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Abstract: Phragmites australis (common reed), a recently introduced invasive species in Iraq,
has swiftly established itself as a vigorous perennial plant, significantly impacting the bio-
diversity and ecosystem functions of Iraqi ecoregions with alarming consequences. There
is an insufficient understanding of both the current distribution and possible future trends
under climate change scenarios. Consequently, this study seeks to model the current and fu-
ture potential distribution of this invasive species in Iraq using machine learning techniques
(i.e., MaxEnt) alongside geospatial tools integrated within a GIS framework. Land-cover
features, such as herbaceous zones, wetlands, annual precipitation, and elevation, emerged
as optimal conditioning factors for supporting the species’ invasiveness and habitat through
vegetation cover and moisture retention. These factors collectively contributed by nearly
85% to the distribution of P. australis in Iraq. In addition, the results indicate a net decline
in high-suitability habitats for P. australis under both the SSP126 (moderate mitigation;
5.33% habitat loss) and SSP585 (high emissions; 6.74% habitat loss) scenarios, with losses
concentrated in southern and northern Iraq. The model demonstrated robust reliability,
achieving an AUC score of 0.9 £ 0.012, which reflects high predictive accuracy. The study
area covers approximately 430,632.17 km?, of which 64,065.66 km? (14.87% of the total
region) was classified as the optimal habitat for P. australis. While climate projections
indicate an overall decline (i.e., SSP126 (5.33% loss) and SSP585 (6.74% loss)) in suitable
habitats for P. australis across Iraq, certain localized regions may experience increased habi-
tat suitability, reflecting potential gains (i.e., SSP126 (3.58% gain) and SSP585 (1.82% gain))
in specific areas. Policymakers should focus on regions with emerging suitability risks
for proactive monitoring and management. Additionally, areas already infested by the
species require enhanced surveillance and containment measures to mitigate ecological
and socioeconomic impacts.

Keywords: alien species; climate change; Iraq; Phragmites australis; machine learning
spatial distribution

1. Introduction

Invasive species are organisms that are introduced, either intentionally or accidentally,
into ecosystems outside their natural range through environmental factors or human activi-
ties [1]. These species can adapt, spread aggressively, and dominate new habitats, leading
to the displacement or extinction of native flora and fauna and causing significant ecological
imbalances [2,3]. To address the threats posed by non-native species, analyzing their spatial
spread is critical. The expansion of these organisms is shaped by interspecies dynamics,
environmental adaptability, and variables like climate patterns, soil composition, water
systems, and landscape features, with temperature and precipitation playing a pivotal
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role [4]. The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) highlights that average planetary temperatures have risen by nearly 1.2 °C over
the last century due to human-driven warming, with projections indicating continued
increases [5]. Furthermore, local and regional studies have reported that certain areas
may experience varying degrees of temperature increases in the coming decades [6-9]. As
such, evidence indicates that global climate change may enhance the resilience of invasive
populations, enabling them to colonize broader territories and establish more dominant
communities [10-12]. Investigating how shifting climatic conditions influence the future
ranges of invasive plant species provides vital insights for designing science-backed strate-
gies to protect ecosystems and biodiversity. Iraq has experienced significant environmental
shifts linked to shifting climatic conditions, marked by frequent water shortages [13], de-
structive wildfires [14], land-use and land-cover change [15,16], reduced native species
populations [17,18], and the increased emergence of illnesses [19]. Understanding how
shifting climate patterns alter invasive species movement and developing strategies to
safeguard woodland areas from their impacts is vital. Therefore, examining the causal
relationship between environmental drivers and alien invasive plant species is key to
evaluating broader ecosystem stability and resilience.

Phragmites australis is a persistent water-based grass found globally, often forming
dense, single-species clusters in riverbanks and marsh ecosystems [20,21]. Recognized as an
aggressive colonizer, it disrupts natural habitats in coastal zones and marshlands, though it
adapts to semi-arid conditions [21]. P. australis aggressively outcompetes native plants for
resources like moisture and soil nutrients. Thriving in shallow waters and deeper aquatic
zones, it encroaches on shorelines and submerged areas. In regions like Iraq, environmental
shifts and water scarcity have amplified its dominance in protected wetlands and semi-wet
areas, where it exhibits remarkable salt resistance and adaptability to fluctuating hydration
levels [22,23]. Its proliferation in marsh systems is altering native plant and animal habitats,
threatening the ecological balance. The key ecological impacts of P. australis in Iraq and
globally include its tendency to form monocultures in disturbed or reflooded marshes [24].
These dense stands often reduce plant diversity by outcompeting native vegetation [3,25].
Conversely, the species” extensive root system stabilizes soil and mitigates erosion [22,23].
However, its high evapotranspiration rates may lower local water tables, though this
effect remains poorly documented in Iraq. Socioeconomically, while local communities
traditionally use P. australis for constructing homes, boats, and handicrafts, its overgrowth
can impede fishing, navigation, and agricultural practices by blocking irrigation channels.

Previous studies in Iraq on P. australis have focused on measuring heavy metal uptake
by the species [26,27] and identifying the optimal conditions for biogas production [28].
Studies on the spatial distribution of P. australis in Iraq are non-existent or scant; conse-
quently, this study aims to fill this research gap. Its findings provide essential foundational
data for the further investigation of alien invasive species. In this context, management
actions and interventions targeting the most vulnerable landscapes could be implemented
more effectively. Currently, Iraq’s approach to addressing non-native and invasive species
lacks sufficient priority, and is further complicated by a limited understanding of their
geographical distribution. Urgent and comprehensive research is essential to evaluate the
spread of P. australis and the challenges posed by its proliferation to native biodiversity and
ecosystem stability.

Species distribution models (SDMs), are extensively employed to evaluate the effects
of environmental conditions on alien invasive species. For instance, these models utilize
climatic, topographic, and edaphic drivers to estimate ecological niches under future envi-
ronmental scenarios. Among these models, the maximum entropy algorithm (MaxEnt) has
emerged as a prominent machine learning algorithm for simulating species—environment
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relationships due to its capacity to handle incomplete data and produce robust predic-
tions [29,30]. A central question in ecological research revolves around identifying the
drivers that shape species presence across specific regions. Predictive models, e.g., Max-
Ent, enable the exploration of relationships between target species and their ecological
requirements. They also help identify key environmental conditions that influence species
occurrence in defined areas. As such, this manuscript focuses on three primary objectives:
(i) mapping the current distribution of P. australis in Iraq and predicting its potential habi-
tats, (ii) modeling its future distribution patterns under global climate change scenarios
using MRI-ESM2.0 (55P126 and SSP585), and (iii) identifying the key ecological factors that
most significantly influence its spatial distribution.

2. Results
2.1. Model Performance

The assessment of habitat suitability for P. australis using the AUC-ROC metric demon-
strated a strong performance in distinguishing favorable and unfavorable environments.
Across repeated model iterations, the mean AUC value reached 0.9, with a narrow deviation
of +0.012, reflecting consistent reliability in the analysis. These outcomes, derived from 10
computational trials, highlight the model’s precision in evaluating ecological niches for P.
australis in Iraq (Figure 1).

| Mean (AUC=0.933) =
Mean +/- one stddev ®
| Random Prediction ®

1 Il 1 1 1 1 1 1 1

0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0
1 - Specificity (Fractional Predicted Area)

Figure 1. The model’s classification accuracy during validation was assessed using a metric derived
from repeated training iterations. This measure evaluates the system’s capacity to correctly identify
true negatives within a projected area. Across 10 computational trials, the algorithm achieved a mean
value of AUC = 0.933 £ 0.012.

2.2. Suitability Distribution of P. australis and Conditioning Factors

The ecological presence of P. australis in Iraq is shaped by a combination of envi-
ronmental variables. Elevation and biol2 (annual precipitation) emerged as the pre-
dominant drivers, responsible for 33.2% and 31.7% of habitat distribution of P. australis.
Secondary influences included land-cover and land-use, biol5 (precipitation seasonality),
and biol (annual mean temperature). In addition, bio2 (mean diurnal range) and NDVI
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further contributed to distribution patterns, as outlined in Table 1. Cross-validation analy-
ses using iterative testing methods reinforced these findings (Figure 2), with elevation and
annual precipitation showing the strongest predictive power. In contrast, NDVI and bio14
(precipitation of driest month) exhibited a negligible influence on the habitat distribution
of P. australis.

Table 1. The model’s input variables, their assigned units and abbreviations, and their quantified
impact on P. australis habitat predictions are outlined alongside predictive weight (reflecting each
factor’s influence on distribution probability).

Variable Used in Modeling Abbreviation and Unit Percent Contribution = Permutation Importance
Elevation DEM (m) 33.2 35.5

wc_biol2 biol2 (annual precipitation) (mm) 31.7 50
landcover2019 LC 2019 19.1 4

we_biol5 biol5.(}.)recipitatic.>n §easonality 6.1 29

(coefficient of variation) (mm)

wc_bio01 biol (annual mean temperature) (°C) 5.1 37

wc_bio02 bio2 (mean diurnal range) (°C) 2.1 23
IRAQ_NDVI NDVI 2 2

wc_biol4 biol4 (precipitation of driest month) (mm) 0.7 0.3
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Figure 2. The model’s predictive improvements from constrained optimization (top) and classification
accuracy metrics (bottom) were evaluated using iterative variable exclusion methods to assess how
individual factors influenced habitat suitability patterns for P. australis in Iraq.

2.3. Shifts in Habitat Distribution of P. australis over Time in Iraq

The ecological conditions supporting P. australis in Iraq cover roughly 64,065.66 km?
(14.87%) of the total 43,0632.17 km? of the national territory of Iraq. Within suitable
zones, the majority (11.96% or 51,504.06 kmz) were classified as low-probability regions,
while moderate suitability accounted for 2.68% (11,540.41 km?), and high suitable areas
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constituted less than 1% (0.23% or 1021.17 km?). The risk zones for P. australis thriving are
concentrated in southern Iraq, particularly across the Basra province, as well as localized
sections of the Duhok, Erbil, and Sulaimani provinces in the north. Areas with moderate risk
span parts of Duhok, Sulaimani, Erbil, Baghdad, and along scattered pockets of the Tigris
and Euphrates waterways (Figures 3-5). Conversely, extensive northern, northeastern, and
western territories, including Anbar province, were deemed inhospitable for sustaining
P. australis (Table 2). Future trends under the SSP126_2041-2060 (moderate mitigation) and
S5P585_2041-2060 (high emissions) climate scenarios indicate a projected decline in suitable
habitat zones for P. australis across Iraq. Specifically, high-suitability habitats are expected to
diminish from their current coverage of 0.24% (1021.18 km?) to 0.23% (1008.66 km?) under
SSP126 and 0.21% (923.09 km?) under SSP585 by mid-century. This contraction reflects a
broader pattern of habitat degradation under intensified climatic stressors. Medium- and
low-suitability zones follow analogous trajectories, with reductions in both spatial extent
and ecological viability, as detailed in Tables 2 and 3. Spatially, these shifts manifest as
habitat losses and habitat gains, redistributing the species’ range across Iraq. For instance,
P. australis is projected to recede from historically suitable areas in the south and north,
while dispersing to newly viable regions in the central and northeastern parts of the
country. Under the SSP126 scenario, habitat gain is estimated at 3.58% (15,403.22 km?),
compared to a more modest 1.82% (7823.69 km?) under SSP585. Conversely, habitat loss is
far more pronounced, reaching 5.33% (22,934.75 km?), under SSP126 and escalating to 6.74%
(29,013.12 km?) under SSP585. These disparities highlight the disproportionate impact
of higher emissions scenarios on habitat erosion. Visualizations of these spatial patterns,
including maps of habitat loss, habitat gain, are provided in Table 3 and Figures 6 and 7.

40°0'0"E 42°0'0"E 44°0'0"E 46°0'0"E 48°0'0"E
=z
2
1<
8
z
)
1<
3
z
o
1<
&
o
z
18
[ |lIraq Governorates 5
Phragmites australis current distrbution
Class
[T Unsuitable habitat -
[ Low suitable habitat 0 - - g
I Medium suitable habitat | , L 2
I High suitable habitat

Figure 3. Predictive map for P. australis in Iraq under current climate conditions.
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Figure 4. Predictive map for P. australis in Iraq under MRI-ESM2.0 SSP126 climate conditions.
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Figure 5. Predictive map for P. australis in Iraq under MRI-ESM2.0 SSP585 climate conditions.

30°0'0"N 32°0'0"N 34°0'0"N 36°0'0"N

28°0'0"N



Plants 2025, 14, 768

7 of 14

Table 2. Proportional distributions of suitable and unsuitable habitats for P. australis in Iraq under

current climatic conditions and projected future scenarios (SSP12.6 and SSP58.5) during two intervals:
mid-21st century (2041-2060) and late-21st century (2081-2100) for the MRI-ESM2.0 global model.

Current SSP126_2041-2060 SSP585_2041-2060
Distribution Distribution Distribution
Area Area % Area o 2 Area o 2

Class (Km2) (Km?) (Km2) Area % (Km*) (Km?) Area % (Km?)
Unsuitable habitat 366,566.50 85.12 374,098.03 86.87 387,760.80 90.04
Low suitable habitat 51,504.07 11.96 41,818.88 9.71 35,186.10 8.17
Medium suitable habitat 11,540.42 2.68 13,706.59 3.18 6762.17 1.57
High suitable habitat 1021.18 0.24 1008.66 0.23 923.09 0.21
Total area 430,632.17 100 430,632.17 100 430,632.17 100

Table 3. Proportional distribution (changes from current to future) of habitat gain and habitat loss

for P. australis in Iraq under current climatic conditions and projected future scenarios (SSP12.6 and

SSP58.5) during two intervals: mid-21st century (2041-2060) and late-21st century (2081-2100) for the

MRI-ESM2.0 global model.

Current to SSP126_2041—2060 Change Current to SSP585_2041—2060

Area o 2 Area Area %
Class (Km?) Area % (Km®) (Km?) (Km?)
Habitat gain 15,403.22 3.58 7823.69 1.82
Unsuitable 351,163.28 81.55 358,742.81 83.31
No change 41,130.91 9.55 35,052.54 8.14
Habitat loss 22,934.75 5.33 29,013.12 6.74
Total area 430,632.17 100 430,632.17 100
40°0'0"E 42°0'0"E 44°0'0"E 46°0'0"E 48°0'0"E

T T T T

Current to SSP126 distrbution
| Iraq Governorates
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Figure 6. Predictive map for P. australis in Iraq analyze
climate scenarios.
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Figure 7. Habitat gain and loss predictive map for P. australis in Iraq analyzed from current prediction
and future SSP585 climate scenarios.

3. Discussion
3.1. Distribution of P. australis in Iraq

In Iraq, roughly 64,065.66 km?2 (14.87%) of the whole territory offers viable conditions
for P. australis. Within this habitable zone, high-risk areas or high suitable areas cover only
3994 km? (0.9%) of the country, which are mostly located in the upper south and north
(Figure 3) regions. The spatio-temporal variations are most likely due to the interesting
adaptive capacity of the species to different elevations across the country. Wet regions
appear conducive to the P. australis lifecycle. Identifying regions where the invasive species
thrives is critical for forecasting outbreaks of invasion. P. australis survival and behavior is
closely tied to localized environmental conditions, such as temperature, alongside annual
precipitation (i.e., moisture levels), and land-cover in a given area. The significant contribu-
tion (nearly 85%) of precipitation, land-cover, and elevation to the distribution of P. australis
in Iraq is demonstrated by this study. Herbaceous zones and wetlands emerged as optimal
habitats, supporting the species’ invasiveness through vegetation cover and moisture reten-
tion. These findings, partly underscore the vulnerability of P. australis to climate change
while highlighting its resilience through habitat redistribution. The interplay of CO, fertil-
ization, temperature stress, and hydrological dynamics will shape its ecological impact in
Iraq. By synthesizing insights from global case studies, this study advocates for a nuanced
approach that balances Phragmites invasive threats with its ecosystem benefits, leveraging
adaptive strategies to safeguard both biodiversity and wetland functionality [31,32]. These
findings concur with other studies in which standard bioclimatic variables and topographic
features have been used [33,34]. In addition, land-use changes caused by human activities,
such as coastal development and the creation of artificial shorelines, facilitate the spread
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of P. australis. These alterations may enable different genetic variants of the reed to mix
and thrive, accelerating its expansion into new areas. Simultaneously, climate change and
human-induced land modifications interact to create the ideal conditions for P. australis
growth. This, in turn, makes it more challenging to protect and restore natural wetlands,
which support diverse plant and animal life [35].

3.2. Habitat Loss and Gain and Climate-Driven Redistribution

The results indicate a net decline in high-suitability habitats for P. australis under
both the SSP126 (moderate mitigation; 5.33% loss) and SSP585 (high emissions; 6.74% loss)
scenarios, with losses concentrated in southern and northern Iraq. This aligns with global
observations of invasive Phragmites retreating from regions experiencing extreme aridity or
salinization, as seen in North American coastal wetlands under rising temperatures [31,36].
For instance, studies [24,37] on Great Lakes wetlands found that Phragmites dominance
declines in areas with reduced freshwater inflows, mirroring this study’s projected habitat
losses in southern Iraq, where water scarcity and salinity are intensifying [24]. Conversely,
the dispersal of P. australis to central and northeastern Iraq likely reflects adaptive coloniza-
tion in regions with moderated climatic stressors, such as higher soil moisture, a pattern
observed in Mediterranean and Yangtze River estuaries under similar scenarios [37]. In
contrast, the disparity in habitat gains between SSP126 (3.58%) and SSP585 (1.82%) under-
scores the dual role of CO, and temperature. Elevated CO, can enhance photosynthetic
efficiency and mitigate salinity stress in Phragmites, as demonstrated in controlled phytotron
experiments [31]. However, under SSP585, extreme temperature increases may counteract
these benefits, accelerating evapotranspiration and soil desiccation in newly colonized
areas. This aligns with findings from Chesapeake Bay wetlands, where rising temperatures
suppressed CO,-driven growth gains, leading to fragmented habitat viability. This study’s
findings suggest that moderate mitigation (SSP126) better supports Phragmites expansion,
likely due to reduced temperature stress on the species.

3.3. Implications for Biodiversity and Limitations

The projected habitat losses in southern Iraq could destabilize wetland ecosystems
where P. australis plays a dual role as an invasive species and ecological engineer. While its
monocultures often reduce native plant diversity [24], Phragmites also stabilizes sediments,
sequesters carbon, and buffers against erosion—services critical for Iraq’s floodplain re-
silience [38]. The net loss of 5.33-6.74% of habitat area under both scenarios raises concerns
about trade-offs: regions losing Phragmites may face heightened erosion, while newly colo-
nized zones could experience biodiversity declines. Similar conflicts have been documented
in the Blackwater National Wildlife Refuge, where eradication efforts improved native
plant recovery but compromised shoreline stability [38]. As such, adaptive management
strategies are challenging, particularly in the Tigris—Euphrates basin.

Predictive ecological maps generated by MaxEnt models come with built-in limitations
including, but not limited to, input climatic drivers (both current and future global climate
models) and species records quality. Moreover, temporal disparities in the input data, such
as LULC, NDVI, and climate variables, may introduce bias to the results (e.g., underes-
timating climate-driven shifts in habitat suitability). These gaps are usually minimized
by checking model boundaries, thinning species data, and carefully parameterizing the
algorithm used for modeling. Uncertainties may still exist despite these fixes, especially
when data are scarce. The MaxEnt model is known to work well with minimal data, but
its predictions still depend on how well species records match the areas being modeled.
In this study, we tackled these issues by rigorously testing geographic accuracy and using
representative data.
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4. Materials and Methods
4.1. Study Area

Iraq (Figure 8), encompassing approximately 430,632.17 km? in the Middle East,
lies between latitudes 29° N and 38° N and longitudes 39° E and 49° E. Bordered by
Turkey, Iran, Kuwait, Saudi Arabia, Jordan, and Syria, the country is geographically
divided into four zones: mountainous northeastern highlands, southern marsh ecosystems,
western arid plains, and central transitional plateaus bridging desert and upland areas [39].
Climatic conditions vary regionally: hyper-arid in western and southern zones, semi-arid
to continental in central areas, and Mediterranean in northern mountainous regions. Winter
averages 16 °C, while summer extremes exceed 43 °C during daytime, cooling to 26 °C at
night. Precipitation occurs mainly from December to February, though northern highlands
experience rainfall from November to April [39].

38°0'0"E 40°0'0"E 42°0'0"E 44°0'0"E 46°0'0"E 48°0'0"E
Turke |
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o /® £
8 12
o &
Syria o o

p4
A Iran z
1 ©
3

&
ge, 00 2
o =
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\ o
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| ) : Kuwait,
© Phragmites_australis International boundaries
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Figure 8. The study area (Iraq) and the occurrence records of the alien invasive species,
Phragmites australis.

4.2. Phragmites Australis Occurrence Records

The geographic coordinates for P. australis were sourced from the Global Biodiversity
Information Facility (GBIF) (https://doi.org/10.15468/dl.aug5xp). These location records
underwent rigorous quality evaluations using GIS tools to verify positional precision.
Initial data extraction yielded 45 entries, but after applying spatial filtering techniques [40]
to eliminate duplicates and ensure adequate spacing between locations (i.e., minimizing
sampling bias), only 30 distinct records were retained for modeling (i.e., MaxEnt modeling).
It was ensured that these records cover the spatial extent of the entire country, and that the
minimum distance between two individual records was not less than 1 km [41].
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4.3. Conditioning Factors

The model was developed using multiple environmental variables, including the
standard bioclimatic variables, topographic features (e.g., elevation, vegetation proxies
(e.g., NDVI)), and land-use and land-cover (LULC). These conditioning factors were cho-
sen based on the existing literature [42,43] and insights from local experts on invasive
plant species in Iraq. Climatic data, comprising 19 bioclimatic indicators for current
and future scenarios, were sourced from the WorldClim database (www.worldclim.org,
accessed on 1 February 2024), which provides datasets published in the Intergovernmen-
tal Panel on Climate Change (IPCC) Assessment Report 5 (AR5). These variables were
originally derived from historical monthly temperature and rainfall data recorded be-
tween 1950 and 2000 at weather stations. These datasets serve as the standard baseline
for climate modeling, especially in studies projecting future scenarios. The future biocli-
matic variables are sourced from the global circulation model, MRI-ESM2.0 (version 2.0),
from the Meteorological Research Institute of Japan. This dataset includes two scenar-
ios, SSP 126 and SSP 585 [44]. All data have a spatial resolution of 30 arc-seconds
(~1 km) and are available globally [45]. Elevation data were acquired from the Shut-
tle Radar Topography Mission (SRTM; http://srtm.csi.cgiar.org/srtmdata, accessed on
27 December 2024). LULC data (100-m resolution, 2019) were sourced from Coperni-
cus Land Cover (https://zenodo.org/communities /copernicus-land-cover, accessed on
13 December 2024). Additionally, vegetation dynamics were assessed using the Normal-
ized Difference Vegetation Index (NDVI), calculated from Landsat 8 satellite imagery
(https:/ /earthexplorer.usgs.gov, accessed on 20 December 2024) captured between March
and September 2021. These datasets, originally at 30-m resolution, were standardized to
a uniform 1 km scale using a geospatial toolbox to align with other input variables. To
minimize redundancy in the statistical framework, variables exhibiting strong pairwise
correlations (Pearson’s |r| > 0.8) were excluded during preprocessing. This step led to the
removal of numerous bioclimatic variables. Only predictors demonstrating low collinearity
were retained for final model development. To predict the geographic ranges of P. australis
under present and projected scenarios, six bioclimatic parameters (biol, bio2, bio12, bio14,
and bio15) outlined in Table 1 were combined with elevation, LULC, and NDVI datasets.
These variables provided the foundation for modeling shifts in the P. australis’ habitat
over time.

4.4. MaxEnt Model

The maximum entropy algorithm (MaxEnt) [46] was chosen due to its reliability for
generating precise outputs with limited samples [47]. MaxEnt identifies the most probable
distribution of P. australis by balancing observed patterns with minimal prior assumptions,
ensuring unbiased estimates even when data are sparse. In addition, MaxEnt is particularly
advantageous for studies with few observations [48]. For model development, 80% of the
P. australis location data was randomly allocated for calibration, with the remaining 20%
reserved for testing. While default parameters are commonly employed for simplicity,
adjustments were made to align with the study’s ecological context, data characteristics,
and user expertise to enhance precision [49]. The analysis incorporated 10 independent
model runs, each using 500 computational cycles, to generate an averaged probability mode
of P. australis presence. A total of 550 pseudo-absence points were included to balance the
limited occurrence records, with regularization parameters maintained at standard level
(i.e., one) [50]. Variables’ relative importance were assessed through a Jackknife procedure,
systematically excluding individual data points to test prediction consistency and identify
environmental drivers of habitat suitability of P. australis. Results were visualized using
logistic probability outputs, with thresholds based on minimum training presence values to
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classify regions into four suitability tiers: unsuitable, low suitable habitat, moderate suitable
habitat, and high suitable habitat [51]. These categories were delineated via ArcGIS 10.3.

To evaluate shifts in habitat distribution over time, environmental suitability mod-
els were employed to estimate changes. Using geospatial analysis tools within ArcGIS
environment, the changes between current and predicted future habitats were quantified.
The quantifications were divided into four distinct categories: (i) Habitat gain, representing
newly viable areas for P. australis in subsequent periods; (ii) unsuitable habitat, indicating
locations unsuitable both currently and in future scenarios; (iii) no change habitat, encompass-
ing areas where the species currently thrives and is expected to persist; and (iv) habitat loss,
identifying regions where the species’ presence is forecasted to diminish.

4.5. Model Evaluation

The model’s predictive accuracy was measured using the widely recognized Area
Under the Curve (AUC) statistic, a benchmark introduced by Hanley and McNeil [52]. AUC
scores range from 0 to 1, with values closer to 1 reflecting strong discriminatory power in
distinguishing habitat suitability for P. australis. A score of 0.5 indicates random prediction,
while values above this threshold demonstrate increasing reliability for differentiating
between probable presence and absence zones [30]. Higher AUC values correspond to
greater confidence in the model’s ability to classify environmental suitability for P. australis.

5. Conclusions

The spread of P. australis in Iraq mirrors what is happening globally, shifting climates,
e.g., annual precipitation, and land-cover features are driving its invasion. As temper-
atures rise the plant is expanding into new areas under future climate scenarios. Key
drivers of P. australis prevalence include precipitation, elevation gradients, land-cover and
land-use, and vegetation patterns, particularly in wetlands. Targeted interventions should
concentrate on the highest-risk zones, which cover less than 1% of the nation’s territory
(0.9% or 3994 km?), to manage the invasion effectively. This study represents a pioneering
assessment of alien invasive plant species geography in Iraq. By mapping current and pro-
jected P. australis distributions, this research provides baseline data for future surveillance
and control programs. Subsequent investigations should incorporate finer-scale climate
variables to refine predictive accuracy.
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