyl hydrolases (LAHs) [46]. The expression of VuPAT1, a drought-inducible LAH purified from 
cowpea leaves with high substrate specificity for galactolipids [26], was very low in response to ozone 
in the present study, suggesting that other deacylating enzyme(s) are involved in galactolipid 
degradation in ozone-treated cowpea leaves. 

3.3. Inter-Varietal Differences in Ozone Sensitivity 

Most of the observed effects of ozone on cowpea leaves were more pronounced in IT83-D than 
in EPACE-1, including the extent of leaf injury and the decrease in galactolipid content. Intervarietal 
differences in ozone sensitivty were found in African cowpea cultivars, but could not be explained 
by differential radical scavenging capacities [34,35]. Here, this discrepancy between the two cultivars 
could be explained by a higher oxidative load in leaf tissues of IT83-D than in those of EPACE-1 as 
indicated by a higher ozone uptake in IT83-D (+21% in POD0, Table 1), even though this difference 
was not significant. Nevertheless, IT83-D showed responses to ozone that were not found in EPACE-
1, such as the increase in the DGDG:MGDG ratio, as observed in snapbean cultivars subjected to 
acute ozone exposure [45,42]. The relative larger decline in MGDG is consistent with its extreme 
sensitivity to degradation processes activated by environmental stresses, as reported in drought-
treated Arabidopsis [47] and cowpea plants [31]. Furthermore, the ozone treatment reduced the 18:3 
in MGDG in IT83-D (Table A1), as found in the leaves of pea [22] and wheat [43] plants exposed to 
ozone. A LAH purified from cowpea leaves had the highest substrate specificity for (18:3/18:3)-
MGDG [48] and LAH activities in cowpea leaf extracts were shown to selectively reduce 18:3 content 
in MGDG [49]. Taken together, these results suggest that the reduction in 18:3 content in MGDG 
reflects the preferential degradation of MGDG by LAHs upon ozone exposure in the sensitive cowpea 
cultivar IT83-D. Constraints such as wounding, low temperature and drought have been shown to 
increase the expression of the plastidial ω-3 fatty acid desaturase FAD8 [50,39]. Furthermore, the over 
expression of FAD8 increased 18:3 content and tolerance to salt and drought stresses in transgenic 
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tobacco plants [51]. In the present work, the stimulation of VuFAD8 expression found in IT83-D in 
response to ozone exposure might have mitigated the ozone-induced loss of 18:3 in membrane lipids 
but was not sufficient to maintain the unsaturation level of MGDG (Table A2). Beside their role in 
adjusting FA unsaturation, ω-3 FADs are involved in the regulation of plant defense responses 
through the production of trienoic FAs that serve as precursors for the synthesis of oxylipins such as 
jasmonic acid (JA) [52]. JA accumulates upon ozone exposure and acts in lesion containment during 
the process of ozone-induced cell death [17]. Since VuFAD7 was repressed by the ozone treatment 
(Figure 3d), VuFAD8 could have a specific role in the JA-mediated induction of defense responses to 
ozone in the leaves of the sensitive cowpea cultivar. Iyer et al. [10] showed that JA signaling was 
involved in the responses of Medicago truncatula to combined ozone and water stresses specifically. 
The potential role of VuFAD8 in drought-ozone interactions could be further investigated with a 
longer water deprivation treatment. 

Although the omega-3 index was determined from fatty acid contents in total membrane lipids, 
the lower 18:3 content in MGDG in IT83-D in response to ozone translated into a significant decrease 
of this biomarker. This indicates that the omega-3 index, which has been validated as an indicator of 
metal bioavailability in polluted soils and of the associated adverse effects on plants [53], can be used 
also as a relevant biomarker of ozone impact. However, the fact that the omega-3 index remained 
unchanged despite substantial ozone exposures in EPACE-1 in the O and OD treatments and in IT83-
D in the OD treatment suggests that the biomarker’s response is not linearly related to the ozone dose 
and shows intraspecific variations. 

3.4. Drought Alleviated the Effects of Ozone by Reducing Its Stomatal Uptake 

Ozone is known to alter stomatal responses to a variety of environmental stimuli [54,55]. By 
inducing stomatal sluggishness [13] or by disrupting the ABA-induced signal transduction pathway 
for stomatal control [14], ozone can impair the ability of plants to respond to water stress. However, 
in our study, the rate and intensity of the stomatal closure caused by the water deficit was not 
modified by ozone in the OD treatment as compared to the D treatment (Figure 1b). Reciprocally, 
however, the stomatal closure induced by the water deficit decreased the uptake of ozone in EPACE-
1 and IT83-D when drought and ozone were applied in combination (Table 1). Accordingly, several 
effects of ozone observed in the O treatment were less pronounced in the OD treatment, including 
leaf injury, H2O2 accumulation and galactolipid depletion (Figure A1 and Figure 2a,b). Furthermore, 
some effects of ozone in IT83-D were not found in the combined OD treatment, such as the decrease 
in the omega-3 index, the increase in DGDG:MGDG ratio and the coordinated up regulation of 
VuDGD2 and VuFAD8 (Figure 2c and Figure 3d). Taken together, these data suggest that the drought-
induced stomatal closure mitigated the detrimental impacts of ozone on cowpea leaf tissues, which 
is consistent with the findings of meta-analyses of the effects of ozone on trees [56] and crops [9]. 

4. Materials and Methods 

4.1. Plant Materials and Growth Conditions 

Two cultivars of Vigna unguiculata (L.) Walp. were used in these experiments: EPACE-1 
originating from the semi-arid Northeastern part of Brazil and IT83-D from humid regions in 
Southern China. Based on electrolyte leakage tests, these cultivars have been classified as drought-
tolerant and drought-susceptible, respectively [38]. Seeds were germinated in 5-L pots (one seed per 
pot) containing a mixture of 0.4 kg of compost (N/P/K 14/16/18, 1.2 kg·m−3, Gramoflor Repiquage, 
France) and 15 g of fertilizing granules (Nutricote T-100, N/P/K/MgO 13/13/13/2; Fertil, Boulogne-
Billancourt, France), under controlled conditions (photosynthetic photon flux density of  
250 µmol·m−2·s−1, 14 h daylight, 25 °C/20 °C day/night temperatures and 80% relative humidity) for 
two weeks. All 48 pots (24 pots per cultivar) were dispatched in eight identical phytotronic chambers 
(ground surface 1.44 m2, height: 2 m) where the seedlings were allowed to acclimate for one week 
before stress treatments were applied as described in the following paragraph. At the onset of the 
treatments, i.e., three weeks after sowing, plants had two mature trifoliate leaves. 



Plants 2017, 6, 14 9 of 18 

4.2. Stress Treatments 

For 14 day, three-week old cowpea seedlings were exposed to the following treatments: control 
(C), drought (D), ozone (O) and combined ozone and drought (O + D). Control plants were exposed 
to ambient air and received 400 mL of water daily. Drought was applied by withholding watering 
from the beginning of the acclimation period to the end of the experiment. Pots were weighed daily 
to make sure that water loss and soil drying progressed at the same rate for all droughted plants. At 
the end of the experiment (14 day), droughted plants had been submitted to a three-week water 
deprivation period and all showed signs of wilting. Ozone stress was imposed by exposing plants to 
120 ± 10 ppb of ozone through 12-h daily fumigations (11 a.m. to 11 p.m.). Ozone was produced from 
pure O2 by two ozone generators (OZ500; Fischer, Bonn, Germany and CMG3-3; Innovatec II, 
Rheinbach, Germany) and continuously monitored by an ozone analyzer (O341M; Environment S.A., 
Paris, France). For molecular and biochemical assays, the first fully developed trifoliolate leaves were 
collected after 7 and 14 day of treatments, immediately frozen in liquid N2 and stored at −80 °C for 
further analysis. 

4.3. Shoot Biomass Production, Relative Water Content, Chlorophyll Fluorescence and Stomatal 
Conductance Measurements 

Shoots were collected and weighed after 7 and 14 day of treatments. Fresh tissues were then 
dehydrated at 60 °C during 48 h before determination of shoot dry weight (SDW). Relative water 
content (RWC) of leaf tissues was assessed by determining fresh weight (FW), turgid weight (TW) 
and dry weight (DW) of 2 cm diameter leaf discs according to the following formula [57]: 

RWC = ((FW − DW)/(TW − DW)) × 100 (1) 

In vivo chlorophyll fluorescence was measured with a Fluorescence Monitoring System (FMS 1, 
Hansatech). Leaves were dark-adapted for 30 min before the minimal fluorescence (F0) was recorded. 
A saturating flash (7200 µmol·m−2·s−1 for 1 s) was applied to obtain the maximal fluorescence of dark-
adapted leaves (Fm). Actinic light (400 µmol·m−2·s−1) was then turned on to drive photosynthesis. 
When the leaves reached steady-state conditions, the steady-state fluorescence (Fs) was recorded. A 
saturating flash (7200 µmol·m−2·s−1 for 1 s) and a dark pulse were then applied to obtain the maximal 
(Fm′) and minimal (F0′) fluorescence of light-adapted leaves, respectively. The photochemical 
efficiency of PSII (Fv/Fm) and the quantum yield of PSII (ΦPSII) were calculated as follows: 

Fv/Fm = (Fm − Fo)/Fm (2) 

ΦPSII = (Fm′ − F0′)/Fm′ (3) 

Stomatal conductance to water vapor (gs) was measured after 7 and 14 day of experiment with a 
SC-1 portable leaf porometer (Decagon Devices, Inc., Pullman, WA, USA). Measurements were 
performed inside the phytotronic chambers, before the beginning of the ozone fumigation period, on 
one of the leaflets of the first fully developed trifoliolate leaf. 

4.4. Ozone Exposure and Dose Indices 

The AOT40 (ozone concentration accumulated over a threshold concentration of 40 ppb, under 
a minimum irradiance of 50 W·m−2, in ppb·h) index is defined as the sum of the difference between 
the hourly mean ozone concentration at the top of the canopy and 40 ppb, for all daylight hours 
within a specified time period [58]. Instantaneous ozone uptake was calculated from the monitoring 
of ozone concentration and stomatal conductance to water vapor (gs) as described in [59]. The 
accumulated stomatal flux or Phytotoxic Ozone Dose (POD, in mmol·m−2) was determined by 
summing hourly ozone uptakes. Since no dose-response relationship is available for Vigna or related 
species, the POD was calculated without any threshold of instantaneous ozone flux [58]. 
Measurements of gs were performed at 1, 3, 5, 8, 10, 12, 14 days of experiment for the calculation of 
each hourly ozone uptake of the day. For days when gs was not measured, an average value was 
calculated from the values recorded the flanking days. 
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4.5. DAB Staining 

Hydrogen peroxide (H2O2) accumulation was investigated using 3,3′-diaminobenzidine (DAB) 
staining. DAB solution (1 mg·mL−1) was vacuum-infiltrated into 1-cm diameter leaf discs and the 
disks were left to impregnate for 24 h in the dark. Leaf discs were then discolored in three successive 
95% ethanol baths and stored in glycerol 30%. Pictures were taken with a stereoscopic microscope 
(Nikon SMZ1000) under 0.8× magnification, coupled with a digital camera (Nikon D70S). 

4.6. Leaf Lipid Extraction and Separation 

Leaf samples were ground in liquid nitrogen and approximately 1 g was boiled in distilled water 
for 2 min to stop lipolytic activities. Lipophilic compounds were extracted in a 
chloroform:methanol:water (2:1:1, v:v:v) mixture [60], dried under nitrogen stream and immediately 
resuspended in 1 mL of an ethanol:toluene mixture (1:4, v:v) for storage at 4 °C. All extraction 
solutions were supplemented with 0.01% (v:v) butylated hydroxytoluene (BHT) to prevent lipid 
oxidation. Total lipids were separated by thin layer chromatography (TLC) on silica gel plates (G60; 
Merck) with the solvent system developed by [61]. Bands corresponding to lipid classes were 
visualized with primuline (0.01% in 80% acetone, m:v) under UV light and scraped. Lipids were then 
saponified and the obtained fatty acids were methylated with boron trifluoride [62]. Fatty acid methyl 
esters (FAMEs) were quantified relative to heptadecanoic acid (17:0), which was added as an internal 
standard before methylation. 

4.7. GC-MS Analysis 

FAMEs were separated using a gas chromatograph (Clarus 680, Perkin Elmer) fitted with a fused 
silica capillary column (60 m × 0.25 mm i.d., 0.25 µm film thickness, Elite-WAX ETR, Perkin Elmer). 
Samples and standards were introduced by a 1 µL splitless injection system at 250 °C. Helium was 
used as the carrier gas at a constant flow of 1 mL·min−1. The oven temperature was programmed to 
rise continuously from 75 °C to 200 °C for a total run time of 60 min. Separated FAMEs were analyzed 
through electronic ionization (70 eV) with a single quadripole mass spectrometer (Clarus 600, Perkin 
Elmer). FAMEs were identified by comparing the obtained spectral data to a NIST database (National 
Institute of Standards Technology, Gaithersburg, Maryland). Calibration standards were prepared 
from a commercially available mixture of standards (F.A.M.E. Mix, C8-C22 unsaturates, Supelco), 
using heptadecanoic acid (17:0) as an internal standard. Calibration standards were analyzed in 
triplicate and linear standard curves were established for the methyl esters of the five main fatty acids 
found in membrane lipids of Vigna leaves (16:0, 18:0, 18:1; 18:2, 18:3) [21]. To maximize sensitivity 
and specificity, FAMEs were quantified in single-ion-recording (SIR) mode. Mass spectra of eluting 
FAME compounds were identified using the commercial mass spectral library supplied with the 
manufacturer’s software (TurboMass, Perkin Elmer). For each sample of total lipids, the responses 
(peak areas) of FAMEs were normalized separately to the response of the internal standard 17:0 and 
quantified using the corresponding calibration relationship. To determine the lipid content in a given 
leaf, the amounts of fatty acids were summed and the result expressed in relation to the leaf tissue 
dry weight. The omega-3 index as defined as the 18:3/(18:0 + 18:1 + 18:2) fatty acid ratio was 
determined as described in [53]. Omega-3 index values were normalized to the highest value 
measured at a given time point for a given cultivar. 

4.8. RNA Extraction and cDNA Synthesis 

Leaf samples were ground in liquid N2 with pestle and mortar and approximately 70 mg of 
powder were used for total RNA extraction, using the Qiagen RNeasy Plant Mini kit following the 
manufacturer’s instructions. Total RNA (50 µg) was treated with TURBO DNase (Invitrogen). RNA 
concentration was measured using a Nanodrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA) and RNA integrity was controlled by electrophoresis on 1.5% 
agarose gels. cDNA synthesis was performed on 800 ng of total RNA extracts by reverse transcription 
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with the SuperScript III RT kit (Invitrogen) according manufacturer’s instructions. cDNA samples 
were kept at −20 °C before analysis. 

4.9. Real-Time PCR Analysis 

Leaf cDNAs were used for the detection of transcript accumulation for the following genes 
involved in membrane lipid biosynthesis and degradation: VuMGD1, VuMGD2, VuDGD1, VuDGD2, 
VuFAD7, VuFAD8, VuPAT1. Additional information on real-time PCR analyses is given in Table A5. 
Real-time PCR reactions were performed using the Power SYBR Green PCR Master Mix kit (Applied 
Biosystems) in a StepOne Plus termocycler (Applied Biosystems). The 20 µL reaction mixtures 
contained 1 µL of cDNA (from 4 ng of reverse-transcribed RNA), 5 pmol of both sense and antisense 
primers and 10 µL of 2× SYBR Green DNA Polymerase mix. All samples were amplified under the 
following conditions: one denaturing step at 95 °C for 10 min, 40 cycles: 95 °C for 15 s (denaturing), 
62 °C for 30 s (annealing), 72 °C for 30 s (elongation). Efficiencies of real-time PCR reactions were 
determined using dilution series of calibrator cDNA samples. Reactions were run in two replicates 
and the relative gene expression levels were normalized to the expression levels of a selected 
reference gene (elongation factor 1 alpha VuEF-1α). The reference gene VuEF1α was selected among 
a number of potential housekeeping genes using the GeNorm method [63]. 

4.10. Statistical Analysis 

As described in the appropriate figure captions, parameters were measured on 3 or 4 plants per 
treatment, considered as independent biological replicates. At each time point and for a given 
cultivar, data from the different treatments (control, C; drought, D; ozone, O; ozone + drought OD) 
were submitted to a one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc tests (α = 
0.05). Homogenous subsets were indicated by appropriate letters. In addition, the effects of 
experimental factors (time, cultivar, drought and ozone) and their interactions were assessed through 
the multivariate ANOVA of the whole data set and the between-subject effects are included as 
supplementary information (Supporting Information Tables A2–A4. Statistical analysis were 
conducted using the R software [64]. 

5. Conclusions 

Both cowpea cultivars showed acclimatory responses to drought such as stomatal closure that 
led to growth impairment, but the water stress was not severe enough to cause leaf and membrane 
injury nor to reveal differences in drought tolerance between IT83-D and EPACE-1 cultivars. In 
contrast, the ozone treatment had a limited impact at whole-plant level but provoked leaf injury and 
altered membrane lipids. These effects were more pronounced in IT83-D, revealing intervarietal 
differences in ozone tolerance. When stresses were combined, ozone did not modify the stomatal 
response to drought and the observed effects on whole-plant physiology were essentially the same 
as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to 
alleviate ozone effects through the reduction of ozone uptake. Although the impact of the combined 
stresses on yield could not be evaluated in this study, the interactive effects of combined ozone and 
drought may play a major role for cowpea and others crops exposed in the field to a combination of 
the two stresses, and should be taken into account in environmental risk assessment for vegetation. 
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POD phytotoxic ozone dose 
RWC relative water content 
VuMGD monogalactosyl-diacylglycerol synthase 
VuDGD digalactosyl-diacylglycerol synthase 
VuFAD ω-3 fatty acid desaturase 
VuPAT1 patatin-like lipid acyl hydrolase 
ΦPSII quantum yield of PSII 
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A3: Analysis of variance (ANOVA) of lipid contents; Table A4: Analysis of variance (ANOVA) of 
gene expression data; Table A5: Description of genes analyzed by RT-qPCR. 

 
Figure A1. Detection of hydrogen peroxide using DAB staining in Vigna unguiculata leaves 
exposed to the following treatments: Control (C), Drought (D), Ozone (O), Ozone + Drought 
(OD). Leaf discs were collected and stained after 14 days of treatment. Pictures are representative 
of three independent biological replicates. No specific staining was observed in control leaves 
treated with ascorbic acid (data not shown). DAB: 3,3′-diaminobenzidine. Bar = 250 µm. 
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Table A1. (a) MGDG and (b) DGDG fatty acid composition in the leaves of Vigna unguiculata plants 
subjected to the following treatments: Control (C), Drought (D), Ozone (O), Ozone + Drought (OD). 
Values are expressed as percentages of the total fatty acid content in a given lipid class, averaged from 
three independent biological replicates. Data in bold belong to subsets that only partially merge the 
core data set, data in bold on a grey background belong to strictly separate subsets (one-way ANOVA 
and Tukey post-hoc tests, α = 0.05). MGDG, monogalactosyl-diacylglycerol; DGDG, digalactosyl-
diacylglycerol; 16:0, hexadecanoic acid; 18:0, octadecanoic acid; 18:1, 9-octadecenoic acid; 18:2, 9,12-
octadecadienoic acid; 18:3, 9,12,15-octadecatrienoic acid. 

(a) MGDG 
Cultivar Time (d) Treatment %16:0 %18:0 %18:1 %18:2 %18:3 
EPACE-1 7 C 1.5 0.8 0.1 1.2 96.3 

  D 1.4 1.0 0.1 1.2 96.3 
  O 1.9 1.6 0.2 1.2 95.2 
  OD 1.5 1.2 0.2 1.2 95.8 
 14 C 1.6 0.8 0.2 1.0 96.4 
  D 1.3 1.2 0.2 1.4 95.9 
  O 2.3 1.7 0.3 1.5 94.2 
    OD 1.2 1.2 0.3 1.4 96.0 

IT83-D 7 C 1.6 1.3 0.2 1.6 95.3 
  D 1.7 1.2 0.2 1.4 95.5 
  O 1.2 0.6 0.1 1.4 96.7 
   OD 0.9 0.6 0.1 1.3 97.0 
 14 C 1.9 1.2 0.3 1.2 95.5 
  D 1.7 2.0 0.3 1.6 94.5 
  O 6.4 7.7 1.1 3.1 81.6 
    OD 2.1 2.4 0.4 1.8 93.4 
        

(b) DGDG
Cultivar Time (d) Treatment %16:0 %18:0 %18:1 %18:2 %18:3 
EPACE-1 7 C 7.3 1.7 0.2 1.0 89.8 

  D 8.1 2.4 0.3 1.1 88.1 
  O 7.7 2.9 0.4 1.1 87.9 
  OD 8.8 2.8 0.3 1.2 86.9 
 14 C 7.7 2.2 0.3 1.1 88.7 
  D 6.9 2.8 0.3 1.3 88.7 
  O 8.1 2.7 0.5 1.2 87.6 
  OD 10.5 4.1 0.4 1.4 83.7 

IT83-D 7 C 8.6 2.1 0.3 1.2 87.8 
  D 3.7 1.9 0.7 2.1 91.7 
  O 8.0 1.5 0.2 1.0 89.3 
   OD 6.8 1.6 0.4 1.1 90.1 
 14 C 8.1 4.0 0.5 1.5 85.9 
  D 6.5 3.5 0.4 1.4 88.2 
  O 7.2 6.3 1.0 2.0 83.5 
  OD 7.8 4.7 0.6 1.6 85.2 
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Table A2. Analysis of variance (ANOVA) of physiological parameters. The displayed results are p-
values for individual factors (time, cultivar, drought and ozone) and their multiple interactions. 
Values in bold are significant at α = 0.05. SDW, shoot dry weight; gs, stomatal conductance; RWC, 
relative water content; ΦPSII, actual quantum yield of PSII; Fv/Fm, maximum quantum yield of PSII. 

Factor SDW gs RWC ΦPSII Fv/Fm 
Time (t) 0.000 0.004 0.000 0.000 0.000 

Cultivar (cv) 0.743 0.609 0.459 0.000 0.000 
Drought (D) 0.000 0.000 0.000 0.000 0.004 
Ozone (O) 0.194 0.000 0.817 0.141 0.656 

t × cv 0.960 0.594 0.055 0.094 0.923 
t × D 0.000 0.477 0.000 0.103 0.096 

cv × D 0.809 0.341 0.012 0.091 0.813 
t × cv × D 0.415 0.468 0.420 0.091 0.713 

t × O 0.777 0.811 0.040 0.494 0.002 
cv × O 0.303 0.595 0.726 0.122 0.035 

t × cv × O 0.881 0.300 0.126 0.063 0.022 
D × O 0.084 0.000 0.844 0.242 0.736 

t × D × O 0.677 0.770 0.895 0.763 0.213 
cv × D × O 0.387 0.977 0.890 0.590 0.559 

t × cv × D × O 0.442 0.866 0.037 0.850 0.253 

Table A3. Analysis of variance (ANOVA) of lipid contents. The displayed results are p-values for 
individual factors (time, cultivar, drought and ozone) and their multiple interactions. Values in bold 
are significant at α = 0.05. MGDG, monogalactosyl-diacylglycerol; DGDG, digalactosyl-
diacylglycerol. 

Factor MGDG DGDG 
Time (t) 0.000 0.003 

Cultivar (cv) 0.961 0.180 
Drought (D) 0.987 0.679 
Ozone (O) 0.002 0.000 

t × cv 0.131 0.466 
t × D 0.977 0.804 

cv × D 0.514 0.318 
t × cv × D 0.819 0.499 

t × O 0.094 0.396 
cv × O 0.150 0.026 

t × cv × O 0.269 0.875 
D × O 0.464 0.798 

t × D × O 0.696 0.660 
cv × D × O 0.279 0.264 

t × cv × D × O 0.734 0.899 
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Table A4. Analysis of variance (ANOVA) of gene expression data. The displayed results are p-values 
for individual factors (time, cultivar, drought and ozone) and their multiple interactions. Values in 
bold are significant at α = 0.05. VuMGD1, type 1 monogalactosyl-diacylglycerol synthase; VuMGD2, 
type 2 monogalactosyl-diacylglycerol synthase; VuDGD1, type 1 digalactosyl-diacylglycerol synthase; 
VuDGD2, type 2 digalactosyl-diacylglycerol synthase; VuFAD7, ω-3 fatty acid desaturase 7; VuFAD8, 
ω-3 fatty acid desaturase 8; VuPAT1, patatin-like lipid acyl hydrolase. 

Factor VuMGD
1 

VuMGD
2 

VuDGD
1 

VuDGD
2 

VuFAD7 VuFAD8 VuPAT1 

Time (t) 0.000 0.033 0.000 0.000 0.000 0.000 0.729 
Cultivar (cv) 0.000 0.348 0.066 0.000 0.789 0.000 0.414 
Drought (D) 0.000 0.005 0.000 0.000 0.000 0.000 0.010 
Ozone (O) 0.110 0.102 0.986 0.000 0.525 0.000 0.026 

t × cv 0.000 0.310 0.131 0.000 0.592 0.000 0.559 
t × D 0.000 0.034 0.000 0.000 0.000 0.000 0.026 

cv × D 0.000 0.271 0.058 0.000 0.948 0.000 0.208 
t × cv × D 0.000 0.251 0.110 0.000 0.994 0.000 0.578 

t × O 0.016 0.151 0.532 0.000 0.600 0.000 0.067 
cv × O 0.000 0.614 0.000 0.000 0.885 0.000 0.064 

t × cv × O 0.000 0.629 0.000 0.000 0.687 0.000 0.147 
D × O 0.037 0.106 0.840 0.000 0.380 0.000 0.028 

t × D × O 0.001 0.141 0.559 0.000 0.591 0.000 0.035 
cv × D × O 0.000 0.623 0.000 0.000 0.205 0.000 0.232 

t × cv × D × O 0.000 0.632 0.000 0.000 0.115 0.000 0.221 

Table A5. Name, function and accession number of genes measured by real-time quantitative PCR as 
well as sequences of sense and antisense primers used for qPCR analyses. 

Gene Name Gene Function GenBank Accession Number

VuMGD1 
Type 1 monogalactosyl-diacylglycerol 

synthase DQ205521 

VuMGD2 Type 2 monogalactosyl-diacylglycerol 
synthase 

EF466098 

VuDGD1 Type 1 digalactosyl-diacylglycerol 
synthase DQ205523 

VuDGD2 
Type 2 digalactosyl-diacylglycerol 

synthase EF466099 

VuFAD7 ω-3 fatty acid desaturase 7 EU180596 
VuFAD8 ω-3 fatty acid desaturase 8 EU180595 
VuPAT1 Patatin-like lipid acyl hydrolase AF193067 
VuEF-1α Elongation factor 1 alpha  HO223992 

Gene Name Sense Primer Antisense Primer 
VuMGD1 5′GTCCATCCACTGATGCAGCAC3′ 5′TTGCGCAACATCTGTTGTAGG3′ 
VuMGD2 5′GTCCATCCACTGATGCAGCAC3′ 5′ATTGACCCTTCACAAGAACC3′ 

VuDGD1 5′GTAATTTGCAATGTTCATGGTGT3′ 5′TCTGAACTTCATTAGCATCCTCTC
3′ 

VuDGD2 5′TGCACAGCCTACTAATGCTGAG3′ 5′TGCAAGGTATGTGGAATAGCAC3′ 
VuFAD7 5′GCTTCAATCTTGAGTCCTATGG3′ 5′CCAACCTTGGAGGAGCTGGAC3′ 

VuFAD8 5′ACCAGTTCTTGGTCAATATTACCG
3′ 

5′CAGTGACTTCTCTCAGTCTTC3′ 

VuPAT1 5′TTTGCTTGCTTTCCTCGAAT3′ 5′CGGGAAGATTTTTGGGGTAT3′ 

VuEF-1α 5′GTAACAAGATGGATGCCACC3′ 5′CCACTTTCTTCAAATACGAGGAG
3′ 



Plants 2017, 6, 14 16 of 18 

References 

1. Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should 
we breed for? Ann. Bot. 2002, 89, 925–940. 

2. Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone 
on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 2012, 63, 637–661. 

3. Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. 
4. Oltmans, S.J.; Lefohn, A.S.; Shadwick, D.; Harris, J.M.; Scheel, H.E.; Galbally, I.; Tarasick, D.W.; Johnson, 

B.J.; Brunke, E.G.; Claude, H.; et al. Recent tropospheric ozone changes—A pattern dominated by slow or 
no growth. Atmos. Environ. 2013, 67, 331–351. 

5. Mills, G.; Pleijel, H.; Braun, S.; Buker, P.; Bermejo, V.; Calvo, E.; Danielsson, H.; Emberson, L.; Fernandez, 
I.G.; Grunhage, L.; et al. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos. 
Environ. 2011, 45, 5064–5068. 

6. Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New 
Phytol. 2014, 203, 32–43. 

7. Matyssek, R.; Le Thiec, D.; Löw, M.; Dizengremel, P.; Nunn, A.J.; Häberle, K.-H. Interactions between 
drought and O3 stress in forest trees. Plant Biol. 2006, 1, 11–17. 

8. Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and 
future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-
analysis. Glob. Chang. Biol. 2009, 15, 396–424. 

9. Feng, Z.; Kobayashi, K. Assessing the impacts of current and future concentrations of surface ozone on 
crop yield with meta-analysis. Atmos. Environ. 2009, 43, 1510–1519. 

10. Iyer, N.J.; Tang, Y.; Mahalingam, R. Physiological, biochemical and molecular responses to a combination 
of drought and ozone in Medicago truncatula. Plant Cell Environ. 2013, 36, 706–720. 

11. Maier-Maercker, U. Predisposition of trees to drought stress by ozone. Tree Physiol. 1998, 19, 71–78. 
12. Cotrozzi, L.; Remorini, D.; Pellegrini, E.; Landi, M.; Massai, R.; Nali, C.; Guidi, L.; Lorenzini, G. Variations 

in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol. 
Plant. 2016, 157, 69–84. 

13. Paoletti, E.; Grulke, N.E. Ozone exposure and stomatal sluggishness in different plant physiognomic 
classes. Environ. Pollut. 2010, 158, 2664–71. 

14. Wilkinson, S.; Davies, W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to 
community. Plant Cell Environ. 2010, 33, 510–525. 

15. Møller, I.M.; Jensen, P.E.; Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. 
Plant Biol. 2007, 58, 459–481. 

16. Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and 
antioxidative defense mechanism in plants under stressful conditions. Am. J. Bot. 2012, 2012, 217037. 

17. Kangasjärvi, J.; Jaspers, P.; Kollist, H. Signalling and cell death in ozone-exposed plants. Plant Cell Environ. 
2005, 28, 1021–1036. 

18. Meijer, H.J.; Munnik, T. Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 2003, 54, 265–306. 
19. Baier, M.; Kandlbinder, A.; Golldack, D.; Dietz, K.-J. Oxidative stress and ozone: Perception, signalling and 

response. Plant Cell Environ. 2005, 28, 1012–1020. 
20. Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. 

Biotechnol. Lett. 2008, 30, 967–977. 
21. De Paula, F.M.; Pham Thi, A.T.; da Silva, J.V.; Justin, A.M.; Demandre, C.; Mazliak, P. Effects of water stress 

on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci. 1990, 66, 
185–193. 

22. Carlsson, A.S.; Hellgren, L.I.; Selldén, G.; Sandelius, S. Effects of moderately enhanced levels of ozone on 
the acyl lipid composition of the leaves of garden pea (Pisum sativum). Physiol. Plant. 1994, 91, 754–762. 

23. Mudd, J.B.; McManus, T.T.; Ongun, A.; McCullogh, T.E. Inhibition of glycolipid biosynthesis in 
chloroplasts by ozone and sulfhydryl reagents. Plant Physiol. 1971, 48, 335–339. 

24. De Paula, F.M.; Pham Thi, A.T.; Zuily-Fodil, Y.; Ferrari-Iliou, R.; da Silva, J.V.; Mazliak, P. Effects of water 
stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna 
unguiculata. Plant Physiol. Biochem. 1993, 31, 707–715. 

25. Hellgren, L.I.; Carlsson, A.S.; Sellden, G.; Sandelius, A.S. In situ leaf lipid-metabolism in garden pea (Pisum 
sativum L.) exposed to moderately enhanced levels of ozone. J. Exp. Bot. 1995, 46, 221–230. 



Plants 2017, 6, 14 17 of 18 

26. Matos, A.R.; d’Arcy-Lameta, A.; Franca, M.; Petres, S.; Edelman, L.; Kader, J.; Zuily-Fodil, Y.; Pham-Thi, 
A.T. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS 
Lett. 2001, 491, 188–192. 

27. Dakhma, W.S.; Zarrouk, M.; Cherif, A. Effects of drought-stress on lipids in rape leaves. Phytochemistry 
1995, 40, 1383–1386. 

28. Carlsson, A.S.; Wallin, G.; Sandelius, S. Species- and age-dependent sensitivity to ozone in young plants of 
pea, wheat and spinach: Effects on acyl lipid and pigment content and metabolism. Physiol. Plant. 1996, 98, 
271–280. 

29. Campos, P.S.; Ramalho, J.C.; Lauriano, J.A.; Silva, M.J.; do Céu Matos, M. Effects of Drought on 
Photosynthetic Performance and Water Relations of Four Vigna Genotypes. Photosynthetica 1999, 36, 79–87. 

30. De Carvalho, M.H.C.; Laffray, D.; Louguet, P. Comparison of the physiological responses of Phaseolus 
vulgaris and Vigna unguiculata cultivars when submitted to drought conditions. Environ. Exp. Bot. 1998, 40, 
197–207. 

31. Torres-Franklin, M.L.; Gigon, A.; de Melo, D.F.; Zuily-Fodil, Y.; Pham-Thi, A.T. Drought stress and 
rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol. Plant. 2007, 
131, 201–210. 

32. Hewitt, D.K.L.; Mills, G.; Hayes, F.; Norris, D.; Coyle, M.; Wilkinson, S.; Davies, W. N-fixation in legumes—
An assessment of the potential threat posed by ozone pollution. Environ. Pollut. 2016, 208, 909–918. 

33. Malaiyandia, M.; Natarajana, M. Impact of Ozone on Morphological, Physiological, and Biochemical 
Changes in Cow Pea (Vigna unguiculata (L.) Walp.). Ozone Sci. Eng. 2014, 36, 36–42. 

34. Tetteh, R.; Yamaguchi, M.; Wada, Y.; Funada, R.; Izuta, T. Effects of ozone on growth, net photosynthesis 
and yield of two African varieties of Vigna unguiculata. Environ. Pollut. 2015, 196, 230–238. 

35. Tetteh, R.; Yamaguchi, M.; Izuta, T. Effect of ambient levels of ozone on photosynthetic components and 
radical scavenging system in the leaves of African cowpea varieties. Afr. Crop Sci. J. 2016, 24, 127–142. 

36. Umponstira, C.; Pimpa, W.; Nanegrungsun, S. Physiological and biochemical responses of cowpea (Vigna 
unguiculata (L.) Walp) to ozone. Songklanakarin J. Sci. Technol. 2006, 28, 861–869. 

37. Umponstira, C.; Kawayaskul, S.; Chuchaung, S.; Homhaul, W. Effect of Ozone on Nitrogen Fixation, 
Nitrogenase Activity and Rhizobium of Cowpea (Vigna unguiculata (L.) Walp.). Naresuan Univ. J. 2009, 17, 
213–220. 

38. Vasquez-Tello, A.; Zuily-Fodil, Y.; Pham Thi, A.T.; da Silva, J.V. Electrolyte and Pi leakages and soluble 
sugar contents as physiological tests for screening resistance to water stress in Phaseolus and Vigna species. 
J. Exp. Bot. 1990, 228, 827–832. 

39. Torres-Franklin, M.L.; Repellin, A.; Huynh, V.-B.; d’Arcy-Lameta, A.; Zuily-Fodil, Y.; Pham-Thi, A.-T. 
Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea 
leaves submitted to drought and after rehydration. Environ. Exp. Bot. 2009, 65, 162–169. 

40. Langebartels, C.; Wohlgemuth, H.; Kschieschan, S.; Grun, S.; Sandermann, H. Oxidative burst and cell 
death in ozone-exposed plants. Plant Physiol. Biochem. 2002, 40, 567–575. 

41. Sakaki, T.; Saito, K.; Kawaguchi, A.; Kondo, N.; Yamada, M. Conversion of monogalactosyldiacylglycerols 
to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol. 1990, 94, 766–772. 

42. Whitaker, B.D.; Lee, E.H.; Rowland, R.A. EDU and ozone protection: Foliar glycerolipids and steryl lipids 
in snapbean exposed to O3. Physiol. Plant. 1990, 80, 286–293. 

43. Sandelius, A.S.; Näslund, K.; Carlsson, A.S.; Pleijel, H.; Selldén, G. Exposure of spring wheat (Triticum 
aestivum) to ozone in open–top chambers. Effects on acyl lipid composition and chlorophyll content of flag 
leaves. New Phytol. 1995, 131, 231–239. 

44. Fong, F.; Heath, R.L. Lipid-content in the primary leaf of bean (Phaseolus vulgaris) after ozone fumigation. 
Z. Pflanzenphysiol. 1981, 104, 109–115. 

45. Nouchi, I.; Toyama, S. Effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of 
morning glory and kidney bean. Plant Physiol. 1988, 87, 638–646. 

46. Matos, A.R.; Pham-Thi, A.T. Lipid deacylating enzymes in plants: Old activities, new genes. Plant Physiol. 
Biochem. 2009, 47, 491–503. 

47. Gigon, A.; Matos, A.-R.; Laffray, D.; Zuily-Fodil, Y.; Pham-Thi, A.-T. Effect of drought stress on lipid 
metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann. Bot. 2004, 94, 345–351. 



Plants 2017, 6, 14 18 of 18 

48. Sahsah, Y.; Pham Thi, A.T.; Roy-Macauley, H.; d’Arcy-Lameta, A.; Repellin, A.; Zuily-Fodil, Y. Purification 
and characterization of a soluble lipolytic acylhydrolase from cowpea (Vigna unguiculata L.) leaves. Biochim. 
Biophys. Acta 1994, 1215, 66–73. 

49. Sahsah, Y.; Campos, P.; Gareil, M.; Zuily-Fodil, Y.; Pham-Thi, A.T. Enzymatic degradation of polar lipids 
in Vigna unguiculata leaves and influence of drought stress. Physiol. Plant. 1998, 104, 577–586. 

50. Nishiuchi, T.; Iba, K. Roles of plastid omega-3 fatty acid desaturases in defense response of higher plants. 
J. Plant Res. 1998, 111, 481–486. 

51. Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. 
Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially 
alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. 

52. Yaeno, T.; Matsuda, O.; Iba, K. Role of chloroplast trienoic fatty acids in plant disease defense responses. 
Plant J. 2004, 40, 931–941. 

53. Le Guédard, M.; Faure, O.; Bessoule, J.J. Early changes in the fatty acid composition of photosynthetic 
membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere 2012, 88, 693–698. 

54. Paoletti, E. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen 
broadleaf, Arbutus unedo. Environ. Pollut. 2005, 134, 439–445. 

55. Dumont, J.; Spicher, F.; Montpied, P.; Dizengremel, P.; Jolivet, Y.; Le Thiec, D. Effects of ozone on stomatal 
responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three 
Populus deltoides × Populus nigra genotypes. Environ. Pollut. 2013, 173, 85–96. 

56. Wittig, V.E.; Ainsworth, E.A.; Long, S.P. To what extent do current and projected increases in surface ozone 
affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of 
experiments. Plant Cell Environ. 2007, 30, 1150–1162. 

57. Weatherley, P. Studies in the water relations of the cotton plant: I—The field measurement of water deficit 
in leaves. New Phytol. 1950, 49, 81–97. 

58. United Nations Economic Commission for Europe. Convention on Long-Range Transboundary Air Pollution 
2004 Modelling and Mapping Manual of the LRTAP Convention; United Nations Economic Commission for 
Europe: Geneva, Switzerland, 2004. 

59. Bagard, M.; Le Thiec, D.; Delacote, E.; Hasenfratz-Sauder, M.-P.; Banvoy, J.; Gérard, J.; Dizengremel, P.; 
Jolivet, Y. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to 
the developmental stage of the leaves. Physiol. Plant. 2008, 134, 559–574. 

60. Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 
1959, 235, 8–17. 

61. Lepage, M. Identification and composition of turnip root lipids. Lipids 1967, 2, 244–250. 
62. Metcalfe, L.D.; Schmitz, A.A. The rapid preparation of fatty acid esters for gas chromatographic analysis. 

Anal. Chem. 1961, 33, 363–364. 
63. Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate 

normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control 
genes. Genome Biol. 2002, 3, doi:10.1186/gb-2002-3-7-research0034. 

64. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical 
Computing: Vienna, Austria, 2013. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


