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Abstract: Due to the differences in the green water (GW) budget patterns of different
vegetation, improper vegetation restoration may not only fail to improve the ecological
environment but also cause irreversible damage to ecologically vulnerable areas, especially
when vegetation restoration continues to be implemented in the future, and the pressure
on water scarcity increases further. However, there is a lack of standardized research on
the differences in the patterns of recharge, consumption, and efficient use of GW in typical
vegetation. This makes the research results vary and cannot provide direct support for
water management decision-making. Therefore, in this study, 30-year-old woodlands (R.
pseudoacacia and P. orientalis) and two typical grasslands (I. cylindrican and M. sativa) that
are similar to each other except for species were selected in a headwater catchment in the
rain-fed agricultural area. A new GW concept and assessment framework was constructed
to study the GW of long-term revegetation using a combination of field experiments and
model simulations during the 2019–2020 growing season. The study findings comprise
the following: (1) High-efficiency green water (GWH), low-efficiency green water (GWL),
ineffective green water (GWI), and available green water storage (GWA) in the four sample
plots during the study period were defined, separated, and compared. (2) An analysis of
GWA variations under different water scenarios. (3) The establishment of GWH and GWL

thresholds. (4) Strategies to reduce GWI and optimize GW potential while maintaining
soil erosion prevention measures. (5) Suggestions for vegetation restoration species based
on diverse factors. This research enhances comprehension of the impact of vegetation
restoration on green water dynamics in ecologically vulnerable areas such as the rain-fed
agricultural zone of the Loess Plateau.

Keywords: green water components; headwater catchment; forest and grass; rain-fed
agricultural area

1. Introduction
Green water (GW), which originates from precipitation, is stored in soil and subse-

quently enters the atmosphere through evaporation and transpiration, serves as a crucial
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link between land, terrestrial ecosystems, and the atmosphere [1]. In arid and semi-arid
rainfed agricultural areas, GW plays a crucial role in supporting and regulating natural
cycling processes within the terrestrial biosphere (such as energy and matter flows) and
facilitating human activities (such as food production and ecological conservation), in
contrast to blue water (which includes surface water and groundwater in the saturated
zone) [2–4]. Studies have demonstrated that the cycling process of GW is influenced by a
multitude of factors related to land use and climate change, encompassing topography, soil
properties, precipitation patterns, temperature variations, and vegetation coverage [5,6].
Among the factors related to land use, vegetation coverage exerts the most significant
influence on GW. The processes by which different vegetation types influence GW in-
volve the interface between the atmosphere and the surface soil, leading to pronounced
eco-hydrological effects [7]. Under different vegetation restoration modes, rainfall loss,
interception, evapotranspiration, infiltration, and runoff are influenced by morphological
characteristics [8]. Because of the vulnerability of GW to human activities represented by
anthropogenic land-use change [9], perturbations to GW will realize off-site effects through
the intra-terrestrial cycle. They will have a significant impact on precipitation (P), runoff,
water resources, and even human activities in the Downwind Region [10]. Studies have
shown that a complete understanding of the distribution characteristics and transforma-
tion mechanisms of GW in the ecologically vulnerable rain-fed agricultural areas located
in headwater catchments of the Loess Plateau (LP) is crucial for vegetation restoration,
regional ecological protection, and socio-economic development [11].

Researchers have conducted extensive studies focusing on various aspects, including
the GW footprint of different crops and vegetation, the temporal and spatial variations in
distribution, as well as the response of GW to changing environmental conditions [12–17].
Previous studies, however, have been largely independent, focusing primarily on water use
patterns and their biophysical regulatory processes of vegetation in relation to soil moisture
variations across regions. Their methodologies and conclusions vary widely, potentially
hindering decision-making processes. To obtain valid information, it is essential to adhere
to controlled variables (e.g., similar planting density, tree age, inflow, and soil properties).
Consequently, pot experiments are often employed for studying multiple typical vegetation
GW in the same region, lacking field-based research with uniform standards. Moreover,
possibly due to the convenience of watershed-scale studies, existing research on green water
components (GWCs) is somewhat simplistic. In these studies, GW is typically categorized
into GW flow (evapotranspiration) and GW storage (soil moisture) and managed through
soil moisture conservation, vapor transfer optimization, and water-saving measures [4,18].
However, GW flow can be further divided into evaporation and transpiration, which
evidently differ in their support efficiency for vegetation. Some scholars have recognized
this issue [19,20], further segregating GW flow into high-efficiency green water (GWH) and
low-efficiency green water (GWL). Nevertheless, they have overlooked the interception of
vegetation, neglecting its potential for GW conversion. Regarding GW storage, a pivotal
oversight lies in the disregard for the fact that the portion of water residing below the
wilting point is inaccessible for plant absorption and utilization, thereby resulting in an
inflated assessment of GW availability. Consequently, to attain accurate management of GW
resources, it is imperative that a novel methodology for categorizing GWCs be introduced.

In the rain-fed agriculture area of the LP, there are two main vegetation restoration
types—artificial woodland and grassland. R. pseudoacacia and P. orientalis are the most
common species in the artificial woodland, while I. cylindrica and M. sativa dominate the
natural restoration and artificial grassland, respectively. There is disagreement among
scholars over the most suitable species for future vegetation restoration on the LP, as
different vegetation types perform differently in soil and water conservation, ecological
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environment improvement, and water resource utilization [21–24]. The “Grain for Green”
project, which is an essential measure of environmental management in the LP region, will
continue to be promoted in the next 30 years. However, the pressure on water resources in
the region may further intensify [25]. Comparative studies on the ecological functions of
different vegetation from the fundamental perspective of GWCs and their comprehensive
performance are crucial for the future direction of vegetation restoration in the typical rain-
fed agriculture area of the LP. As the headwater catchment serves as the starting point for
the convergence and generation of water and sediments, it is critical for downstream water
resource utilization and ecological protection that research on the above issues be carried
out in this area first. In addition, even if suitable vegetation restoration types are identified,
policymakers may be unable to formulate practical and feasible targeted policies or im-
plementation programs in the face of multi-objective vegetation restoration requirements
due to the lack of detailed and reliable data from multi-perspective studies. Therefore,
in response to the above problems, researchers should also consider how to implement
effective vegetation management and develop easy-to-use implementation programs to
ensure efficient use of water resources and sustainable development of ecosystems.

In summary, the Nanxiaohegou Basin, a typical source watershed of the rain-fed
agriculture area of the LP, which has been managed since 1951, was selected for this study.
Typical long-term vegetation restoration sample plots (>30 years) with similar planting
densities, age, and slope orientation were selected in this watershed, and high-resolution
precipitation, interception, soil evaporation, and soil moisture content data were obtained
through continuous field trials and fixed-point observations during the two plant growing
seasons of 2019–2020 (15 April to 15 October of each year). Combined with crop growth and
water demand model simulations, a new framework for classifying and assessing GWCs
of restoration vegetation based on field experiments was constructed to distinguish the
performance of different vegetation in terms of water retention capacity, GW use efficiency,
and potential enhancement. The aim is to reveal the GW transformation mechanism of
different vegetation on the LP and the differences in their hydrological and ecological
functions, and analyze the prospect of GW resource development and utilization.

2. Description of Sample Plots and Methods
2.1. Study Site and Sample Plots Selection

The Nanxiaohegou Basin (NXHG Basin) (107◦30′–107◦37′ E and 35◦41′–35◦44′ N,
36.2 km2), a typical semi-arid rain-fed area, was selected for this study. The basin is located
in the central part of the Loess Plateau (Figure 1). It is a soil and water conservation pilot
and demonstration area selected by the Yellow River Conservancy Committee. The region
has a typical warm-temperate continental climate, with an average annual precipitation
of 546.7 mm (1970–2020), of which more than 84.9% is due to short rainstorms during the
growing season (15 April to 15 October each year). After more than 72 years of management
practices, the vegetation cover increased from 1.3% in 1954 to 39.28% in 2020, with the
main tree species including Robinia pseudoacacia (R. pseudoacacia), Platycladus orientalis (P.
orientalis), and a small number of economic forests such as peach and jujube. The main
grasses include Imperata cylindrica (I. cylindrica, natural grassland) and Medicago sativa (M.
sativa, artificial grassland). The basin is geologically homogeneous, and the dominant soil
type is loess, which can reach depths of 50 to 200 m. Influenced by long-term soil erosion,
the main landforms in the basin include loess, rounded slopes, and gullies.
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Figure 1. Location of the NXHG Basin, meteorological station, and sample plots.

2.2. Field Experiment Design
2.2.1. Sample Plot Measurement

We surveyed the selected sample plots in April 2019 to obtain the data for this paper.
Stand parameters were determined within each sample plot using a slope meter (Digipas
Technoligies Inc., ACE-SP400C, Shanghai, China) and a high-precision hand-held GPS
(Kemai Instruments Co., Ltd., KM-6A, Shenzhen, China). In order to accurately represent
the R. pseudoacacia and P. orientalis sample plots, 10 trees were randomly selected as samples.
The following parameters were measured for each representative plant: diameter at breast
height (DBH), tree height, canopy amplitude, and coverage. The average values of these
parameters for the 10 representative plants were used as the values for the entire sample
plot. The specific data can be found in Table 1.

Table 1. Vegetation parameters of trees.

Species Height
(cm) DBH (cm) Canopy

Amplitude (cm)
Coverage

(%) Density Altitude
(m)

Slope
(◦) Topography

R. pseudoacacia 620.0 ± 45.0 16.1 ± 1.3 400.4 ± 75.5 71.5 3.0 m × 3.0 m 1211.6 25.0 sloping
terrace

P. orientalis 534.0 ± 32.5 17.5 ± 1.8 240.5 ± 42.8 92.2 3.0 m × 3.0 m 1235.7 26.1 sloping
terrace

The standing conditions of I. cylindrica and M. sativa were measured using the same
method as for the woodlands. Ten points were selected for measuring vegetation parame-
ters in each of the two grasslands. Monthly measurements of plant height and cover were
taken in the two sample plots from 15 April to 15 October during the growing seasons of
2019 and 2020. The representative value for each measurement point was determined by
calculating the average, and the specific statistical data are presented in Table 2.
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Table 2. Vegetation parameters of grass.

Species Height (cm) Coverage (%) Altitude (m) Slope (◦) Topography

I. cylindrica 46.4 ± 8.8 89.8 1211.6 31.0 sloping terrace

M. sativa 50.2 ± 6.5 88.6 1222.4 33.2 sloping terrace

2.2.2. Fixed-Point Observation

The study employed automatic fixed-point monitoring, manual fixed-point monitor-
ing, and indoor measurement to collect the required data. Two small-scale meteorological
reporting systems (Watchdog series 2009, Shenzhen, China) were used to obtain mete-
orological data, such as rainfall, temperature, wind speed, and solar radiation, through
automatic spot monitoring with an observation period of one hour. The data was exported
twice a year, on 1 July and 16 October. The instruments were regularly checked to ensure
the accuracy and continuity of the monitoring.

GW hydrologic processes within each sample plot were monitored using sentinel
observations for the 2019 and 2020 growing seasons. These observations included canopy
interception of tree vegetation, soil evaporation, soil water content, leaf area index (LAI),
and vegetation root density distribution. We placed 1–2 rain barrels with a diameter
of 20 cm and a depth of more than 20 cm under selected representative plants in each
woodland plot. After each rainfall, we recorded the rainfall data and used the average
value as the penetrating rainfall. The difference between this value and the actual rainfall
was the interception. Soil evaporation was carried out using a manufactured miniature
evapotranspiration meter with an internal diameter of 16 cm and a depth of 27 cm. Three
such meters were set up for each sample plot, and the average value was also taken. Soil
moisture content was measured using a tube time-domain reflectance system (Trime TDR,
Germany) at two randomly selected locations, 50 cm away from the main trunk of the
representative plant, with a depth of 0–200 cm. Measurements were taken at 10 cm intervals
from 0 to 100 cm depth and at 20 cm intervals from 100 to 200 cm depth. The mean value of
the two measurements was taken. Soil evaporation and moisture content were observed at
intervals of 1 to 7 days, with an additional measurement taken on the day after rain. The
plant canopy analysis system (WinScanopy 2006, Montreal, Richmond, Canada) was used
to conduct fixed-point LAI observations during each plot’s growing season. Three fixed
positions and angles were selected for each sample plot, and observation intervals were
5–10 days with the same values taken as above.

The initial values of soil physical parameters were measured at depths of 20 cm,
70 cm, and 160 cm, which were used to represent the average conditions of the 0–40 cm,
40–100 cm, and 100–200 cm soil layers, respectively. Soil samples were collected from
a selected plant in each sample plot, considered the representative measurement point,
at a distance of 50 cm from its trunk. These samples were then processed and taken
to the laboratory for analysis. The composition of soil particles was measured using a
laser particle size analyzer (Mastersizer 2000, Malvern, Worcestershire, UK). Based on
this analysis, the residual moisture content was determined using the Rosetta model [19].
The study determined the saturated hydraulic conductivity of the soil in each layer using
the constant head method [19]. The soil moisture characteristic curve was determined
by centrifugation. In addition, the soil bulk weight, saturated water content, field water
capacity, and capillary fracture water content were determined using the cutting ring. The
soil auger method was used to select three sampling points at the same location for soil
sampling. Finally, root distribution density was determined indoors for each plot.
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2.3. Hydrus-1D Model
2.3.1. Model Description

The HYDRUS model (version 5.06) is software that was developed by the National
Salt and Soil Laboratory of the U.S. Department of Agriculture (USDA) to simulate water
movement, heat transport, and solute transport in both saturated and unsaturated media.
It is widely used for soil moisture dynamics simulations, as well as solute transport and
vegetation evapotranspiration simulations [20]. In this study, rainfall allocation simulation
under vegetation conditions was carried out on terraces. Since the water movement is
mainly concentrated in the vertical direction, we chose the Hydrus-1D model for simulation.
This model is simple to operate, easy to obtain, and free of charge. It describes soil water
movement using the modified Richards equation embedded with a source-sink term and
simulates the root water uptake process using the Feddes model. For more information on
the equations and models for soil evaporation, vegetation transpiration, and surface runoff
simulations, please refer to [26].

2.3.2. Model Boundary and Initial Condition Settings

The area for simulation in the model is the soil layer of 0–200 cm, where plant roots
absorb water. The simulation step is set as 1 day, and the initial condition is based on
the soil moisture measured on 14 April every year. To account for the local groundwater
depth and the actual water cycle, the model’s upper and lower boundaries were set as the
atmospheric boundary with runoff and the drainage boundary, respectively.

2.3.3. Model Calibration and Validation

In the study conducted by [19] to simulate evapotranspiration in the NXHG Basin,
a sensitivity analysis of Hydrus-1D model parameters was performed. In this paper, the
simulation performance was evaluated using the Nash–Sutcliffe Efficiency Coefficient
(NSE), with the observed soil moisture content and soil evaporation data measured during
the test period. The year 2019 was used as the calibration period, and 2020 was used as the
validation period.

The calibrated model was used to simulate the process of water transport and transfor-
mation in the four sample plots in 2020. The model was also used to calculate the allocation
of rainfall by vegetation and to validate the model based on the observed data. It should be
noted that in areas with loess soil, groundwater is buried deeper and not involved in the soil
water cycle. Therefore, its role in recharging the surface and shallow soil moisture through
the rising action of the capillary can be ignored. The recharge, storage, and consumption
of GW mainly occur during rainfall, soil moisture variability, and evapotranspiration.
When the model can effectively simulate soil moisture content and evaporation, it can also
accurately simulate vegetation transpiration.

2.3.4. Green Water Components Separation

The authors previously proposed a new basin-scale green water components concept
that further classifies GW into high-efficiency green water (GWH), low-efficiency green
water (GWL), ineffective green water (GWI), and available green water storage (GWA) [27].
The introduction of this concept has refined GW research and led to an increase in the
accuracy of GW assessment. In this paper, it is improved and used as a core indicator in
the green water assessment framework for long-term vegetation restoration samples. The
flow chart for the green water components study is shown in Figure 2.
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(1) High-efficiency green water (GWH): Actual vegetation transpiration was calculated
using Equations (1)–(6).

TP = ET0e−µLAI (1)

where Tp is potential transpiration, ET0 is potential evapotranspiration, µ is the crop
extinction coefficient, and LAI is the leaf area index.

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(ea − ed)

∆ + γ(1 + 0.34U2)
(2)

where ∆ is the slope on the saturated water vapor pressure–temperature curve (kPa-K−1).
Rn is the net solar radiation (J·m−2·d−1), and G is the soil heat flux (J·m−2·d−1). ea is the
saturated water vapor pressure (kPa). ed is the actual water vapor pressure (kPa), γ is the
hygrometer constant (kPa·K−1), and U2 is the wind speed at a distance of 2 m from the
surface (m/s).

β(z) =
β′(z)∫ Lr

0 β′(z)dz
(3)

where β(z) is the measured root distribution function, and Lr is the root distribution depth.

α(h) =


h/h1 h1 ≤ h ≤ 0

1 h2 ≤ h ≤ h1

(h − h3)/(h2 − h3) h3 ≤ h ≤ h2

0 h < h3

(4)

where h1, h2, and h3 are the three water potential thresholds affecting the water uptake
by the root system of the vegetation (cm). h3 is the soil water potential when permanent
wilting of the crop occurs, h2 is the soil water potential corresponding to the beginning of
the decrease in the rate of water uptake by the root system, and h1 is the soil water potential
when the rate of water uptake by the root system decreases due to high soil moisture.

Sr(z, t) = TP

∫ Lr

0
β(z)α(h)dz (5)
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where Sr(z,t) is the actual rate of crop transpiration.

GWH = Sr(z, t)·T (6)

(2) Low-efficiency green water (GWL): Actual soil evaporation was calculated using
Equations (7)–(9).

EP = ET0(1 − e−µLAI) (7)

Er(0, t) =


Ep θ ≥ 0.65θ f

Ep

(
0.65θ f − θ

)
/
(

0.65θ f − θC

)
θc ≤ θ < 0.65θ f

0 θ < θc

(8)

GWL = Er(0, t)·T (9)

where Ep is potential evaporation, Er(0,t) is the actual rate of soil evaporation, θ is the water
content of the surface soil, θf is the field moisture capacity, and θc is the moisture content of
capillary fracture.

(3) Ineffective green water (GWI): Interception. Rainfall consumption and evaporation
intercepted by vegetation reduce the effective rainfall and soil moisture recharge reaching
the surface, and represent an unproductive loss of green water resources. It was calculated
using Equations (10) and (11).

GWI = aLAI

(
1 − 1

1 + bP
aLAI

)
(10)

b = 1 − e−µLAI (11)

where P is rainfall, and a is an empirical parameter with an initial value of 0.25.
(4) Available green water storage (GWA): As water below the wilting water content

is difficult for plants to absorb, the difference between the actual soil water content and
the wilting water content is taken as the amount of unused green water resources and is
calculated as follows.

GWA =
n

∑
i=1

SWi − Ww, i (12)

where SWi and Ww,i are the number of GWA, the actual moisture content of the soil
evaluation layer i, and the wilting water content of evaluation layer i, respectively.

Based on the above definition of GWCs, we can use the Hydrus-1D model to ex-
tract them and then analyze the methods and mechanisms by which vegetation allocates
GW resources.

2.4. Data Processing and Analysis

Statistical calculations and analyses were carried out on the GWCs of various plots,
which included GWH, GWL, GWI, and GWA. Regression methods, whether linear or
nonlinear, were utilized to determine the relationships between GWH and GWL of mul-
tiple plots and their influencing factors, followed by comparative analysis and threshold
determination. Multivariate regression analysis was applied to analyze how to reduce
GWI and enhance GW potential, with a significance level of 0.01. Unlike univariate linear
regression, which considers only one predictor variable, multivariate linear regression uses
several predictor variables simultaneously to predict the value of the dependent variable,
thereby identifying the joint effects of these predictor variables. The analysis results reveal
the explanatory power of different factors influencing GWI. Descriptive statistics and
multivariate regression analysis were performed using SPSS 21.0 statistical software (IBM
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SPSS, Inc., Armonk, New York, USA). Fitting functions and plotting were completed using
Origin 2019 (OriginLab Corp., Northampton, Massachusetts, USA).

3. Results
3.1. Model Calibration and Validation Results
3.1.1. Results of Parameter Sensitivity Analysis and Calibration

The results for each plot’s calibrated model parameters sensitivity ranking are pre-
sented in Table 3.

Table 3. Sensitivity ranking and calibrated results of model parameters for each plot.

Parameter Description Range of
Value

Order of Sensitivity Calibrated Results

R. P. P. O. I. C. M. S. R. P. P. O. I. C. M. S.

θr2/(cm3·cm−3)
Residual moisture content

(40∼100 cm)
0.01~0.05 11 10 11 12 0.0420 0.0630 0.0565 0.0538

θs1(cm3·cm−3)
Saturated moisture content

(0∼40cm)
0.25~0.80 3 4 3 3 0.4818 0.4612 0.4928 0.4778

θs2/(cm3·cm−3)
Saturated moisture content

(40∼100 cm)
0.25~0.80 5 7 6 7 0.5069 0.4957 0.4872 0.4972

α1/cm−1
Reciprocal of inlet air

suction
(0∼40 cm)

0.002~0.1 10 11 10 10 0.0246 0.0144 0.0167 0.0208

α2/cm−1
Reciprocal of inlet air

suction
(40∼100 cm)

0.002~0.1 13 13 13 13 0.0376 0.0138 0.0174 0.0228

n1

Parameter of pore size
distribution
(0∼40 cm)

1.1~2 2 3 1 1 1.2022 1.1945 1.1620 1.2258

n2

Parameter of pore size
distribution
(40∼100 cm)

1.1~2 1 1 2 2 1.1965 1.2272 1.1448 1.2459

Ks1/(cm·d−1)
Saturated hydraulic

conductivity
(0∼40 cm)

0~750 12 12 12 11 55.4 58.1 43.2 88.9

µ Extinction coefficient 0~1 7 2 4 4 0.46 0.33 0.36 0.49

a
The empirical parameter of

the
interception module

0~1 4 5 5 8 0.09 0.28 0.16 0.16

h1/cm
Upper optimum potential

threshold
of root water uptake

−2000~0 6 9 8 5 −265.7 −392.6 −442.5 −658.8

h2/cm
Lower optimum potential

threshold
of root water uptake

−10,000~0 8 8 9 6 −885.4 −1205.2 −1202.4 −1992.6

h3/cm
Soil water potential for

permanent
wilting

−60,000~0 9 6 7 9 −26,134.8 −20,285.4 −9125.6 −1148.6

Note: θr, θs, α, n, and Ks are basic parameters in van Genuchten–Mualem model; µ and a are parameters in beer
equation and interception module, respectively. h1, h2, and h3 are characteristic water potential in the water
stress response function; R. P., P. O., I. C., and M. S. are R. pseudoacacia, P. orientalis, I. cylindrica, and M. sativa,
respectively.

Based on the sensitivity ranking results, it is evident that the parameter of pore size
distribution has the greatest influence on GW simulation across all four vegetation sample
plots. The second most sensitive parameter is the saturated moisture content. Additionally,
the sensitivity of each parameter varies for different types of vegetation.
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3.1.2. Model Validation Results

The calibrated model was used to simulate the water transport and transformation
process within the four sample plots in 2020, calculate the allocation of rainfall by vegetation,
and validate the model based on the observed data.

According to the comparison between the simulation results, measured data, and
NSE in Figure 3, it can be seen that in the simulation of soil moisture at a depth of 20 cm,
except for R. pseudoacacia, the NSE of the other three plots is greater than 0.75, and the
simulation effect is “very good”. In the simulation of soil moisture at a depth of 70 cm,
except for the NSE of I. cylindrica, the NSE of the other three sample plots is less than 0.75
and greater than 0.65, and the simulation effect is “good”. At 160 cm, the NSE of the four
plots were all less than or equal to 0.75 and greater than 0.65, and the simulation effect was
“good”. For the soil evaporation simulation, the four plots’ performance was “good”. This
indicates that the Hydrus-1D model can well realize the simulation of the GW migration
and transformation process.
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(a–c) are measured, simulated, and NSE of soil water content at 20, 70, and 160 cm depths of the four
sample plots, respectively; (d–g) are measured, simulated, and NSE of soil evapotranspiration for R.
pseudoacacia, P. orientalis, I. cylindrica, and M. sativa, respectively.

3.2. Separation Results of Green Water Components

After calibrating and validating the Hydrus-1D model, it is possible to simulate and
output the daily scale GW hydrological cycle process in each sample plot. Based on the
model output data, the dynamic characteristics of the number of each GWC in the growing
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season can be analyzed. By using the above methods, it is also possible to overcome
the defects of discontinuity in the observation of each GWC, which leads to errors in the
assessment of GW. The results of the number of GWCs in each plot during the growing
season are shown in Figure 4.

Plants 2025, 14, x FOR PEER REVIEW  11  of  23 
 

 

 

Figure 4. Number of GWCs and precipitation  (P) during  the growing season  in  the  four sample 

plots. (a–d) represent the number of green water components for the 2019–2020 growing season for 

the four vegetation plots of R. pseudoacacia, P. orientalis, I. cylindrica, and M. sativa, respectively. 

The main precipitation  for  the 2019–2020 growing season  is concentrated  in  July–

September, with annual  rainfall of 658.4 and 480.0 mm  in 2019 and 2020,  respectively. 

According to Figure 4, the GWCs show a fluctuating trend in all four vegetation sample 

plots. From the distribution of GWCs in the growing season of each plot, the amount of 

GWH was lower on rainy days, while it was enough to maintain a higher level on rain-free 

days following precipitation. In the early growth stage (15 April to 15 May), GWH was 

generally smaller than GWL, while in the middle (16 May to 31 August) and late growth 

stages (1 September to 15 October), GWH was significantly larger than GWL, which varied 

substantially with precipitation, while GWL remained at a lower level and stable values. 

The amount of GWI was closely related to the amount of rainfall, and in the early and late 

stages of the growing season, there was less rainfall, and the value of GWI was relatively 

low. However, the average value in the late growth stage was significantly higher than 

that of the early, which may be related to the LAI and canopy density. Moreover, among 

the four plots, the GWI of R. pseudoacacia was not only significantly lower than that of P. 

orientalis but also lower than that of the two grassland plots under the same rainfall. GWA 

of R. pseudoacacia was significantly higher in the early and late growth stages than in the 

middle, while the other samples showed small fluctuating changes. From the relationship 

of GWA with GWH and GWL, it can be seen that in the mid-growth stage, the expenditure 

of GWA was mainly controlled by GWH. 

For the R. pseudoacacia plot (Figure 4a), the day-by-day GWH was distributed at 0.4–

4.8 and 0.2–5.0 mm, GWL at 0.2–2.1 and 0.1–2.3 mm, GWI at 0.1–5.1 and 0.1–5.3 mm, and 

GWA at 214.1–343.7 and 186.6–302.4 mm over the two experimental growth seasons. The 

P. orientalis (Figure 4b) had four GWC counts, distributed at 0.1–3.9 and 0.3–3.9 mm, 0.2–

2.9 and 0.2–3.0 mm, 0.1–11.3 and 0.1–11.1 mm, and 215.2–313.8 and 170.3–269.0 mm, re-

spectively, over the two growing seasons. Compared to R. pseudoacacia, P. orientalis had 

lower values of GWH and GWA in both growing seasons, while GWL and GWI were higher. 

When looking at the amount of GWCs in both stands during both growing seasons, it was 

found that the amount was greater in 2019 than in 2020. This difference may be due to the 

fact that 2019 received 37.2% more precipitation than 2020. 

For grasses, I. cylindrica (Figure 4c) had day-by-day GWH distributions of 0.3–6.0 and 

0.0–5.3 mm, GWL distributions of 0.1–3.8 and 0.1–2.2 mm, GWI distributions of 0.1–7.6 and 

Figure 4. Number of GWCs and precipitation (P) during the growing season in the four sample plots.
(a–d) represent the number of green water components for the 2019–2020 growing season for the four
vegetation plots of R. pseudoacacia, P. orientalis, I. cylindrica, and M. sativa, respectively.

The main precipitation for the 2019–2020 growing season is concentrated in July–
September, with annual rainfall of 658.4 and 480.0 mm in 2019 and 2020, respectively.
According to Figure 4, the GWCs show a fluctuating trend in all four vegetation sample
plots. From the distribution of GWCs in the growing season of each plot, the amount of
GWH was lower on rainy days, while it was enough to maintain a higher level on rain-free
days following precipitation. In the early growth stage (15 April to 15 May), GWH was
generally smaller than GWL, while in the middle (16 May to 31 August) and late growth
stages (1 September to 15 October), GWH was significantly larger than GWL, which varied
substantially with precipitation, while GWL remained at a lower level and stable values.
The amount of GWI was closely related to the amount of rainfall, and in the early and late
stages of the growing season, there was less rainfall, and the value of GWI was relatively
low. However, the average value in the late growth stage was significantly higher than
that of the early, which may be related to the LAI and canopy density. Moreover, among
the four plots, the GWI of R. pseudoacacia was not only significantly lower than that of P.
orientalis but also lower than that of the two grassland plots under the same rainfall. GWA

of R. pseudoacacia was significantly higher in the early and late growth stages than in the
middle, while the other samples showed small fluctuating changes. From the relationship
of GWA with GWH and GWL, it can be seen that in the mid-growth stage, the expenditure
of GWA was mainly controlled by GWH.

For the R. pseudoacacia plot (Figure 4a), the day-by-day GWH was distributed at
0.4–4.8 and 0.2–5.0 mm, GWL at 0.2–2.1 and 0.1–2.3 mm, GWI at 0.1–5.1 and 0.1–5.3 mm,
and GWA at 214.1–343.7 and 186.6–302.4 mm over the two experimental growth seasons.
The P. orientalis (Figure 4b) had four GWC counts, distributed at 0.1–3.9 and 0.3–3.9 mm,
0.2–2.9 and 0.2–3.0 mm, 0.1–11.3 and 0.1–11.1 mm, and 215.2–313.8 and 170.3–269.0 mm,
respectively, over the two growing seasons. Compared to R. pseudoacacia, P. orientalis had
lower values of GWH and GWA in both growing seasons, while GWL and GWI were higher.
When looking at the amount of GWCs in both stands during both growing seasons, it was
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found that the amount was greater in 2019 than in 2020. This difference may be due to the
fact that 2019 received 37.2% more precipitation than 2020.

For grasses, I. cylindrica (Figure 4c) had day-by-day GWH distributions of 0.3–6.0 and
0.0–5.3 mm, GWL distributions of 0.1–3.8 and 0.1–2.2 mm, GWI distributions of 0.1–7.6
and 0.1–6.7 mm, and GWA distributions of 360.3–474.2 and 267.2–352.8 mm over the two
experimental growing seasons. M. sativa (Figure 4d) had four GWCs quantities distributed
at 0.1–5.3 and 0.2–4.5 mm, 0.1–3.0 and 0.1–1.8 mm, 0.1–10.3 and 0.1–9.9 mm, and 234.4–387.0
and 260.0–361.0 mm, respectively, over two growing seasons. In terms of the mean values,
the GWL and GWA of I. cylindrica in the 2019 growing season were greater than that of
M. sativa, and the GWH and GWI were slightly lower than that of M. sativa. In the 2020
growing season, the GWL of I. cylindrica was still greater than that of M. sativa, while GWA,
GWH, and GWI were lower than that of M. sativa. Comparing the quantities of each GWC
in both I. cylindrica and M. sativa plots separately, it can be found that the quantities of all
three GWCs except GWI were higher in 2019 than in the 2020 growing season, especially in
the GWA of I. cylindrica.

From the data of various GWCs of the four plots, it can be seen that the recharge of
GWA comes from precipitation (the loess is deep enough for groundwater recharge to be
neglected), while the expenditure is controlled by different processes at different stages.
Among the four plots, P. orientalis had the smallest average value of GWA, the highest
interception rate, and too much GWI, which amounted to 30.1% and 36.6% of precipitation.
R. pseudoacacia had the most GWH and the least GWI of the four plots. I. cylindrica had
the most GWA, 28.7% higher than M. sativa, which is also grass, and 56.8% higher than P.
orientalis during the 2019 growing season when precipitation was higher, and may have the
greatest ability to hold water of the four vegetation species. M. sativa had less GWI than P.
orientalis and spent more on GWH than I. cylindrica during the experimental period.

3.3. Green Water Allocation Patterns for Different Vegetation

GW variability is closely related to growth stage and rainfall. Therefore, the growth
season is divided into three stages: early growth (15 April to 15 May), middle growth (16
May to 31 August), and late growth (1 September to 15 October). Rainfall will be divided
into four levels according to size: rain-free days, light rain, moderate rain, and heavy rain
or more, to analyze changes in GWA. The results are shown in Figure 5.

GWA varied with growing season and rainfall at each plot (Figure 5). On rain-free days,
the changes in GWA were negative, and the absolute value of the mean of R. pseudoacacia
was greater than that of P. orientalis in the early and middle growth stages. The range of
the changes in GWA of P. orientalis was greater than that of R. pseudoacacia in the early
growth stage, and then they were close to each other. GWA changes for the grasses were
also all negative, with the absolute value of the mean of the changes being greater for I.
cylindrica than for M. sativa in the early and middle growth stages and less in the late stage.
In terms of the range of changes, I. cylindrica was progressively decreasing, while M. sativa
was increasing.

When the rainfall was light, the change in GWA in the woodland had both positive
and negative values. The change in GWA in both R. pseudoacacia and P. orientalis was close
to zero in the early and middle growth stages; however, the range of GWA in the early
growth stage was greater than that in the middle. I. cylindrica and M. sativa also showed
similar characteristics, except that in the early growth period, M. sativa was significantly
more recharged with GWA than I. cylindrica at the same time due to smaller plant size,
lower transpiration and interception rates, and comparable soil evaporation. Interestingly,
with the exception of M. sativa, GWA recharge was slightly greater in the late growth stage
in other plots than in other stages. After analyzing the rainfall, GWH, and GWL data, it
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was observed that even though the LAI and canopy density were at their highest, the GWA

increased due to the reduced GW expenditures caused by lower temperatures during the
late period and higher and more concentrated rainfall in 2019.
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Figure 5. Variation in available green water storage for each sample plot. (a–h) show the change
in GWA for woodland sample plots (R. pseudoacacia and P. orientalis) and grassland sample plots
(I. cylindrica and M. sativa) for rain-free days, light rain, moderate rain, and heavy rain or more in
the early, middle, and late growing seasons, respectively. Box plots show the median, quartiles, and
possible outliers of the data. The boundaries of the box are the 25th and 75th percentiles, and the box
whisker extends to a range within 1.5 IQR (Interquartile Range). Data points that extend beyond this
range are individually marked on the box plot as potential outliers. Note change in scale for each
rainfall amount.

GWA was replenished after each moderate or heavy rain event. The average increase
in GWA for both woodland and grassland at moderate rainfall levels was early > middle
> late growth stage, with R. pseudoacacia recharging more GWA than P. orientalis in the
woodland. This is because P. orientalis has more GWI than R. pseudoacacia, which directly
reduces the amount of rain reaching the ground. During the grassland growth stages, the
GWA recharge of M. sativa was greater than I. cylindrica, except in the late growth stage.
Even when the rainfall was ≥25 mm, the soil moisture content of R. pseudoacacia was still
higher than that of P. orientalis throughout the entire growth season. In the middle and late
growth stages, the GWA recharge of M. sativa was smaller than that of I. cylindrica.

4. Discussion
4.1. Effects of Different Vegetation Types on Water Conservation Function

The “Grain for Green project” has been proven to be an effective way to improve
the ecological environment in the LP. It has become the consensus of many scholars that
the increase in forest and grass cover effectively reduces soil erosion and curbs land
degradation, especially in the gully areas of the LP [28,29]. However, forests and grasses
also influence the replenishment (rainfall reaching the ground and the physicochemical
properties of the soil) and consumption (evapotranspiration process) of soil moisture by
changing the process of rainfall distribution, and some scholars believe that forests and
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grasses play an important function of water conservation [20,30]. It has also been argued
that the increasing vegetation cover is a “water pump”, leading to the emergence of a
dried soil layer on the LP, which is at risk of intensification, especially in areas of long-term
vegetation restoration [31]. Precipitation is the only source of water recharge in the typical
rain-fed agricultural areas of the LP, and the above controversy should be emphasized even
more in this region.

There is a tightly coupled relationship between GWA and vegetation, with GWA

supporting the growth and development of vegetation, which in turn influences soil water
distribution through its own form and function [32]. Furthermore, GWA is influenced
by a multitude of factors, including climate, vegetation type, tree age, planting density,
and topographical conditions [33]. Based on the study results, we have found that GWCs
exhibit varying behaviors across different growing seasons and vegetation samples. Fur-
thermore, the direct source of evapotranspiration is the soil-stored GW. The variation of
GWA indicates that different vegetation has various GW allocation patterns (Figure 5),
which also represents the difference in the performance of vegetation’s water conservation
function [34]. The consumption of GWA by GWH and GWL varies to a certain extent.
Current studies on soil moisture changes in different vegetation mostly consider multi-year
scales [30]. Due to the differences in the spatial and temporal distribution of precipitation
and the difficulty of long-term high-precision monitoring of GW, related studies have
neglected the effects of the stage of vegetation development and the amount of rainfall on
soil moisture replenishment and expenditure [7]. However, from the results, we can find
that the changes of GWH, GWL, GWA, and GWI of the four typical long-term restoration
vegetation in different growth periods and under different rainfall conditions also show
different characteristics.

This study shows that on rain-free days, GW expenditures were slightly greater for R.
pseudoacacia than for P. orientalis during the growing season, and greater for I. cylindrical
than for M. sativa, except in the late growth stage. When rainfall was light, the water
conservation capacity of R. pseudoacacia was greater than that of P. orientalis, and that of
M. sativa was greater than that of I. cylindrical except in the late growth stage. During
moderate rainfall, the water conservation capacity of R. pseudoacacia was greater than that
of P. orientalis throughout the growth cycle, and the water conservation capacity of M. sativa
was greater than that of I. cylindrica at all times, except in the late growth stage. When
rainfall was heavy or more, R. pseudoacacia still led in the water conservation function, and
M. sativa’s water conservation capacity was lower than that of I. cylindrica, except during
the early growth stage.

In addition, research has shown that tree age is a major factor influencing GWA under
similar standards and climate [33]. For R. pseudoacacia, the variation in GWA among saplings
aged 5 to 10 years is significantly smaller compared to those of other age groups [35]. With
the increase in planting duration, the degree of variation in GWA across different soil layers
in R. pseudoacacia and P. orientalis becomes significantly more pronounced. This is attributed
to the more extensive development of their root systems as the vegetation matures. When
water availability is abundant, R. pseudoacacia and P. orientalis preferentially utilize the
soil moisture within the 0–100 cm layer. R. pseudoacacia aged 0–20 years have the most
significant impact on soil moisture in the 0–100 cm layer, which aligns with the findings of
this study. In response to variations in rainfall, R. pseudoacacia and P. orientalis exhibit high
sensitivity and are able to promptly adjust their water absorption depths. The changes
in GWA observed in this study further corroborate this point. Reference [35] pointed out
that when the tree age exceeds 20 years, with canopy density remaining unchanged, the
overall growth and health status of R. pseudoacacia continues to decline due to water stress,
implying a deterioration of its ecological functions over time. According to the results
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(Figure 3c), when water demand increases or water availability decreases, the response
degree of GWA within the 100–200 cm soil layer intensifies. Reference [36] discovered that
the daily average transpiration rate of 30-year-old R. pseudoacacia in their study was lower
than that of other broadleaf species, manifesting as canopy wilting and slow growth. The
primary cause of this phenomenon was severe soil water stress. However, based on the
soil water content threshold for defining water stress (SWC < 10%) according to the dried
soil layer classification method [37], the 30-year-old R. pseudoacacia in this study did not
experience water stress during the two growing seasons (Figure 3). This may be attributed
to the relatively adequate water availability during these periods, with 2019 being a wet
year and 2020 being a normal water year. After conducting an in-depth analysis of the
reasons for the aforementioned differences, we should point out that they are attributable
to the distinct study areas and their complex environmental conditions. Research has
indicated that planting R. pseudoacacia can have a negative impact on local soil moisture
when the precipitation is below 600 mm [31]. However, even so, both this study and other
scholars’ research have found that 30-year-old R. pseudoacacia and P. orientalis exhibit strong
drought adaptability through their flexible water-use strategies.

This study revealed that, for grasslands, artificial M. sativa had higher expenditures
of both GWH and GWI than natural I. cylindrica grasslands during normal water years.
In contrast, during wet years, I. cylindrica exhibited greater GW expenditure and storage
than M. sativa, owing to their lower interception. The study results demonstrate that I.
cylindrica exhibits more sensitive water use efficiency and stronger drought adaptation
capabilities compared to M. sativa, which is also supported by the findings of [19]. This
advantage is associated with I. cylindrica being a perennial herbaceous plant that maintains
a well-developed root system, whereas M. sativa, due to annual harvesting, does not
possess this trait. When comparing long-term restored artificial forests (including R.
pseudoacacia and P. orientalis) with natural grassland dominated by I. cylindrica, the latter
significantly outperforms in water conservation. Scholars who have conducted research
from this perspective have also affirmed water conservation capabilities of adopting entirely
natural grassland for restoration [22]. However, based on our research findings and
field observations, the vertical stratification height and the reduction in rainfall energy
in forestlands are unparalleled by natural grasslands. When rainfall intensity reaches
moderate or heavier levels, natural grasslands will be inverted, which decreases surface
roughness and increases soil and water loss. Although recovery occurs over time, the water
retention capacity is evidently reduced. Therefore, maintaining a proper balance between
planted woodlands and natural grasslands is a more reasonable solution.

4.2. Effects of Vegetation Type and Regulatory Factors on GW Utilization Efficiency

The expenditure for GW storage includes GWH and GWL [38,39]. The quantities of
both are mainly regulated by the demand for evapotranspiration (temperature, wind speed,
saturation atmospheric pressure difference, etc.) and the supply of water (GW storage),
which, for the demand side, can usually be expressed as a composite indicator of potential
evapotranspiration (ET0) [23]. Since demand and supply often act simultaneously on GWL

expenditures, researchers still have controversy about the extent to which each contributes
to GWH and GWL [40,41]. However, there is a consensus that evapotranspiration (ET) is
driven by ET0 and limited by GWA [13,42]. GWH is essential for vegetation development
and, together with GWL, represents a key link in the terrestrial water cycle and energy
balance, and globally accounts for more than 60% of ET in terrestrial ecosystems [43]. In
contrast, GWL is considered to have limited ecological improvement, and water managers
would like to transform it more into GWH, which can be achieved through an appropriate
restoration of vegetation [44].
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Based on the GWH and GWL results for different plots, as shown in Figure 3, there
is evident variation in the conversion capacity. Therefore, it is necessary to determine
which plant is more efficient in converting under conditions of evaporative demand and
water-supply constraints. According to [37], plant growth and development will begin to
be limited when soil moisture content is below 10%. Based on the results of our study, it
was found that none of the four sample plots experienced water supply limitations during
two growing seasons, except for a few days when the average soil moisture content of P.
orientalis briefly fell below 10%. The GW amount in the four plots is mainly influenced by
ET0 and variations in their conversion capacity. Their relationship is illustrated in Figure 6.

We found that the correlation coefficients of GWH and GWL with ET0 are greater than
0.9, which indicates they fit very well, and the fit curve is expected to provide a reference
for predicting future GWH and GWL transformations. GWH and GWL increased with the
increase in ET0 in both the 2019 and 2020 growing seasons, and the rate of rise of GWH

was greater than that of GWL. This is also closely related to increased rainfall, which
has been demonstrated in arid and semi-arid regions such as Italy and the Hulunbeier
Grasslands [45,46]. Based on the slopes of the fitted lines, it can be seen that in both growing
seasons, R. pseudoacacia had the fastest rate of increase in GWH, followed by M. sativa. In
contrast, P. orientalis had the slowest rate of increase in 2019, while I. cylindrica showed the
slowest rate in 2020. Both sides of the intersection of the fitted lines indicate that GWH

and GWL are differentially dominant when ET demand is low. Then, the intersection
point is the threshold for the transition of dominance between GWH and GWL. Across
the two growing seasons, the conversion thresholds for GWH and GWL dominance for
R. pseudoacacia were 75.1 and 40.4 mm, respectively. For P. orientalis, the threshold was
108.4 mm in 2019 (note that in 2020, P. orientalis consistently had more GWH than GWL,
which may be related to the fact that P. orientalis is an evergreen plant, so no clear threshold
was observed). For I. cylindrica, the thresholds were 157.8 and 283.1 mm; for M. sativa, they
were 100.4 and 177.0 mm, respectively.

From the thresholds (Figure 6), it is easy to find that for woodland in 2020, when
plant growth and development were limited not by moisture but by the drier and hotter
conditions (with precipitation being less in the 2020 growing season than in 2019 and ET0

greater than in 2019), the time at which GWH dominated GW expenditure was significantly
earlier. Woodland may be able to use as much of the limited water as possible by regulating
its own growth and development to minimize inefficient consumption [47]. This adjustment
ability is clearly ahead of other vegetation. Grasslands opted for a different strategy. Drier
and hotter conditions in the early growth stage slow down the development of I. cylindrica
and M. sativa, which results in more GWA being dissipated as GWL. This condition
continued until the mid-growth stage. Comparing the two grasses, I. cylindrica has more
room for improvement in its ability to convert GWH, but that may be the secret to its ability
to be a natural grass species.

In summary, woodland demonstrated significantly superior efficiency in GW utiliza-
tion compared to grassland, further corroborating its greater resilience to climate change,
with R. pseudoacacia showing the best overall performance. However, P. orientalis is likely
to be more suitable when moisture is limited due to its lower GW expenditures and sta-
ble, efficient GW use. I. cylindrica and M. sativa, as typical representatives of natural and
artificial grassland, respectively, can only passively adapt to the natural environment. The
proportion of GWL will likely continue to expand as moisture is further reduced, but the
total GW expenditure is less than for woodland.
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Figure 6. Cumulative plots of GWH, GWL, and potential evapotranspiration. (a,c,e,g) and (b,d,f,h) are
plots for R. pseudoacacia, P. orientalis, I. cylindrica, and M. sativa for the 2019 and 2020 growing seasons,
respectively. Cumulative values in the plots were recorded every five days, and the intersection of
the two fitted lines in the plots represents the point at which the cumulative values of GWH and GWL

are equal in magnitude as ET0 increases.
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4.3. Recommendations for Optimizing Vegetation for GW Management

The results of GWCs (Figure 4) show that during precipitation recharge to GW, the
interception of vegetation canopy resulted in the production of more GWI, which reduces
the recharge of GWA. P. orientalis had the most GWI in the woodland, with 198.4 and
175.5 mm in the 2019 and 2020 growing seasons, totaling 69.2% more than R. pseudoacacia
for the same rainfall. M. sativa had the most GWI in the grassland, with 177.9 and 161.1 mm,
totaling 5.3% more than I. cylindrica (Figure 7). The production of GWI reduces the actual
amount of rain reaching the ground and the effective replenishment of GWA, resulting in
an unproductive loss of GW resources [48,49]. However, GWI retained by vegetation also
weakens rainfall’s impact on the ground and prevents soil erosion [50,51]. So, how can we
maximize the reduction in GWI without weakening its function in preventing soil erosion?
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sample plot).

In the rain-fed agriculture area of the LP, precipitation is the most important factor
affecting interception, followed by LAI; the rest have little effect [52]. Therefore, a reason-
able solution to reduce GWI is expected to be found by exploring how rainfall and LAI
affect GWI. Based on the measured LAI of P. orientalis and M. sativa samples in the growing
season and the results of field rainfall interception, the relationship established is shown in
Figure 7.

By observing Figure 6a,b, it can be inferred that the amount of GWI of P. orientalis and
M. sativa is directly proportional to rainfall and LAI. The interception generally shows a
linear increasing trend from the lower left to the upper right corner. However, it should be
noted that when the rainfall is greater than 10 mm, the effect of LAI on the amount of GWI

changes under different rainfall conditions. As rainfall continues to increase, the effect of
LAI on interception also seems to increase. Under the same rainfall situation, although
the LAI of M. sativa is greater than that of P. orientalis, the GWI is lower in M. sativa than
in P. orientalis. This is due to the fact that P. orientalis, being an evergreen coniferous forest
species with greater canopy thickness than M. sativa and R. pseudoacacia, offers greater
resistance to rainfall penetration and is thus able to intercept more rainfall.

To investigate whether the effect of LAI on GWI consistently grows across various
rainfall classes, this study categorized the daily rainfall into four groups: light rain, mod-
erate rain, heavy rain, and rainstorm (as depicted in Figure 7). Multiple linear regression
analyses were performed, and the findings are presented in Table 4.

It can be seen from the t-values of each of P and LAI and the coefficients of the
regression equations that the degree of P influence on GWI was greater than that of LAI,
which is the same as the results of the study by [22] findings. Categorizing the rainfall, it
was found that P and LAI had a significant effect on GWI (p > 0.01). The effect of P on
GWI was greatest when the rainfall level was “light rain”. When P was above moderate
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rainfall, the t-value showed that the effect of P on GWI was decreasing. Meanwhile, the
effect of LAI continued to increase, especially in the case of heavy rainfall and rainstorms,
where the t-value was more than three times that of light rainfall, and LAI had the greatest
effect on GWI. The results of the regression coefficients show that every 12% increase in
LAI can increase GWI by 1 mm, while rainfall only needs to increase by 8% to achieve the
same effect. Obviously, the effect of P on the amount of GWI remains the greatest for the
M. sativa sample plot. Similarly, from the t-values, it can be observed that the effect of LAI
on GWI continued to increase with the increase in rainfall level. When the rainfall level
reached heavy rainfall, LAI also became the most influential factor of GWI.

Table 4. Multiple linear regression analysis results of GWI, rainfall, and LAI.

Plot Precipitation Level Regression Equation R2
t

P LAI Constant

P. orientalis

Light rain GWI = 0.380 P + 0.484 LAI − 1.216 0.98 30.635 ** 16.223 ** −10.397 **
Moderate rain GWI = 0.170 P + 1.096 LAI − 1.599 0.96 14.620 ** 23.240 ** −5.409 **

Heavy rain and rainstorm GWI = 0.057 P + 1.724 LAI − 1.145 0.99 15.129 ** 57.924 ** −10.676 **
Whole GWI = 0.164 P + 0.940 LAI − 1.629 0.89 21.317 ** 11.704 ** −4.661 **

M. sativa

Light rain GWI = 0.325 P + 0.339 LAI − 0.794 0.92 12.273 ** 13.171 ** −4.607 **
Moderate rain GWI = 0.121 P + 0.777 LAI − 1.072 0.95 6.094 ** 21.849 ** −2.610 *

Heavy rain and rainstorm GWI = 0.034 P + 1.137 LAI − 0.635 0.99 4.418 ** 38.917 ** −2.640 *
Whole GWI = 0.125 P + 0.592 LAI − 0.860 0.84 13.681 ** 14.491 ** −3.180 **

Note: “**” indicates passing F0.01 significance test, and “*” indicates passing F0.05 significance test.

Combining the results of the above analyses with rainfall and vegetation monitoring
data, we find that in the early growth stage, when the vegetation is less developed and
rainfall is low, there is less GWI to intervene. In the middle and late growth stages, the total
rainfall and LAI increased significantly, and the amount of GWI increased, which is also a
frequent period of soil erosion and should be the main period to reduce GWI [48]. Rainfall
is the most important factor causing soil erosion, but not all rainfall produces erosion, and
the rainfall threshold for producing soil erosion varies in different areas [53]. In the NXHG
Basin, the rainfall threshold for erosion is 21.0 mm for woodlands and 23.7 mm for M.
sativa [53]. The monitoring data showed that the rainfall type of the 2019–2020 growing
season in the NXHG Basin was mainly light and moderate rainfall, which accounted for
88.2% of the total number of rainfall events, and the maximum of moderate rainfall was
24.9 mm/24 h. This rainfall value should then be the boundary condition for balancing the
reduction in GWI and the prevention of erosion.

Then, considering the rainfall threshold for soil erosion, the LAI should be reduced to
ensure that P. orientalis and M. sativa maintain a minimum interception capacity of 4 mm
and 1.3 mm, respectively, at a rainfall of 24.9 mm. Since GWI with P and LAI are positively
correlated, we can assume that LAI at this level is the optimal value for P. orientalis and M.
sativa to achieve the minimum GWI and soil conservation balance under light and moderate
rainfall. It should be noted that reducing the LAI by manual pruning requires that the
pruned branches and leaves be covered to the ground [54,55], so the rainfall threshold for
sediment production of the sample plots will not be reduced to ensure the reliability of
the study.

To determine the appropriate value for which the LAI can be reduced, the above
rainfall and different LAI were input into the model for trial calculations. The initial
conditions were set to the soil moisture content on June 1, and the rest of the settings were
the same as in the previous section. The model’s output shows that the LAI of P. orientalis
and M. sativa should be trimmed to 2.1 and 1.0 m2·m−2, respectively.
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5. Conclusions
We conducted field experiments and simulations to study the GW heterogeneity of

four typical long-term restored vegetation types on the Loess Plateau. The main conclusions
are as follows:

For forestland, compared to R. pseudoacacia, P. orientalis had lower values of GWH

and GWA in both growing seasons, while GWL and GWI were higher. For grassland,
compared with M. sativa, overall, I. cylindrica had more GWL but less GWH, GWA, and
GWI. Combined with the GWCs data, it can be seen that P. orientalis and M. sativa should
be preferred for local vegetation restoration in terms of reducing GWA consumption on
rain-free days, and R. pseudoacacia and I. cylindrica are more recommended in terms of
their water conservation function on rainy days. Across the two growing seasons, the
conversion thresholds of ET0 for GWL to GWH dominance for R. pseudoacacia were 75.1
and 40.4 mm, respectively. For P. orientalis, the threshold was 108.4 mm in 2019 (note
that in 2020, P. orientalis consistently had more GWH than GWL, which may be related to
the fact that P. orientalis is an evergreen plant, so no clear threshold was observed). For
I. cylindrica, the thresholds were 157.8 and 283.1 mm; for M. sativa, they were 100.4 and
177.0 mm, respectively.

We are convinced that detailed field observations, combined with GW numerical
modeling, can identify the consequences of changes in climatic parameters and vegetation
species, which can be used to devise appropriate soil and water conservation strategies and
improve water management in water-limited areas.
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