Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits
Abstract
:1. Introduction
2. Results
2.1. Comparison of Fruit External Quality
2.2. Peelability Comparison of Citrus Fruits
2.3. Comparison of Peel Characteristics and Cellular Morphology
2.4. Comparison of Intracellular Organic Matter and Component Contents
2.5. Comparison of Cell Wall Polysaccharide Content and Related Degrading Enzyme Activities
2.6. Comparison of Ca Content
2.7. Comparison of Phytohormone Contents in Three Late-Maturing Citrus Cultivars
2.8. Correlation Analysis of Peelability Determinants
2.9. Comparative Analysis of Gene Expression Patterns in Late-Maturing Citrus Cultivars
3. Discussion
3.1. Influence of Developmental Stages and Cellular Morphology on Peelability Formation in Late-Maturing Citrus Fruits
3.2. Influence of Intracellular Organic Matter Accumulation on Peelability in Late-Maturing Citrus
3.3. Influence of Cell Wall Polysaccharide Content and Related Degrading Enzyme Activities on Peelability in Late-Maturing Citrus
3.4. Influence of Peel Ca Content on Peelability in Late-Maturing Citrus
3.5. Influence of Phytohormones on Peelability in Late-Maturing Citrus
4. Materials and Methods
4.1. Test Site and Materials
4.2. Determination of Mechanical Indexes of Peel
4.3. Fruit Quality Determination
4.4. Paraffin Section Preparation and Cell Microscopic Observation
4.5. Determination of Cell Wall Polysaccharide Content and Related Degradation Enzyme Activity
4.6. Determination of Mineral Element Content
4.7. Determination of Plant Hormone Content
4.8. Quantitative Reverse Transcription Polymerase Chain Reaction
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayer, R.J.; Mabberley, D.J.; Morton, C.; Miller, C.H.; Sharma, I.K.; Pfeil, B.E.; Rich, S.; Hitchcock, R.; Sykes, S. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. Am. J. Bot. 2009, 96, 668–685. [Google Scholar] [CrossRef] [PubMed]
- Harker, F.R.; Hallett, I.C.; White, A.; Seal, A.G. Measurement of fruit peelability in the genus actinidia. J. Texture Stud. 2011, 42, 237–246. [Google Scholar] [CrossRef]
- Goudeau, D.; Uratsu, S.L.; Inoue, K.; Dasilva, F.G.; Leslie, A.; Cook, D.; Reagan, R.L.; Dandekar, A.M. Tuning the orchestra: Selective gene regulation and orange fruit quality. Plant Sci. 2008, 174, 310–320. [Google Scholar] [CrossRef]
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin fruit quality: A review. J. Sci. Food Agric. 2018, 98, 18–26. [Google Scholar] [CrossRef]
- Goldenberg, L.; Yaniv, Y.; Kaplunov, T.; Doron-Faigenboim, A.; Porat, R.; Carmi, N. Genetic Diversity among Mandarins in Fruit-Quality Traits. J. Agric. Food Chem. 2014, 62, 4938–4946. [Google Scholar] [CrossRef]
- Simons, T.; Sivertsen, H.; Guinard, J.-X. Mapping the Preferences of Adult and Child Consumers for California-grown Mandarins. HortScience 2018, 53, U1029–U1138. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Jiang, D.; Zhu, S.; Cao, L.; Liu, X.; Shen, W.; Zhao, W.; Zhao, X. Genetic diversity of the ease of peeling in mandarins. Sci. Hortic. 2021, 278, 109852. [Google Scholar] [CrossRef]
- Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. Front. Plant Sci. 2019, 10, 1167–1180. [Google Scholar] [CrossRef]
- Cháfer, M.; González-Martínez, C.; Chiralt, A.; Fito, P. Microstructure and vacuum impregnation response of citrus peels. Food Res. Int. 2003, 36, 35–41. [Google Scholar] [CrossRef]
- Feng, G.; Wu, J.; Xu, Y.; Lu, L.; Yi, H. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnol. J. 2021, 19, 1337–1353. [Google Scholar] [CrossRef]
- Ibáñez, A.M.; Martinelli, F.; Reagan, R.L.; Uratsu, S.L.; Vo, A.; Tinoco, M.A.; Phu, M.L.; Chen, Y.; Rocke, D.M.; Dandekar, A.M. Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder. Plant Sci. 2014, 217, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.S.; Reddy, B.S. Post-harvest physico-mechanical properties of orange peel and fruit. J. Food Eng. 2006, 73, 112–120. [Google Scholar]
- Blaker, K.M.; Olmstead, J.W. Cell wall composition of the skin and flesh tissue of crisp and standard texture southern highbush blueberry genotypes. J. Berry Res. 2015, 5, 9–15. [Google Scholar] [CrossRef]
- Waldron, K. Plant structure and fruit and vegetable texture. Texture Food Solid Foods 2004, 2, 241–258. [Google Scholar]
- Reeve, R.M. Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1970, 1, 247–284. [Google Scholar] [CrossRef]
- Wang, J.; Mujumdar, A.S.; Wang, H.; Fang, X.-M.; Xiao, H.-W.; Raghavan, V. Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins. Dry. Technol. 2021, 39, 495–506. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, S.; He, J.; Lyu, D. Integration of cell wall fraction, organic matter content, and membrane to understand crispness changes in apples. Sci. Hortic. 2023, 321, 112309. [Google Scholar] [CrossRef]
- Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef]
- Palmer, J.W.; Harker, F.R.; Tustin, D.S.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food Agric. 2010, 90, 2586–2594. [Google Scholar] [CrossRef]
- Itai, A.; Tanahashi, T. Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biol. Technol. 2008, 48, 355–363. [Google Scholar] [CrossRef]
- Jia, K.; Zhang, Q.; Xing, Y.; Yan, J.; Liu, L.; Nie, K. A Development-Associated Decrease in Osmotic Potential Contributes to Fruit Ripening Initiation in Strawberry (Fragaria ananassa). Front. Plant Sci. 2020, 11, 1035. [Google Scholar] [CrossRef] [PubMed]
- Videcoq, P.; Steenkeste, K.; Bonnin, E.; Garnier, C. A multi-scale study of enzyme diffusion in macromolecular solutions and physical gels of pectin polysaccharides. Soft Matter 2013, 9, 5110–5118. [Google Scholar]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef]
- Goulao, L.; Oliveira, C. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef]
- Philip, J.H.; Bruce, A.S. Chemistry and Molecular Organization of Plant Cell Walls. In Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy; Blackwell Publishing Ltd.: Hoboken, NY, USA, 2009. [Google Scholar]
- Gilbert, H.J. The Biochemistry and Structural Biology of Plant Cell Wall Deconstruction. Plant Physiol. 2010, 153, 444–455. [Google Scholar] [CrossRef]
- Höfte, H.; Voxeur, A. Plant cell walls. Curr. Biol. 2017, 27, R865–R870. [Google Scholar] [CrossRef]
- Gapper, N.E.; McQuinn, R.P.; Giovannoni, J.J. Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 2013, 82, 575–591. [Google Scholar] [CrossRef]
- Brummell, D.A. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 2006, 33, 103–119. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Alfaro, J.M.; Bermejo, A.; Navarro, P.; Quiñones, A.; Salvador, A. Effect of Rootstock on Citrus Fruit Quality: A Review. Food Rev. Int. 2023, 39, 2835–2853. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Liu, X.; Ren, Y.; Jiang, D.; Shen, W.; Zhao, X.; Cao, L. Comparative transcriptomic profile of two mandarin varieties during maturation reveals pectinase regulating peelability. Sci. Hortic. 2024, 331, 113148. [Google Scholar] [CrossRef]
- Rahman, M.M.; Joardder, M.U.; Karim, A. Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 2018, 169, 126–138. [Google Scholar] [CrossRef]
- Liu, D.; Guo, W.; Li, Q.; Xie, D. Relationship of the bulk optical properties in 950–1650 nm wavelength range with internal quality and microstructure of kiwifruit during maturation. Biosyst. Eng. 2019, 184, 45–54. [Google Scholar] [CrossRef]
- Gwanpua, S.G.; Verlinden, B.E.; Hertog, M.L.; Nicolai, B.M.; Hendrickx, M.; Geeraerd, A. Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella. Food Chem. 2016, 211, 883–891. [Google Scholar] [CrossRef]
- Dong, Z.; Shi, X.; Liu, X.; Srivastava, A.K.; Shi, X.; Zhang, Y.; Hu, C.; Zhang, F. Calcium application regulates fruit cracking by cross-linking of fruit peel pectin during young fruit growth stage of citrus. Sci. Hortic. 2025, 340, 113922. [Google Scholar] [CrossRef]
- Wada, H.; Matthews, M.A.; Shackel, K.A. Seasonal pattern of apoplastic solute accumulation and loss of cell turgor during ripening of Vitis vinifera fruit under field conditions. J. Exp. Bot. 2009, 60, 1773–1781. [Google Scholar] [CrossRef]
- Naoki, S.; Ichiro, I.S.; Shoji, T.; Ryoichi, Y. Texture Evaluation of Cucumber by a New Acoustic Vibration Method. J. Jpn. Soc. Hortic. Sci. 2005, 74, 31–35. [Google Scholar]
- Centeno, D.C.; Osorio, S.; Nunes-Nesi, A.; Bertolo, A.L.; Carneiro, R.T.; Araújo, W.L.; Steinhauser, M.-C.; Michalska, J.; Rohrmann, J.; Geigenberger, P.; et al. Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening. Plant Cell 2011, 23, 162–184. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Wang, C.-K.; Zhao, Y.-W.; Sun, C.-H.; Hu, D.-G. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 227. [Google Scholar] [CrossRef]
- Lahaye, M.; Falourd, X.; Laillet, B.; Le Gall, S. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydr. Polym. 2020, 232, 115768. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.; Gille, S.; Liu, L.; Mansoori, N.; de Souza, A.; Schultink, A.; Xiong, G. Hemicellulose biosynthesis. Planta 2013, 238, 627–642. [Google Scholar] [CrossRef]
- Kumar, M.; Campbell, L.; Turner, S. Secondary cell walls: Biosynthesis and manipulation. J. Exp. Bot. 2016, 67, 515–531. [Google Scholar] [CrossRef]
- Punumong, P.; Sangsuwan, J.; Kim, S.M.; Rattanapanone, N. Combined Effect of Calcium Chloride and Modified Atmosphere Packaging on Texture and Quality of Minimally-Processed Litchi Fruit. Chiang Mai J. Sci. 2016, 43, 556–569. [Google Scholar]
- Braybrook, S.A.; Hofte, H.; Peaucelle, A. Probing the mechanical contributions of the pectin matrix. Plant Signal. Behav. 2012, 7, 1037–1041. [Google Scholar] [CrossRef]
- Guo, J.; Wang, S.; Yu, X.; Dong, R.; Li, Y.; Mei, X.; Shen, Y. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene. Plant Physiol. 2018, 177, 339–351. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, F.; Ji, S.; Dai, H.; Zhou, X.; Wei, B.; Cheng, S.; Wang, A. Abscisic acid accelerates postharvest blueberry fruit softening by promoting cell wall metabolism. Sci. Hortic. 2021, 288, 110325. [Google Scholar] [CrossRef]
- Qin, Z.; Pan, J.; Li, J.; Sun, J.; Khoo, H.E.; Dong, X. Effects of 1-methylcyclopropene and abscisic acid treatments on texture properties and microstructures of postharvest tangerine (Citrus reticulata cv. Orah). J. Food Process. Preserv. 2022, 46, e16633. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Li, W.; Shao, Y. Comparative Analyses of Ripening, Texture Properties and Cell Wall Composition in Three Tropical Fruits Treated with 1-Methylcyclopropene during Cold Storage. Horticulturae 2023, 9, 126. [Google Scholar] [CrossRef]
- Wu, W.; Bao, Z.-Y.; Xiong, C.-X.; Shi, L.-Y.; Chen, W.; Yin, X.-R.; Yang, Z.-F. The Softening of Persimmon Fruit Was Inhibited by Gibberellin via DkDELLA1/2. J. Agric. Food Chem. 2024, 73, 1159–1166. [Google Scholar] [CrossRef]
- Haji, T. Inheritance of Flesh Texture in Peach and Effects of Ethylene Treatment on Softening of the Stony Hard Peach. Jpn. Agric. Res. Q. 2014, 48, 57–61. [Google Scholar] [CrossRef]
Cultivar | Days After Full Bloom | Vertical Diameter | Horizontal Diameter | Fruit Shape Index | Pulp Diameter | Total Peel Thickness |
---|---|---|---|---|---|---|
(d) | (mm) | (mm) | (mm) | (mm) | ||
QJ | 90 | 53.92 ± 0.98 a | 53.66 ± 1.08 a | 1.00 ± 0.00 a | 40.93 ± 1.17 a | 6.37 ± 0.07 a |
120 | 63.19 ± 0.65 a | 68.59 ± 1.05 a | 0.92 ± 0.02 a | 57.06 ± 0.67 a | 5.76 ± 0.31 a | |
150 | 72.80 ± 0.45 a | 85.54 ± 1.07 a | 0.85 ± 0.01 a | 73.44 ± 1.03 a | 6.05 ± 0.05 a | |
180 | 74.15 ± 1.00 a | 83.80 ± 0.46 a | 0.88 ± 0.01 a | 71.11 ± 0.73 a | 6.34 ± 0.29 a | |
210 | 74.94 ± 1.46 a | 85.06 ± 1.37 a | 0.88 ± 0.01 a | 72.13 ± 1.94 a | 6.47 ± 0.36 a | |
240 | 83.61 ± 0.94 a | 95.15 ± 1.24 a | 0.88 ± 0.01 a | 82.18 ± 0.68 a | 6.49 ± 0.37 a | |
270 | 84.22 ± 0.30 a | 96.93 ± 0.79 a | 0.87 ± 0.01 a | 84.18 ± 0.84 a | 6.37 ± 0.06 a | |
MRJ | 90 | 40.59 ± 1.50 b | 45.44 ± 1.57 b | 0.89 ± 0.01 b | 39.87 ± 1.20 ab | 2.79 ± 0.18 c |
120 | 47.89 ± 0.13 c | 55.60 ± 0.30 b | 0.86 ± 0.00 b | 51.67 ± 0.25 b | 1.96 ± 0.03 c | |
150 | 51.53 ± 1.25 c | 61.90 ± 2.05 c | 0.83 ± 0.02 a | 58.08 ± 1.82 c | 1.91 ± 0.13 c | |
180 | 55.61 ± 0.48 c | 64.36 ± 0.95 c | 0.86 ± 0.02 a | 60.31 ± 0.85 b | 2.03 ± 0.06 c | |
210 | 58.93 ± 1.28 c | 66.23 ± 1.00 c | 0.89 ± 0.01 a | 61.57 ± 0.93 b | 2.33 ± 0.03 c | |
240 | 56.73 ± 2.41 c | 64.93 ± 1.91 c | 0.87 ± 0.01 a | 59.75 ± 2.17 c | 2.59 ± 0.16 c | |
270 | 58.89 ± 0.60 c | 66.88 ± 0.20 c | 0.88 ± 0.01 a | 61.07 ± 0.14 c | 2.90 ± 0.06 c | |
CJ | 90 | 41.95 ± 0.78 b | 45.98 ± 0.70 b | 0.91 ± 0.00 b | 37.86 ± 0.97 b | 4.06 ± 0.14 b |
120 | 51.32 ± 1.33 b | 56.92 ± 1.09 b | 0.90 ± 0.01 a | 49.87 ± 1.04 c | 3.53 ± 0.08 b | |
150 | 55.23 ± 0.88 b | 68.29 ± 0.43 b | 0.81 ± 0.01 b | 62.35 ± 0.41 b | 2.97 ± 0.13 b | |
180 | 62.33 ± 1.67 b | 78.03 ± 0.97 b | 0.80 ± 0.01 b | 71.21 ± 1.02 a | 3.41 ± 0.17 b | |
210 | 62.78 ± 0.54 b | 77.78 ± 1.05 b | 0.81 ± 0.01 b | 70.02 ± 1.32 a | 3.88 ± 0.25 b | |
240 | 64.60 ± 1.87 b | 80.37 ± 1.27 b | 0.80 ± 0.01 b | 72.51 ± 0.98 b | 3.93 ± 0.20 b | |
270 | 64.46 ± 1.11 b | 78.42 ± 0.70 b | 0.82 ± 0.02 b | 70.50 ± 0.63 b | 3.96 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Huang, Z.; Wang, Y.; Deng, L.; Wang, T.; Cao, D.; Liao, L.; Xiong, B.; Tu, M.; Wang, Z.; et al. Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits. Plants 2025, 14, 1349. https://doi.org/10.3390/plants14091349
Yuan Y, Huang Z, Wang Y, Deng L, Wang T, Cao D, Liao L, Xiong B, Tu M, Wang Z, et al. Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits. Plants. 2025; 14(9):1349. https://doi.org/10.3390/plants14091349
Chicago/Turabian StyleYuan, Ya, Ziyi Huang, Yihong Wang, Lijun Deng, Tie Wang, Defa Cao, Ling Liao, Bo Xiong, Meiyan Tu, Zhihui Wang, and et al. 2025. "Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits" Plants 14, no. 9: 1349. https://doi.org/10.3390/plants14091349
APA StyleYuan, Y., Huang, Z., Wang, Y., Deng, L., Wang, T., Cao, D., Liao, L., Xiong, B., Tu, M., Wang, Z., & Wang, J. (2025). Variety Effect on Peelability and Mechanisms of Action of Late-Ripening Citrus Fruits. Plants, 14(9), 1349. https://doi.org/10.3390/plants14091349