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Abstract: A considerable amount of research has been conducted to determine how cell 

walls are loosened to produce irreversible wall deformation and expansive growth in plant 

and algal cells. The same cannot be said about fungal cells. Almost nothing is known about 

how fungal cells loosen their walls to produce irreversible wall deformation and expansive 

growth. In this study, anoxia is used to chemically isolate the wall from the protoplasm of 

the sporangiophores of Phycomyces blakesleeanus. The experimental results provide direct 

evidence of the existence of chemistry within the fungal wall that is responsible for wall 

loosening, irreversible wall deformation and elongation growth. In addition, constant-tension 

extension experiments are conducted on frozen-thawed sporangiophore walls to obtain 

insight into the wall chemistry and wall loosening mechanism. It is found that a decrease in 

pH to 4.6 produces creep extension in the frozen-thawed sporangiophore wall that is similar, 

but not identical, to that found in frozen-thawed higher plant cell walls. Experimental results 

from frozen-thawed and boiled sporangiophore walls suggest that protein activity may be 

involved in the creep extension. 

Keywords: Phycomyces; expansive growth; wall loosening; chemorheology 

 

  

OPEN ACCESS 



Plants 2015, 4 64 

 

 

1. Introduction 

Cellular expansive growth is central to the development, morphogenesis and sensory responses of 

plants, algae and fungi. Plant, algal and fungal cells have walls. These cells regulate the mechanical 

behavior of their walls during expansive growth to control the growth rate, morphogenesis and growth 

responses to environmental stimuli [1–3]. During expansive growth, water uptake produces turgor 

pressure that deforms the cell wall. Walls exhibit both irreversible and reversible (elastic) deformation 

during expansive growth [4–6]. The wall deformation behavior is similar to that of a Maxwell–Bingham 

viscoelastic model, which consists of a dashpot (filled with a Bingham fluid) in series with an elastic 

spring [4,6]. The constitutive equation (stress-strain relationship) for a Maxwell–Bingham viscoelastic 

model, Equation (1), describes the strain rate as equal to the sum of the irreversible extension rate of the 

dashpot filled with a Bingham fluid and the reversible (elastic) extension rate of a spring [4]. 
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Strain rate = irreversible extension rate of a dashpot + reversible extension rate of a spring  

where L is the length of the viscoelastic model, t is the time, µ is the dynamic viscosity of the Bingham 

fluid, σ is the stress, σC is the critical stress of the Bingham fluid and E is the longitudinal elastic modulus 

of the spring. The term, (dL/dt)/L, is the strain rate, and the term, (σ − σC)/µ, is the irreversible extension 

rate of the dashpot filled with a Bingham fluid, which behaves like a Newtonian fluid after a critical 

stress, σC, is exceeded. The term, (dσ/dt)/E, is the reversible (elastic) extension rate of the spring. 

Both irreversible and reversible wall deformations are required for expansive growth. Reversible wall 

deformation is responsible for most of the turgor pressure production during water uptake. Irreversible 

wall deformation is responsible for the permanent increase in cell volume. This wall deformation behavior 

is implicit in the augmented growth equation, Equation (2), that was derived from the constitutive equation 

for a Maxwell–Bingham model, Equation (1), and which provides a quantitative mathematical description 

of the expansive growth rate as a function of the wall deformation rate of cells with walls [4]. 
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Volume expansion rate = irreversible wall deformation rate + elastic wall deformation rate  

where V is the volume of the cell wall chamber, t is the time, ϕ is the relative wall extensibility, P is the 

turgor pressure, PC is the critical turgor pressure and ε is the volumetric elastic modulus. The term, 

dV/Vdt, represents the relative rate of change in volume of the cell wall chamber; the term, ϕ (P − PC), 

represents the relative irreversible wall deformation rate; and the term, (dP/dt)/ε, represents the relative 

reversible (elastic) wall deformation rate. 

The augmented growth equation has been adapted and experimentally validated for diffuse growth, 

tip growth, intercalary growth, cellular growth within tissue and growth responses to environmental 

stimuli [2,5–7]. It is hypothesized that chemistry within the wall breaks and makes load-bearing bonds 

between wall polymers to loosen and harden the wall and regulate temporal and spatial irreversible and 

elastic wall deformations (chemorheology) during expansive growth and morphogenesis [1,2,5–7]. 

Furthermore, it is hypothesized that wall chemistry and chemorheological processes control the 
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magnitude and behavior of the inclusive biophysical variables within the augmented growth equation to 

regulate the expansive growth rate [1,2,5–7]. Interestingly, the augmented growth equation was recently 

derived from fundamental thermodynamic principles as a particular case of a more general growth 

equation [8], and the evolution of ϕ and ε as a function of dV/Vdt was correctly predicted. 

Investigations with higher plant tissue provide experimental evidence indicating acidic pH initiates 

wall chemistry that promotes wall loosening [9]. It is shown that low pH produces continuous deformation 

(creep) of frozen-thawed cell walls of higher plant cells when a constant stress is applied [10,11]. Thus, 

a chemorheological process promotes creep in frozen-thawed cell walls. Investigators have identified 

and isolated pH-dependent proteins (expansins) that mediate the wall loosening and creep in frozen-thawed 

plant tissue [1,11]. Expansins and their genes have been found in higher plants, fungi and bacteria [1,12]. 

Importantly, expansins have been shown to promote creep and irreversible wall deformation in frozen-thawed 

tissue from many different plants and are hypothesized to play a major role in the expansive growth of 

higher plants [1]. Endogenous wall enzymes are also hypothesized to play a role in the expansive growth 

of higher plants (e.g., xyloglucan endotransglycosylase/hydrolase and endo-β-1,4-glucanases), but they 

have not been shown to promote creep in frozen-thawed cell walls [1,13]. Experimental evidence 

indicates that another chemorheological process (calcium pectate cycle) plays a major role in  the 

expansive growth of pollen tubes [14] and algae [15] and may play a role in the expansive growth of 

higher plant cells [3,8]. 

Importantly, almost nothing is known about the mechanism of wall loosening in fungal cell walls, 

although a considerable amount is known about fungal cell wall structure, synthesis and assembly [16–18]. 

In the current study, experiments are conducted to obtain insight into the wall loosening mechanism of 

the large single-celled sporangiophores of the fungus, Phycomyces blakesleeanus [17,18]. The cell wall 

mechanical properties of these sporangiophores have been studied extensively during expansive growth 

and exhibit wall deformation characteristics that are similar to those of higher plant cell walls [2,6,7]. It 

was shown that their walls exhibit deformation behavior similar to that of a Maxwell-Bingham viscoelastic 

model and that the augmented growth equations accurately describe their expansive growth rate [2,4,6,7]. 

In the present experimental investigation, anoxia is used to chemically isolate the wall from the 

protoplasm of the sporangiophores of P. blakesleeanus. Anoxia terminates the sporangiophore’s 

metabolism [17,19] and essentially stops the export of wall polymers and materials from the protoplasm 

to the wall, thus chemically isolating the wall. The experimental results provide direct evidence of the 

existence of chemistry and chemorheology within the fungal wall that are responsible for wall loosening, 

irreversible wall deformation and elongation growth. 

In addition, constant-tension extension experiments are conducted on frozen-thawed sporangiophore 

walls to obtain insight into the wall chemistry and chemorheology that produce irreversible wall deformation. 

It is found that a decrease in pH to 4.6 produces creep in frozen-thawed sporangiophore walls, similar to 

higher plant cells. Frozen-thawed sporangiophore walls that were boiled for 15 s before constant-tension 

extension experiments did not exhibit creep, again similar to higher plant cells.  This inactivation of 

endogenous wall-loosening activity may suggest mediation by an expansin-like protein and/or mechanism. 

However, unlike higher plant cells, the creep of the sporangiophores’ walls continues for minutes, not 

hours. This result may indicate that the chemistry and chemorheology that produce creep and wall 

loosening in the sporangiophore’s wall may be fundamentally different from that in higher plant cells.  
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2. Results 

2.1. Anoxia Experiments 

Growing Stage IV sporangiophores of the fungus P. blakesleeanus (Figure 1) were subjected to  

an anoxic environment in order to terminate the sporangiophore’s metabolism [17,19], thus eliminating 

the export of wall polymers and materials from the protoplasm to the wall. Experiments were conducted 

as follows. A Stage IV sporangiophore was selected and placed in a chamber made of transparent acrylic 

that was constructed specifically for these experiments. The sporangiophore was adapted in the 

experimental chamber to atmospheric air (~21% oxygen concentration), constant and symmetric 

distribution of light and other environmental conditions for 20 min. The light and environmental 

conditions were maintained constant throughout the adaptation period and during the experiment to 

prevent growth responses. After the adaptation period, the elongation growth was measured for the 

remainder of the experiment (Figure 2). Ten minutes afterwards, the sporangiophore was impaled with 

the micro-capillary tip of a pressure probe (downward pointing arrow on the time scale and labeled 

“Impaled”), and the turgor pressure was measured for the remainder of the experiment. At approximately 

27 min on the time scale (shown by the downward point arrow labeled “Anoxia”), the chamber was 

filled with nitrogen gas, which decreased the oxygen concentration to less than 1%. 

The results presented in Figure 2 show that both the elongation rate (slope of the elongation curve, 

ΔL) and turgor pressure (P) remain nearly constant between 10 min and 27 min on the time scale. The 

sharp and immediate decrease in turgor pressure occurs at the exact time when the oxygen concentration 

decreased from 21% to less than 1%. It can be seen that the turgor pressure continues to decrease for  

the remainder of the experiment. Interestingly, the turgor pressure decreases slowly for approximately  

40 min and then suddenly decreases exponentially. This turgor pressure behavior was typical of more 

than five experiments conducted. 

The elongation decreases to zero within a few minutes after the initiation of anoxia and continues to 

decrease slowly for another 40–50 min. Afterwards, the elongation decreases faster for the remainder  

of the experiment until the sporangium falls over onto the stalk. The decrease in elongation represents a 

decrease in the length of the sporangiophore stalk. The shrinking in length can be explained as 

“recovered” elastic wall deformation that occurs when the turgor pressure decreases in magnitude. This 

recovered elastic wall deformation will obscure any irreversible wall deformation (expansive growth) 

that may occur during anoxia. It is apparent that the turgor pressure must remain constant in order to 

measure irreversible wall deformation. 

The pressure probe was used to measure and control the turgor pressure in the sporangiophore  

before and during anoxia. Figure 3 shows the results from one of these experiments. As before, a   

Stage IV sporangiophore was adapted to constant environmental conditions in the chamber for 20 min  

before elongation measurements began, and the conditions remained constant for the remainder of the 

experiment. The turgor pressure measurements began at approximately 12 min on the time scale, and 

the oxygen concentration was reduced to less than 1% at 25 min on the time scale. The turgor pressure 

was held constant at the value that was measured before the initiation of anoxia. Careful inspection of 

the elongation curve shows that elongation continues slowly for 15 min after the initiation of anoxia.  
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Figure 1. The schematic illustration (left) and corresponding photograph (right) show the 

developmental stages of the sporangiophore of P. blakesleeanus. Sporangiophore development 

is divided into five stages (Stages I, II, III, IV and V), and Stage IV is further divided into three 

sub-stages (IVa, IVb and IVc). The sporangiophores exhibit expansive growth and irreversible 

wall deformation in a region termed the “growth zone”. The growth zone is located at the apical tip 

(tip growth) in Stage I and Stage II and adjacent to the sporangium (intercalary growth) in 

Stage IV. The Stage I sporangiophore is a single pointed cell that grows longitudinally at the apical 

tip in the growth zone, 1–2 mm in length. In the schematic, the growth zone is shown as light green 

and the non-growing stalk is dark green. Clockwise rotation (when viewed from above) and 

elongation growth occur concurrently during Stage I, producing left-handed helical growth. 

Stage II begins with spherical growth at the apical tip without elongation and rotation growth. 

The diameter of the sporangium continues to increase until Stage III, where the diameter is constant 

(~0.5 mm). During Stage III, there is no visible expansive growth. Stage IVa begins with elongation 

growth concurrent with counter-clockwise rotation growth (right-handed helical growth) in a short 

growth zone located approximately 0.6 mm below the sporangium. The growth zone, elongation 

growth rate and rotation growth rate increase in magnitude as the right-handed helical growth 

continues for approximately one hour. Then, the rotation rate gradually decreases to zero, and 

clockwise rotation begins without interruption of elongation growth. Stage IVb begins with the 

initiation of left-handed helical growth. Stage IVb exhibits nearly constant growth zone length 

(~2.5 mm), elongation growth rates (~35 μm·min−1) and rotation growth rates (~12 degrees·min−1) for 

many hours. Stage IVb sporangiophores are typically used for most biophysical experimental studies. 

Stage IVc is initiated by counter-clockwise rotation and right-handed helical growth. Stage V 

does not exhibit visible expansive growth. The large cylindrical single-celled sporangiophores are 

approximately 150 μm in diameter and can grow in length to ten or more centimeters. The sporangiophores 

can detect many environmental stimuli (e.g., gravitational acceleration, ethylene, mechanical stretch, 

gases, temperature, wind, light intensity, spatially asymmetric distribution of light, the presence of 

solid objects and turgor pressure) and respond to these stimuli with symmetric and asymmetric 

changes in expansive growth rate (e.g., growth responses and tropic responses) [7,17,18]. 
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Figure 2. The change in elongation, ΔL, and turgor pressure, P, of a single Stage IV 

sporangiophore is plotted against the same time scale. Turgor pressure measurements begin 

at 10 min on the time scale and are marked by the downward pointing arrow labeled 

“Impaled”. The turgor pressure curve (gray) is the trace from the strip-chart recorder that 

measures the output of the pressure transducer in the pressure probe. The oxygen concentration 

is decreased from 21% to less than 1% at approximately 27 min on the time scale and is 

marked by the downward pointing arrow labeled “Anoxia”. The immediate small decrease 

in turgor pressure from a constant value indicates the exact time when the oxygen concentration 

was decreased to less than 1%. Jessica E.C. Olson and Elena L. Ortega (two graduate students) 

conducted this experiment while working in Joseph K.E. Ortega’s laboratory. 

 

Figure 3. Both the change in elongation and turgor pressure of a Stage IV sporangiophore 

are plotted as a function of time. The turgor pressure was held constant with the pressure 

probe during anoxia. 
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There was some concern that the oil-cell sap interface within the micro-capillary tip of the pressure 

probe was unable to move while the turgor pressure was held constant during anoxia. The cell sap of the 

sporangiophore is very sticky and has a tendency to adhere to the inner wall of the micro-capillary tip 

and prevents an accurate measurement of the turgor pressure. In order to prevent the oil-cell sap from 

sticking in one location, small step-ups in turgor pressure were produced by injecting inert silicon oil 

inside the micro-capillary tip into the vacuole of the sporangiophore (Figure 4). As can be seen, turgor 

pressure measurements began at approximately ten minutes on the time scale, and an anoxic environment 

was produced at 22 min. Careful inspection of the elongation curve reveals that elongation growth 

occurred 2–5 min after each turgor pressure step-up (when P = constant) until approximately 45 min. 

The elongation that occurs one minute after the step-up in turgor pressure is predominately an elastic 

response and is not used to determine elongation growth and irreversible wall deformation. For this 

experiment, it is concluded that elongation and irreversible wall deformation continue for 23 min  

after anoxia. 

Similar step-up experiments were conducted on Stage I sporangiophores (Figure 5). The Stage I 

sporangiophore was impaled to measure the turgor pressure at 10 min on the time scale, and anoxia  

was produced at 21 min. Inspection of the elongation curve shows that elongation growth and irreversible 

wall extensibility continued until approximately 27 min, or 6 min after anoxia. It was found that the 

duration of elongation growth and irreversible wall deformation after anoxia was shorter for Stage I 

sporangiophores compared to Stage IV sporangiophores. 

 

Figure 4. Both the change in elongation and turgor pressure of a Stage IV sporangiophore 

are plotted as a function of time. Approximately 5 min after anoxia, turgor pressure step-ups 

(approximately 0.021 MPa in magnitude and 5 min in duration) were produced with the 

pressure probe. 
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Figure 5. Change in elongation and turgor pressure for a Stage I sporangiophore are plotted 

as a function of time. Two minutes after anoxia, turgor pressure step-ups (approximately 

0.021 MPa in magnitude and 2 min in duration) were produced with the pressure probe. 

Some of the results of these experiments are summarized in Table 1, which compares the “duration 

of elongation during anoxia” obtained from Stage IV sporangiophores when the turgor pressure is held 

constant and when the turgor pressure is stepped up. Results of Student’s t-test indicate that there is not 

a significant difference between the values obtained when P was held constant and when P was stepped-up. 

Because the values are statistically the same, they are combined. The results indicate that, on average, 

the Stage IV sporangiophore continues to exhibit elongation growth and irreversible wall deformation 

for approximately 17 min during anoxia. Because the Student’s t-test indicates that there is no significant 

difference between the durations obtained from experiments when P was constant and when P was 

stepped up, only the step-up in P experiments was conducted for Stage I sporangiophores. The results 

presented in Table 1 indicate that the duration of elongation growth for Stage I sporangiophores is smaller 

than the corresponding values obtained from Stage IV sporangiophores. Student’s t-tests confirm this 

observation: the duration of elongation during anoxia of Stage I sporangiophores is significantly smaller 

(p < 0.05) than that obtained from Stage IV sporangiophores when P was constant, when P was stepped 

up and when the values were combined. 

Table 1. Duration of elongation growth during anoxia for Stage IV and Stage I sporangiophores. 

Stage Turgor Pressure during Anoxia Elongation Duration during Anoxia (min) 

IV P = constant 14.8 ± 2.1 SE (n = 5) 

IV Step-up in P 18.7 ± 3.7 SE (n = 6) 

IV Combined 16.9 ± 2.1 SE (n = 11) 

I Step-up in P 10.0 ± 1.2 SE (n = 9) 

2.2. Frozen-Thawed Sporangiophores 

Constant-tension extension experiments were conducted on frozen and then thawed walls of the Stage 

IV sporangiophore to obtain insight into the wall chemistry and chemorheological process. A five 
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millimeter-long section of the wall from a Stage IV sporangiophore, which includes the growth zone, 

was adapted in an experimental chamber to a bathing solution of pure water (70 mL, pH = 7, at 20 °C) 

for 20 min. Then, a tensile load of 1.24 g was applied to the wall. The tensile load produces longitudinal 

stress and longitudinal extension of the wall. After the extension, the length remained constant for four 

minutes without creep; see Figure 6 (0–4 min). At four minutes on the time scale, the pH of the solution 

was lowered to 4.6 by adding a predetermined amount of pH Red 4.0 buffer to the bathing water. 

Immediately, the wall extends (red curve with X data points and labeled “Frozen-thawed”) and continues 

to extend for six minutes (4–10 min), exhibiting five minutes of creep (5–10 min). Also shown in Figure 6 

are the results of another experiment where the same experimental protocol was conducted on another 

frozen-thawed wall, except that the frozen-thawed wall was immersed in boiling water for 15 s before being 

subjected to the experimental protocol (blue curve with • data points and labeled “Frozen-thawed-boiled”). 

It can be seen that the wall extends after the pH of the bathing solution was reduced to 4.6; however, the 

initial extension is small, and the wall does not continue to extend afterwards, i.e., it does not creep. 

These experiments were repeated many times. Figure 7 is a plot of the average change in extension 

at each minute on the time scale of 15 different frozen-thawed walls (red curve with X data points and 

labeled “Frozen-thawed”) and eight frozen-thawed-boiled walls (blue curve with • data points and 

labeled “Frozen-thawed-boiled”). The results plotted in Figure 7 indicate that the frozen-thawed walls 

creep for eight minutes (5–13 min) after the pH of the bathing solution is reduced from 7.0 to 4.6. 

 

Figure 6. Extension behavior of two 5 mm-long sections from two different Stage IV 

sporangiophores that were frozen and then thawed is shown. Each wall section includes the 

growth zone of a Stage IV sporangiophore. The red curve with X data points and labeled 

“Frozen-thawed” shows the extension behavior of a frozen-thawed wall before and after the 

pH of the bathing solution was reduced from 7.0 to 4.6. The blue curve with • data points 

and labeled “Frozen-thawed-boiled” shows the extension behavior of a frozen-thawed wall 

that was boiled in water for 15 s before being subjected to the same experimental protocol. 
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Figure 7. The average change in extension versus time of 15 different frozen-thawed walls 

is shown (red curve with X data points and labeled “Frozen-thawed”). The average change 

in extension versus time of eight frozen-thawed-boiled walls (blue curve with • data points 

and labeled “Frozen-thawed-boiled”) is shown. 

Student’s t-tests were conducted to determine whether the extension rates obtained from frozen-thawed 

walls after the pH is lowered to 4.6 are significantly different from those of frozen-thawed-boiled walls. 

The results are shown in Table 2. The results indicate that the extension rates for the frozen-thawed walls 

are significantly higher compared to the frozen-thawed-boiled walls (p < 0.05) for 2–5 min after the pH 

was reduced. The interpretation is that creep occurs for four minutes (2–5 min) after the pH was reduced 

to 4.6. Fewer results indicate that in some experiments, there is creep until the ninth minute after the pH 

is lowered to 4.6. 

Table 2. Extension rate for each minute and the result of the Student’s t-tests for frozen-thawed 

and frozen-thawed-boiled cell walls. 

Minutes after 

pH = 4.6 

Frozen-Thawed Extension 

Rate (μm/min) 

Frozen-Thawed-Boiled 

Extension Rate (μm/min) 

Student’s  

t-Test 

1 191 ± 109.1 SE (n = 13) 23.3 ± 2.8 SE (n = 8) p = 0.77 

2 74.6 ± 32.7 SE (n = 9) 0 p = 0.024 

3 17.6 ± 5.4 SE (n = 7) 0 p = 0.005 

4 6.0 ± 2.8 SE (n = 3) 0 p = 0.018 

5 59.6 ± 27.1 SE (n = 7) 0 p = 0.024 

6 43.0 ± 45.9 SE (n = 3) 0 p = 0.154 

7 10.0 (n = 1) 0 ------ 

8 5.0 (n = 2) 0 ------ 

9 181.0 (n = 1) 0 ------ 

  



Plants 2015, 4 73 

 

 

3. Discussion 

3.1. Anoxia Experiments 

Anoxia was used to chemically isolate the wall from the protoplasm of the sporangiophores of  

P. blakesleeanus and to reveal the wall chemistry and chemorheology that produces irreversible wall 

extension and elongation growth. The sporangiophores of P. blakesleeanus strictly require oxygen for 

growth and development [17,19]. The relationship between elongation growth and the metabolism of the 

sporangiophores was studied by using anoxia to inhibit oxidative phosphorylation [17]. Bergman et al. [17] 

report, “Many fungi can grow anaerobically for long periods of time, but Phycomyces sporangiophores 

do not have this capacity. When oxygen is removed from sporangiophores by placing them in nitrogen, 

streaming and growth rapidly stop.” Studies conducted in our laboratory by Morgan A. Scott (Master’s 

report, see Acknowledgments) show that streaming inside the sporangiophore stops within a minute;  

t = 39.5 ± 2.4 (SE) s, n = 10. The finding that the turgor pressure continually decreases after the initiation 

of anoxia is consistent with the results of earlier studies that anoxia terminates the protoplast’s metabolism. 

The finding that elongation growth continues during anoxia for ten minutes or longer when the turgor 

pressure is held constant with the use of a pressure probe demonstrates that a wall chemistry continues 

the chemorheological process to produce irreversible wall deformation during anoxia. The wall deformation 

is irreversible, because the elongation growth occurs when the turgor pressure is constant (Figures 3–5). 

Inspection of the previously-established augmented growth equation, Equation (2), can show this. The 

augmented growth equation can be modified to describe the elongation growth of cells with a growth 

zone, such as the sporangiophores of P. blakesleeanus; Equation (3) [20]. 

d𝐿

d𝑡
= 𝑚g (𝑃 − 𝑃C) +

𝐿g

𝐸g

d𝑃

d𝑡
+  

𝐿s

𝐸s

d𝑃

d𝑡
 (3) 

Elongation rate = irreversible rate in growth zone + elastic rate in growth zone + 

elastic rate in stalk 
 

where L is the length of the sporangiophore, dL/dt is the elongation rate, mg is the longitudinal 

irreversible wall extensibility of the growth zone, P is the turgor pressure, PC is the critical turgor 

pressure and Lg and Ls are the lengths of the growth zone and stalk, respectively. Eg and Es are the 

longitudinal components of the volumetric elastic modulus within the growth zone and non-growing 

stalk, respectively. The term, mg (P − PC), represents the longitudinal irreversible deformation rate of 

the wall in the growth zone; the term, (Lg/Eg) dP/dt, represents the longitudinal elastic deformation rate 

of the wall in the growth zone; and the term, (Ls/Es) dP/dt, represents the longitudinal elastic deformation 

rate of the wall in the non-growing stalk. 

It is noted in Equation (3) that when the turgor pressure is constant (P = constant, then dP/dt = 0),  

the elongation rate is only a function of the irreversible longitudinal deformation rate of the wall in  

the growth zone; Equation (4). Equation 4 is essentially the same equation previously derived by 

Lockhart [21]. Thus, the elongation rate that occurs when P = constant (for 15 min after the initiation of 

anoxia in Figure 3, between 2–5 min after the first five turgor pressure step-ups in Figure 4 and after the 

first two turgor pressure step-ups in Figure 5) represents the irreversible wall deformation rate. 
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d𝐿

d𝑡
= 𝑚g (𝑃 − 𝑃C) (4) 

Elongation rate = irreversible longitudinal deformation rate in growth zone  

The irreversible wall deformation and elongation growth that occur during anoxia are direct evidence 

of a wall-loosening chemistry or chemorheological process. In the sporangiophores, the wall chemistry 

and chemorheological process continue for a limited duration during anoxia, typically 10–20 min. Two 

explanations for the limited duration of elongation growth and associated wall-loosening chemistry 

during anoxia are considered. The first explanation is that irreversible wall deformation continues during 

the wall hardening process that begins at the initiation of anoxia. The wall hardening process converts 

an irreversible extensible wall to a reversible extensible wall by making bonds between microfibrils and 

other wall polymers. It is predicted that the irreversible wall deformation stops when the wall hardening 

process is complete. Second, wall building polymers and other relevant wall materials extruded into the 

periplasm and inner wall surface before the initiation of anoxia, are used to continue the wall-loosening 

chemistry and maintain the irreversible wall extensibility. After these polymers and materials are depleted, 

then the wall hardening process begins and continues until completion. 

The first explanation predicts that the duration of elongation growth during anoxia for Stage I and 

Stage IV sporangiophores are approximately the same, because it is expected that the wall hardening 

process for both stages is similar and the rate of hardening is approximately the same. The second 

explanation predicts that the duration of elongation growth for Stage IV sporangiophores is larger than 

those of Stage I sporangiophores, because the elongation growth rates of Stage IV sporangiophores  

(34.1 ± 3.1 (SE) μm·min−1, n = 20) are significantly larger than those of Stage I sporangiophores  

(7.1 ± 0.7 (SE) μm·min−1, n = 17) [7]. The larger elongation growth rates of Stage IV sporangiophores 

require a faster delivery rate of wall-building polymers and relevant wall-building materials to the periplasm 

and inner wall surface compared to Stage I sporangiophores. It is reasonable to expect that the amount 

of wall-building polymers and relevant wall-building materials within the periplasm and inner wall 

surface at the time anoxia is initiated (and the wall is chemically isolated) is larger for Stage IV 

sporangiophores compared to Stage I sporangiophores. If the amount of wall building substrates for the 

wall chemistry is larger for Stage IV, it is predicted that the duration of the wall chemistry, wall loosening, 

irreversible deformation and elongation growth will be longer for Stage IV compared to Stage I. The 

second prediction is consistent with the results presented in Table 1. 

3.2. Frozen-Thawed Sporangiophores 

Extension experiments were conducted on frozen-thawed sporangiophore walls to obtain insight into 

the wall loosening chemistry. The constitutive equation for a Maxwell–Bingham viscoelastic model, 

Equation (1), can be modified to assist in the interpretation of the results. Equation (5) is derived from 

Equation (1) and describes the longitudinal deformation (extension) rate of the frozen-thawed wall section 

after a tensile load, or longitudinal stress (σ), is applied. 

d𝐿

d𝑡
= 𝑚f (𝜎 − 𝜎C) +

𝐿o

𝐸f

d𝜎

d𝑡
 (5) 

Longitudinal deformation rate = irreversible deformation rate + elastic deformation rate  
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where L is the length of the frozen-thawed wall section, dL/dt is the longitudinal deformation (extension) 

rate, mf is the longitudinal irreversible wall extensibility of the frozen-thawed growth zone wall section, 

σ is the longitudinal stress, σC is the critical longitudinal stress, Lo is the initial length and Ef is the 

longitudinal elastic modulus. The term, mf (σ – σC), represents the longitudinal irreversible deformation 

rate of the wall in the growth zone, and the term, (Lo/Ef) dσ/dt, represents the longitudinal elastic 

deformation rate of the wall in the growth zone. 

Equation (5) is similar to an equation previously used by Takahashi et al. [22] to analyze the 

relationship between the extension behavior of frozen-thawed tissue sections of cucumber hypocotyls 

and expansin. Here, in Equation (5), we explicitly recognize that mf (longitudinal irreversible wall 

extensibility that results from unidirectional stress) is not equal to ϕ or mg (irreversible wall extensibility 

or the longitudinal component of the irreversible wall extensibility, respectively, that results from 

multidirectional stresses produced by turgor pressure in vivo), and Ef (the longitudinal elastic modulus 

that results from unidirectional stress) is not equal to ε (the volumetric elastic modulus that results from 

multidirectional stresses produced by turgor pressure in vivo). 

Constant tension-extension experiments were conducted using a tensile force of 1.24 gf, or 0.012 N 

(F = mass × gravitational acceleration = (1.24 × 10−3 kg) (9.81 m·s−2) = 0.012 N) that was applied to  

the frozen-thawed walls. The applied longitudinal wall stress can be estimated using an average 

sporangiophore diameter of D = 150 µm and a wall thickness of τ = 0.6 µm; σ = F/πDτ  42 MPa. 

Immediately after applying the longitudinal wall stress (tensile force of 0.012 N), initial longitudinal 

wall deformations (extensions) ranged from 1–2 mm. The initial wall extension in response to the 

application of the wall stress can be determined using Equation (5), where dσ/dt is finite and relatively 

large (typically, the wall stress of 42 MPa is applied within a few seconds). It is apparent that the initial 

longitudinal extensions are predominately elastic; dL/dt = (Lo/Ef) dσ/dt. After the initial longitudinal 

extension, the longitudinal stress and length of the frozen-thawed wall section remained constant. 

Because σ is constant in Equation (5) (i.e., dσ/dt = 0), subsequent extensions that occur after decreasing 

the pH of the bathing solution to 4.6 represent irreversible deformations and creep, Equation (6). 

d𝐿

d𝑡
= 𝑚f (𝜎 − 𝜎C) (6) 

Longitudinal deformation rate = Irreversible deformation rate  

The applied longitudinal wall stress, σ  42 MPa, is larger than the estimated longitudinal  

stress produced by the turgor pressure in vivo. Previously, the pressure probe was used to determine  

the average turgor pressure (P = 0.32 ± 0.01 (SE) MPa, n = 20) and average critical turgor pressure  

(PC = 0.26 ± 0.01 (SE) MPa, n = 20) ([7] and the references within). The longitudinal stress produced 

by turgor pressure can be estimated using the equation, σ = PR/2τ, where P is the turgor pressure, R is 

the radius (75 µm) and τ is the wall thickness (0.6 µm). The longitudinal wall stress produced by the 

average turgor pressure (P = 0.32 MPa) is estimated to be, σ = 20 MPa, which exceeds the estimated 

critical wall stress produced by the average critical turgor pressure (PC = 0.26 MPa), σC  16.3 MPa. 

The objective of the constant-tension extension experiments conducted on frozen-thawed sporangiophore 

walls is to learn if lowering the pH of the bathing solution will elicit irreversible extension and creep, 

similar to what was found in higher plant cells. The results shown in Figures 6 and 7 (red curve with X 

data points and labeled “Frozen-thawed”) demonstrate that lowering the pH of the bathing solution from 
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7.0 to 4.6 elicits a chemorheological process, irreversible wall extension (see Equation (6)) and wall 

creep. In contrast, if the wall sections were immersed in boiling water for 15 s before the constant 

tension-extension experiments, they did exhibit a nearly instantaneous irreversible deformation, but did 

not exhibit creep, after the pH of the bathing solution was reduced to 4.6. 

Constant-tension extension experiments were previously conducted on frozen-thawed sections of growing 

cucumber (Cucumis sativus L.) hypocotyls and oat (Avena sativa L.) coleoptiles immersed in a bathing 

solution [10,11]. When the pH of the bathing solution was reduced to 4.5, the frozen-thawed walls begin 

to extend, and the extension continued for hours afterwards, thus exhibiting creep. The experimental 

results are consistent with the “acid growth” hypothesis [9], which states that plant cells excrete protons 

onto the inner surface of the cell wall to decrease the pH and activate an “unknown” wall loosening 

process. When the frozen-thawed cucumber and oat walls were boiled in water for 15 s before the 

extension experiment, the walls did not exhibit creep when the pH of the bathing solution was lowered 

to 4.5. These and other experimental results suggested that protein activity may mediate wall loosening 

at low pH. Subsequently, wall-loosening proteins were isolated that are not enzymes, expansins [1]. 

Expansins are hypothesized to catalyze wall stress relaxation and irreversible wall deformation directly 

by disrupting hydrogen bonds between the cellulose microfibrils and hemicellulose [23]. Expansins  

have been found in a variety of plants and in bacteria and fungi [1,12]. Crude extracts and purified 

expansins have been shown to mediate “acid-induced” extension of boiled isolated primary walls of a 

variety of plants [1]. Wall loosening by expansins is consistent with the acid growth hypothesis. 

Expansins are thought to be strong candidates for primary wall-loosening agents for cells in the organs 

of higher plants (e.g., stems, roots and leaves). However, endogenous wall enzymes, such as xyloglucan 

endotransglycosylase/hydrolase and endo-β-1,4-glucanases, are also hypothesized to play an important 

role in expansive growth of higher plants [13]. Importantly, a considerable amount of experimental 

evidence indicates that pectin plays a major role in the expansive growth of pollen tubes ([14] and the 

references within) and algae ([15] and the references within). Furthermore, pectin may play a role in the 

expansive growth of higher plant cells [3,8]. Interestingly, a small amount of pectin is found in the 

sporangiophore’s cell wall [24], and one wonders if pectin plays a role in the expansive growth of 

sporangiophores and fungal cells in general. 

The general structure of the sporangiophore’s wall can be described as chitin and β-glucans 

microfibrils embedded in an amorphous matrix composed predominately of chitosan, glycoproteins and 

lipids [16,18], with a small amount of pectin [24]. The wall polymers are linked together by covalent 

bonds, hydrogen bonds, hydrophobic interaction and ionic associations [16]. The microfibrils are extruded 

onto the inner wall surface by chitin synthases embedded in the plasma membrane [16]. Chitin synthases 

and other enzymes and wall polymers are transported to the plasma membrane in vesicles (chitosomes) 

and delivered to the periplasm via exocytosis [16]. Importantly, fibrillogenesis and microfibril networks 

have been shown to occur in vitro by incubating purified chitin synthases with substrate (UDP-GLcNAc) 

and activators [25,26]. Furthermore, more recently, the genome of P. blakesleeanus was sequenced, and 

genes involved in sensory growth responses and cell wall components are being characterized 

(http://genome.jgi-psf.org/Phybl2/Phybl2.home.html). 

Generally, the microfibrils can be cross-linked directly (by hydrogen bonds, hydrophobic interaction 

and ionic associations) and by matrix polymers (chitosan, glycoproteins, and pectin). We hypothesize 

that wall chemistry and molecular agents that effectively break and make load-bearing cross-links between 
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microfibrils produce chemorheology that regulates wall mechanical properties and wall deformation 

behavior. Breaking the cross-links directly, or by disconnecting the microfibrils from the matrix network 

and/or each other, will allow the microfibrils to separate and/or slide passed each other when the wall is 

stressed by turgor pressure in vivo and by an applied stress in extension experiments. In turn, this 

chemorheological process can produce a controlled polymer creep, often referred to as “wall loosening”. 

Load-bearing cross-links that are not broken or that were broken and reconnected (after slippage and/or 

separation of microfibrils) and subsequently become load-bearing produce the elastic behavior of the 

wall. The wall loosening will initiate wall stress relaxation and turgor pressure relaxation that, in turn, 

produces water uptake, irreversible wall deformation and an increase in cell volume. 

The extension curves obtained from frozen-thawed and frozen-thawed-boiled sporangiophore walls 

after the pH is lowered to 4.6 are qualitatively similar to those obtained for cucumber (Cucumis sativus L.) 

hypocotyls and oat (Avena sativa L.) coleoptiles [10,11]. The experimental results from the frozen-thawed 

sporangiophore walls are consistent with the “acid growth” hypothesis [9]. An important difference is 

that the duration of the creep for the sporangiophores’ walls is limited to less than ten minutes, compared 

to hours for cucumber hypocotyls and oat coleoptiles. The finding that boiling the sporangiophore walls 

for 15 s eliminates creep may suggest that protein activity mediates the creep response, but other 

explanations must also be considered until more experiments are conducted. 

The finding that the duration of the creep for the sporangiophores’ walls is limited to less than ten 

minutes, compared to hours for cucumber hypocotyls and oat coleoptiles, is interesting and probably 

significant. This finding, together with the fact that the molecular polymers, structure and endogenous 

enzymes in the sporangiophore’s wall are different from those in plant and algal cell walls, may indicate 

that the molecular wall loosening mechanism is different for fungal cells. It may be significant that the 

duration of elongation growth during anoxia and the duration of creep in frozen-thawed walls sections 

are both on the order of ten minutes. Interestingly, the duration of creep produced by decreasing the  

pH is approximately the same as the duration of the light growth response and avoidance growth 

response (transient increases in elongation growth rate) exhibited by the sporangiophores [7,17,18].  

A mechanism is suggested by these findings in which proton effluxes mediate sensory growth responses of 

the sporangiophores. One may speculate that the sporangiophore’s protoplast excretes protons at an 

increased rate onto the inner surface of the growth zone wall to elicit a transient increase in irreversible 

wall extensibility [27,28] that produces a transient increase in elongation growth rate, without increasing 

the turgor pressure [29]; see Equation (4). The phototropic response (growing towards a light source) 

and avoidance response (growing away from solid objects) could be produced by spatially increasing 

the proton efflux on the distal side (phototropic response) and proximal side (avoidance response) of the 

sporangiophore’s growth zone. Future research will include adding wall building substrates, activators 

and endogenous wall enzymes to the bathing solution during constant-tension extension experiments to 

learn if they will increase the duration of creep in the frozen-thawed sporangiophore wall. 
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4. Experimental Section 

4.1. Biological Material 

The wild-type strain, NRRL1555(−), of P. blakesleeanus was obtained from the Biology Division, 

California Institute of Technology, Pasadena, USA. Potato dextrose agar was prepared and sterilized in 

12 × 35 mm glass vials. Vegetative spores were heat-shocked in a water bath held at approximately  

45 °C for 20 min. After heat-shocking, the spores were triturated and inoculated on the potato dextrose 

agar in the glass vials. The sporangiophore cultures in the vials were kept at 21 °C ± 0.5 °C in a ventilated, 

wood chamber and illuminated from above by four fluorescent lamps. Three days after inoculation, 

sporangiophores begin to appear. Long sporangiophores are removed from the mycelium (plucked) daily 

to obtain big and robust sporangiophores for experimentation on the next day. Typically sporangiophores 

from 4 to 6 day-old cultures are used for experimentation. 

4.2. Anoxia Experiments 

4.2.1. Elongation Growth Measurements 

The elongation growth is determined by measuring the change in length of the sporangiophore, ΔL, 

at one-minute time intervals. The change in length is measured using a long focal length horizontal 

microscope (Gaertner; 7011K eyepiece and 32 m/m EFL objective) mounted to a 3D micromanipulator 

(Line Tool Co., Allentown, PA, USA; Model H-2, with digital micrometers). An electronic timer is used 

to measure the time intervals. 

4.2.2. Turgor Pressure Measurements 

The turgor pressure of the sporangiophore is measured with a manual version of the pressure  

probe [20]. A gage pressure transducer is used in the pressure probe, which measured the difference 

between the absolute pressure and the local atmospheric pressure; the gage pressure transducer was 

purchased from Kulite Semiconductor Products, Ridgefteld, NJ, USA (Model XT-190-300G), and 

calibrated inside the pressure probe using a Heise Bourdon Tube Pressure Gauge (Dresser Industries, 

Newton, CT, USA; Model CMM, 0-200 PSIG Range). The transducer’s output is recorded on a Houston 

Omniscribe Stripchart Recorder (Ametek, Berwyn, PA, USA; Model D5217-2). The pressure probe was 

mounted on a 3D micromanipulator so that the micro-capillary tip (typically 5–10 μm outer diameter) 

can be guided to impale the sporangiophore under visual observation using a horizontally-mounted 

EZM-2TR Trinocular Zoom Stereomicroscope (Meiji Labax Co., Tokyo, Japan). The micro-capillary of 

the pressure probe was filled with inert silicone oil (Dow Corning Corp., Midland, MI, USA; fluid 200, 

1–2 centistoke viscosity). After the cell was impaled, the cell sap-oil interface was maintained at a 

fixed location within the micro-capillary tip to measure the turgor pressure of the sporangiophore. 

Turgor pressure step-ups were produced by advancing a manually-controlled control rod within the 

pressure probe to inject inert silicone oil into the vacuole. 
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4.2.3. Experimental Protocol 

A Stage IV sporangiophore was selected and placed in an experimental chamber that was constructed 

for these experiments (Figure 8). The sporangiophore was adapted in the experimental chamber to 

atmospheric air, constant and symmetric distribution of light and other environmental conditions for  

20 min. The light and environmental conditions were maintained constant throughout the adaptation 

period and during the experiment to prevent growth responses. After the adaptation, measurement of the 

elongation growth was initiated and continued for the remainder of the experiment using a long focal 

length horizontal microscope. After a period of time (usually 10 min), the sporangiophore stalk was 

impaled with the pressure probe’s micro-capillary tip with the assistance of a horizontally-mounted 

stereomicroscope, and the turgor pressure was continuously measured and monitored with the pressure 

probe for the remainder of the experiment. Then, both the elongation rate and turgor pressure were 

monitored for a period of time to ensure that the sporangiophore was growing at a normal rate. 

Afterwards, nitrogen gas was injected from the bottom of the chamber to fill the apparatus chamber 

containing the sporangiophore and to create an anoxic environment. The oxygen concentration was 

measured and monitored with a meter (Model 50SD-2, 0–20 mL/min, McMillan Company, Georgetown, 

TX, USA) inside the chamber and located next to the sporangiophore’s growth zone. Typically, the 

oxygen concentration decreased from approximately 21% to less than 1% within a minute after the 

nitrogen gas was injected into the chamber. Nitrogen gas was continuously injected into the chamber at 

a low rate to maintain an oxygen concentration level of less than 1%. 

4.3. Frozen Thawed Experiments 

Sporangiophores, which are frozen for one or two days and then thawed, were used for these experiments. 

A 5-mm section from the sporangiophore stalk that contains the growth zone was cut with a razor blade 

and used for experimentation. 

4.3.1. Experimental Apparatus 

A small acrylic rectangular box was constructed and used as the testing apparatus for the extension 

experiments (Figure 9). In the testing apparatus, the frozen-thawed wall section is attached to two glass 

slides, one at each end (glued with Gorilla Super Glue). One glass slide is attached to the testing 

apparatus and fixed. The other glass slide is attached to a small weight (1.24 g) with a string and is free 

to slide within the box. The weight is supported on a platform to prevent tension on the wall section 

before the extension protocol is initiated. A microscope assembly attached to a micrometer is used to 

measure the change in length of the wall section (Figure 9A). A reference point (end of the wall section) 

is used throughout the experiment to measure the change in length of the wall section as a function of 

time. Initially, the frozen-thawed wall section is aligned to the reference point in the microscope, so that 

changes in length can be measured during the experiment by realigning to the reference point every 

minute and measuring the change on the digital micrometer. 



Plants 2015, 4 80 

 

 

 

Figure 8. An illustration of the experimental chamber used for anoxia experiments. A vial 

containing a sporangiophore is inserted into a holder inside the chamber. Afterwards, a back 

support is advanced manually to the sporangiophore stalk. The back support keeps the stalk 

stationary while the micro-capillary tip of the pressure probe is advanced to impale the  

stalk below the growth zone. Two people are required to conduct a single experiment. One 

person uses a stereomicroscope to impale the sporangiophore stalk, monitor the cell sap-oil 

interface and generally operate the pressure probe. On the opposite side, another person uses 

a horizontal microscope, attached to a 3D micromanipulator with digital micrometers, to 

measure the change in elongation as a function of time. 

4.3.2. Experimental Protocol 

A Stage IV sporangiophore is selected and frozen for at least 24 h. A 5-mm wall section that includes 

the growth zone of the frozen sporangiophore is removed with a razor blade. Then, each end of the wall 

section is glued to a glass slide inside the testing apparatus, one of which is fixed (stationary) and the 

other (attached to a weight by a string) is free to slide. The frozen wall section thaws while the glue dries. 

After the glue is dry and the wall section is securely clamped to the two glass slides, distilled water is 

added to the apparatus until the top part of the apparatus is half full and left to adapt for 10 min (Figure 9A). 

Following this adaptation period, the change in length is measured every minute for the remainder of the 

experiment, and the platform supporting the weight is slowly lowered to apply tension to the wall section 

until the weight hangs freely. Five minutes after the wall section has been in constant tension, a 

predetermined amount of buffer solution was added to the water to lower the pH to approximately 4.6. A 

pH pen (Large Display ATC pH Pen, Model 850051, VWR International) is used to measure the pH of 

the bathing solution when the buffer solution is first added and at the end of the experiment. The change 

in length is measured continuously until no extension is observed (Figure 9B). The experimental protocol 

for the frozen-thawed-boiled experiments is the same, except that after removing the sporangiophore 

from the freezer, it is transferred into a water bath and boiled for 15 s using a microwave before the 

extension protocol is conducted. 
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Figure 9. Schematic illustration of the experimental set-up used for the constant-tension extension 

experiments. (A) Testing arrangement for the frozen-thawed wall section during the 

adaptation phase. The testing apparatus is filled with water, and the platform supporting the 

weight is not lowered (right side). A microscope view of the aligning process (left side) of the 

frozen-thawed wall section to the reference point in the microscope, so that changes in length 

can be measured during the experiment by realigning to the reference point every minute 

and measuring the change in length on the digital micrometer; (B) Testing arrangement for 

the frozen-thawed wall section during the extension testing phase. The platform is lowered, 

and the weight hangs freely during the test (right side). Buffer solution (pink) is added to the 

testing apparatus to lower the pH to 4.6. A microscope view of the wall section in tension is 

depicted (left side). 

5. Conclusions 

Experiments that used anoxia to terminate the metabolism of the protoplasm of Stage I and Stage IV 

sporangiophores of P. blakesleeanus and chemically isolate their walls reveal a wall chemistry and 

chemorheology that continues for ten minutes or longer to produce elongation and irreversible wall extension 

(Figures 3–5 and Table 1). Constant-tension extension experiments were conducted on frozen-thawed 

wall sections of Stage IV sporangiophores to investigate the wall chemistry and chemorheology revealed 

in the anoxia experiments. The objective was to learn if lowering the pH of the bathing solution from 

7.0 to 4.6 will elicit irreversible extension and creep. The results (Figures 6 and 7 and Table 2) demonstrate 

that lowering the pH produces irreversible wall extension and creep in the frozen-thawed wall sections 

(which include the growth zone) of the Stage IV sporangiophore. This finding is consistent with the 
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“acid growth” hypothesis that was proposed for plant cell walls [9]. Interestingly, frozen-thawed wall 

sections that were subject to boiling water for 15 s do not exhibit creep after the pH is lowered to 4.6. 

This finding suggests that protein activity may be involved in the observed creep response, but other 

experimental results are needed to support this suggestion. Except for the short duration of creep, the 

constant tension-extension behavior of the frozen-thawed and frozen-thawed-boiled wall sections of 

the Stage IV sporangiophore is qualitatively similar to that obtained from cucumber (Cucumis sativus L.) 

hypocotyls and oat (Avena sativa L.) coleoptiles [10,11]. It is thought that the limited and short duration 

of creep exhibited by the frozen-thawed sporangiophore wall to acidic pH may be significant. This 

finding, together with the fact that the molecular polymers, structure and endogenous enzymes in the 

sporangiophore walls are different from those in plant and algal cell walls, may suggest that the 

molecular wall loosening mechanism is different from those of higher plant cells and algal cells. 
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