
Academic Editor: Riccardo Lo Bianco

Received: 16 December 2024

Revised: 10 January 2025

Accepted: 23 January 2025

Published: 25 January 2025

Citation: Wang, M.; Li, F. Real-Time

Accurate Apple Detection Based on

Improved YOLOv8n in Complex

Natural Environments. Plants 2025, 14,

365. https://doi.org/10.3390/

plants14030365

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Real-Time Accurate Apple Detection Based on Improved
YOLOv8n in Complex Natural Environments
Mingjie Wang 1,2 and Fuzhong Li 3,*

1 College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China;
wangmj1@163.com

2 College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
3 College of Software, Shanxi Agricultural University, Jinzhong 030801, China
* Correspondence: lifuzhong@sxau.edu.cn

Abstract: Efficient and accurate apple detection is crucial for the operation of apple-
picking robots. To improve detection accuracy and speed, we propose a lightweight
apple-detection model based on the YOLOv8n framework. The proposed model intro-
duces a novel Self-Calibrated Coordinate (SCC) attention module, which enhances feature
extraction, especially for partially occluded apples, by effectively capturing spatial and
channel information. Additionally, we replace the C2f module within the YOLOv8n neck
with a Partial Convolution Module improved with Reparameterization (PCMR), which ac-
celerates detection, reduces redundant computations, and minimizes both parameter count
and memory access during inference. To further optimize the model, we fuse multi-scale
features from the second and third pyramid levels of the backbone architecture, achieving
a lightweight design suitable for real-time detection. To address missed detections and
misclassifications, Polynomial Loss (PolyLoss) is integrated, enhancing class discrimination
for different apple subcategories. Compared to the original YOLOv8n, the improved model
increases the mAP by 2.90% to 88.90% and improves the detection speed to 220 FPS, which
is 30.55% faster. Additionally, it reduces the parameter count by 89.36% and the FLOPs by
2.47%. Experimental results demonstrate that the proposed model outperforms mainstream
object-detection algorithms, including Faster R-CNN, RetinaNet, SSD, RT-DETR-R18, RT-
DETR-R34, YOLOv5n, YOLOv6-N, YOLOv7-tiny, YOLOv8n, YOLOv9-T and YOLOv11n,
in both mAP and detection speed. Notably, the improved model has been used to develop
an Android application deployed on the iQOO Neo6 SE smartphone, achieving a 40 FPS
detection speed, a 26.93% improvement over the corresponding deployment of YOLOv8n,
enabling real-time apple detection. This study provides a valuable reference for designing
efficient and lightweight detection models for resource-constrained apple-picking robots.

Keywords: apple; lightweight architecture; real-time detection; Android deployment; YOLOv8

1. Introduction
Apple is one of the most widely cultivated fruits globally, with production reaching

95.83 million tons in 2022. China leads apple production, contributing 47.57 million
tons [1]. In China, the apple industry provides a stable source of income for farmers and
promotes the development of related processing industries. However, harvesting, a critical
component of apple production, remains predominantly manual. As labor shortages
intensify, the apple industry faces increasing challenges, driving a surge of interest in
automating the harvesting process using mechanical picking devices.

Plants 2025, 14, 365 https://doi.org/10.3390/plants14030365

https://doi.org/10.3390/plants14030365
https://doi.org/10.3390/plants14030365
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants14030365
https://www.mdpi.com/article/10.3390/plants14030365?type=check_update&version=1


Plants 2025, 14, 365 2 of 24

Among the key enabling technologies for automated harvesting are visual algorithms,
which have attracted growing research attention. Traditional machine vision methods
often rely on manually extracted features such as texture, color, and shape for visual
inspection [2–4]. However, these approaches are limited by human cognition, extracting
insufficient features in complex orchard environments. As a result, they often suffer from
low recognition accuracy and poor robustness, making them unsuitable for real-world fruit
harvesting scenarios.

Deep learning has been widely adopted for agricultural perception tasks, attributed
to its ability to automatically learn salient features from objects [5,6]. Compared to tradi-
tional machine learning algorithms, deep learning exhibits higher accuracy and stronger
robustness for object detection in complex agricultural environments.

Object-detection models based on deep learning can be categorized into two main
architectures: Convolutional Neural Networks (CNNs) and transformer-based structures.
Models such as DETR [7] and RT-DETR [8], which utilize transformer structures, employ
the self-attention mechanism to capture relationships between different regions in an image,
enabling more accurate object detection. However, these transformer-based models often
suffer from slow convergence during training and lengthy inference times, limiting their
practicality in time-sensitive agricultural tasks.

CNN-based object-detection models primarily consist of SSD [9], Faster R-CNN [10],
RetinaNet [11], and the YOLO series [12–16]. These CNN-based models typically converge
more quickly and can achieve higher accuracy than transformer-based object-detection
models when only a small data set is available for training.

Over the past few years, many scholars have applied CNN-based object-detection
models to fruit detection [17,18]. For instance, Apolo-Apolo et al. [19] employed the two-
stage Faster R-CNN [10] for citrus detection. This network was also utilized for multi-class
apple occlusion detection in dense-foliage fruiting-wall trees, successfully identifying four
classes of apples: non-occluded, leaf-occluded, branch/wire-occluded, and fruit-occluded,
with average precisions of 90.9%, 89.9%, 85.8%, and 84.8%, respectively [20].

One-stage object-detection models, such as the YOLO series, offer faster detection
speeds compared to two-stage networks while maintaining a balance between accuracy
and speed, making them highly suitable for deployment in agricultural equipment. Wang
et al. [21] developed an improved YOLOv8s for tomato detection and segmentation, enhanc-
ing accuracy across tomatoes at varying ripeness levels. Zhang et al. [22] achieved tomato
visual detection and 3D pose estimation using the YOLOv5 framework. Hu et al. [23]
integrated self-attention mechanisms from visual transformers into YOLOv7 and com-
bined it with a multi-target tracking method using Kalman filtering and predictive motion
trajectories. This integration improved mAP by 4% and the F1 score by 0.02 for apple
orchard fruit detection and counting. Zhang et al. [24] designed a module combining
multi-level channel and spatial attention mechanisms within the YOLOv3 framework for
orange detection, achieving a mAP of 95.7%. Suo et al. [25] compared the performance of
YOLOv3 and YOLOv4 for multi-category kiwifruit detection. They found that YOLOv4
achieved the highest accuracy for occlusion detection across five categories, reaching 91.9%.

Despite their effectiveness, many object-detection models face challenges such as high
computational costs, large model sizes, and numerous parameters. To address these issues,
researchers have explored lightweight improvements to existing models. Yu et al. [26]
proposed the SOD-YOLOv5n model for winter jujube detection, improving accuracy by
2.40% while reducing the model size by 16.51% through structural adjustments to YOLOv5n.
Lu et al. [27] improved the YOLOv5s model for green citrus detection in real environments
by enhancing spatial and channel representations through feature weighting and fusing
local and global information. This approach reduced the model size by 8.82% and the



Plants 2025, 14, 365 3 of 24

parameter count by 9.6% while improving accuracy by 1.5%. Zhao et al. [28] introduced
a lightweight YOLO-GP architecture for the simultaneous detection of grapes and their
picking points. By employing ghosting bottlenecks in the model architecture, they reduced
the model’s parameter count by 10% compared to YOLOv4, achieving a mAP of 93.27%.
Wang et al. [29] enhanced the YOLOv5s model for lychee recognition by introducing an
attention mechanism and optimizing the underlying feature extractor. These modifications
resulted in a 3.5% increase in mAP and a 62.77% reduction in model size.

While these methods effectively reduce model size and parameter count, they do
not always lead to a direct reduction in detection latency. Improvements that reduce the
parameter count and computational requirements may inadvertently increase memory
access, which can slow down detection processes [30], thereby contradicting the initial
purpose of lightweight improvements.

Researchers have conducted extensive studies on apple detection using deep learning-
based algorithms. Wu et al. [31] proposed a lightweight apple-detection model, DNE-
YOLO, based on YOLOv8. The model’s attention to apples was enhanced by introducing
the CBAM attention mechanism, and the number of parameters was reduced using GSConv.
Experimental results show that DNE-YOLO achieves an average accuracy of 94.3%. Wang
et al. [32] improved the detection accuracy of small targets, such as apple fruits, by enhanc-
ing the RFA module, the DFP module, and the Soft–NMS algorithm, and incorporating
them into YOLOv5s. Their model showed improvements of 3.6%, 6.8%, and 6.1% in preci-
sion, recall, and mAP, respectively. To enhance the detection precision of occluded apples,
Wu et al. [33] introduced the SPD-Conv module into YOLOv8n. They also integrated the
GAM global attention mechanism to improve the recognition of occluded targets, and
optimized target frame regression using the Wise–IoU loss function. Experimental results
demonstrated a detection accuracy of 75.9% and a detection speed of 44.37 FPS. Fu et al. [34]
further improved detection by introducing the Diverse Branch Block (DBB), the SE attention
mechanism, and the proposed Normalized Wasserstein Distance (NWD) loss function into
YOLOv10. This led to improvements of 3.1%, 2.2%, and 3.0% in precision, recall, and
average precision, respectively, resulting in a final accuracy of 89.3%, recall of 89.8%, and
mAP of 92.8%. While these methods have significantly improved apple-detection accuracy,
they are primarily designed for desktop computers. Research on apple-detection models
optimized for mobile device deployment remains limited.

To address these challenges, this study proposes a novel apple-detection model
based on a lightweight YOLOv8n architecture. The proposed model enhances detec-
tion speed and accuracy in orchard environments, making it particularly suitable for
resource-constrained devices.

The primary contributions of this paper are as follows:

(1) An SCC attention module is developed to enhance the YOLOv8n model’s ability to
detect occluded apples by effectively extracting relevant features. The performance of
this module is rigorously compared with other attention mechanisms.

(2) A PCMR module is proposed to replace the C2f module in the YOLOv8n neck,
reducing redundant computations, parameter count, and memory access during
forward prediction.

(3) Features from the second and third levels of the backbone architecture are used for
multi-scale information fusion, reducing computational costs and improving detection
speed. Additionally, PolyLoss is used instead of cross-entropy loss to better adapt
the model to apple-detection tasks, significantly reducing the misidentification rate
for subcategories.

(4) The robustness of the proposed model is evaluated in unstructured orchard environ-
ments, and its performance is compared with other representative object-detection



Plants 2025, 14, 365 4 of 24

models. Furthermore, an Android application is developed to deploy the model on a
smartphone, enabling real-time apple detection in an orchard environment.

2. Materials and Methods
2.1. Preparation of the Data Set

The images used in this study were collected from an apple orchard located in Taigu
District, Jinzhong City, Shanxi Province, as shown in Figure 1a. The spacing between rows
of apple trees in the orchard was 4 m, and the distance between apple trees in a row was
3.4 m. Images were collected in September 2019 and September 2022, specifically during
the periods of 10:00 a.m. to 12:00 p.m. and 4:00 p.m. to 7:00 p.m. The acquisition device
was a Redmi Note 7 smartphone, and the distance of the smartphone from the apples was
within the range of 0.3–1.5 m, as depicted in Figure 1b. The images were acquired under
various lighting conditions, including direct light, side light, diffuse light, backlight, and
low light. Notably, some apples within these images were partially occluded by branches,
leaves, or adjacent apples. To accelerate the training process of the YOLOv8n model, the
images were compressed to a resolution of 640×640 pixels, totaling 1215 images, some of
which are shown in Figure 2.

Plants 2025, 14, x FOR PEER REVIEW 4 of 25 
 

 

adapt the model to apple-detection tasks, significantly reducing the misidentification 
rate for subcategories. 

(4) The robustness of the proposed model is evaluated in unstructured orchard environ-
ments, and its performance is compared with other representative object-detection 
models. Furthermore, an Android application is developed to deploy the model on a 
smartphone, enabling real-time apple detection in an orchard environment. 

2. Materials and Methods 
2.1. Preparation of the Data Set 

The images used in this study were collected from an apple orchard located in Taigu 
District, Jinzhong City, Shanxi Province, as shown in Figure 1a. The spacing between rows 
of apple trees in the orchard was 4 m, and the distance between apple trees in a row was 
3.4 m. Images were collected in September 2019 and September 2022, specifically during 
the periods of 10:00 a.m. to 12:00 p.m. and 4:00 p.m. to 7:00 p.m. The acquisition device 
was a Redmi Note 7 smartphone, and the distance of the smartphone from the apples was 
within the range of 0.3–1.5 m, as depicted in Figure 1b. The images were acquired under 
various lighting conditions, including direct light, side light, diffuse light, backlight, and 
low light. Notably, some apples within these images were partially occluded by branches, 
leaves, or adjacent apples. To accelerate the training process of the YOLOv8n model, the 
images were compressed to a resolution of 640×640 pixels, totaling 1215 images, some of 
which are shown in Figure 2. 

  

(a) (b) 

Figure 1. Schematic diagram of apple image acquisition. (a) Apple data-acquisition area; (b) Apple 
data set acquisition. 

 

Figure 2. Sample of apples collected under different lighting conditions. (a) Direct light; (b) Side 
light; (c) Diffuse light; (d) Backlight; (e) Low light. 

Figure 1. Schematic diagram of apple image acquisition. (a) Apple data-acquisition area; (b) Apple
data set acquisition.

Plants 2025, 14, x FOR PEER REVIEW 4 of 25 
 

 

adapt the model to apple-detection tasks, significantly reducing the misidentification 
rate for subcategories. 

(4) The robustness of the proposed model is evaluated in unstructured orchard environ-
ments, and its performance is compared with other representative object-detection 
models. Furthermore, an Android application is developed to deploy the model on a 
smartphone, enabling real-time apple detection in an orchard environment. 

2. Materials and Methods 
2.1. Preparation of the Data Set 

The images used in this study were collected from an apple orchard located in Taigu 
District, Jinzhong City, Shanxi Province, as shown in Figure 1a. The spacing between rows 
of apple trees in the orchard was 4 m, and the distance between apple trees in a row was 
3.4 m. Images were collected in September 2019 and September 2022, specifically during 
the periods of 10:00 a.m. to 12:00 p.m. and 4:00 p.m. to 7:00 p.m. The acquisition device 
was a Redmi Note 7 smartphone, and the distance of the smartphone from the apples was 
within the range of 0.3–1.5 m, as depicted in Figure 1b. The images were acquired under 
various lighting conditions, including direct light, side light, diffuse light, backlight, and 
low light. Notably, some apples within these images were partially occluded by branches, 
leaves, or adjacent apples. To accelerate the training process of the YOLOv8n model, the 
images were compressed to a resolution of 640×640 pixels, totaling 1215 images, some of 
which are shown in Figure 2. 

  

(a) (b) 

Figure 1. Schematic diagram of apple image acquisition. (a) Apple data-acquisition area; (b) Apple 
data set acquisition. 

 

Figure 2. Sample of apples collected under different lighting conditions. (a) Direct light; (b) Side 
light; (c) Diffuse light; (d) Backlight; (e) Low light. 

Figure 2. Sample of apples collected under different lighting conditions. (a) Direct light; (b) Side
light; (c) Diffuse light; (d) Backlight; (e) Low light.



Plants 2025, 14, 365 5 of 24

The apples in the collected images were labeled with their locations and categories
using the LabelImg 1.8.1 software. The labeling process involved marking rectangular
boxes around the periphery of each visible apple in the collected images, and the category
aspect considered the different impacts of occlusion by branches, leaves, or other apples on
the picking robot [20]. The apples were classified into four categories: NO (no occlusion),
OL (occluded by leaves), OF (occluded by other fruits), and OB (occluded by branches), as
illustrated in Figure 3. It is worth noting that if more than one type of occlusion occurred
for the same apple, the apple was labeled as OB if the occlusion type included branch
occlusion; otherwise, the apple was labeled as OF. The labeled images were divided into
three sets: training set, validation set, and test set, with a 7:1:2 ratio. The number of images
in the training set was 851, and the number of fruits that belonged to each category (NO,
OL, OF, and OB) were 4969, 3190, 1069, and 2808, respectively. The number of images in
the validation set was 121, and the number of fruits containing NO, OL, OF, and OB were
641, 322, 171, and 429, respectively. The number of images in the test set was 243, and the
number of fruits containing NO, OL, OF, and OB were 1191, 870, 343, and 705, respectively.

Plants 2025, 14, x FOR PEER REVIEW 5 of 25 
 

 

The apples in the collected images were labeled with their locations and categories 
using the LabelImg 1.8.1 software. The labeling process involved marking rectangular 
boxes around the periphery of each visible apple in the collected images, and the category 
aspect considered the different impacts of occlusion by branches, leaves, or other apples 
on the picking robot [20]. The apples were classified into four categories: NO (no occlu-
sion), OL (occluded by leaves), OF (occluded by other fruits), and OB (occluded by 
branches), as illustrated in Figure 3. It is worth noting that if more than one type of occlu-
sion occurred for the same apple, the apple was labeled as OB if the occlusion type in-
cluded branch occlusion; otherwise, the apple was labeled as OF. The labeled images were 
divided into three sets: training set, validation set, and test set, with a 7:1:2 ratio. The num-
ber of images in the training set was 851, and the number of fruits that belonged to each 
category (NO, OL, OF, and OB) were 4969, 3190, 1069, and 2808, respectively. The number 
of images in the validation set was 121, and the number of fruits containing NO, OL, OF, 
and OB were 641, 322, 171, and 429, respectively. The number of images in the test set was 
243, and the number of fruits containing NO, OL, OF, and OB were 1191, 870, 343, and 
705, respectively. 

 

Figure 3. Display of apple data set annotation results. NO, OL, OF, and OB denote apples with no 
occlusion, occluded by leaves, occluded by other fruits, and occluded by branches, respectively. 

To prevent overfitting and enhance the model’s robustness, tools such as OpenCV 
were used to perform five types of data augmentation randomly on the images in the 
training set, including adjusting the HSV color space, translation transformations, scaling, 
image flipping, and mosaic operations. The maximum adjustment ratios for Hue, Satura-
tion, and Value in the HSV color space were 0.015, 0.5, and 0.3, respectively; the maximum 
ratios for image translation and scaling were 0.1 and 0.4, respectively; the probability of 
image left-right flipping was 0.5; and four images were randomly selected for mosaic en-
hancement. Samples of the data augmentation are shown in Figure 4. It is worth noting 
that no data augmentation technique was applied to the validation and test sets. After 
employing data augmentation, the number of images in the training set increased to 2310, 
and the number of fruits containing NO, OL, OF, and OB were 11,502, 6767, 2518, and 
5631, respectively. The detailed composition of the data set is shown in Table 1. 

Figure 3. Display of apple data set annotation results. NO, OL, OF, and OB denote apples with no
occlusion, occluded by leaves, occluded by other fruits, and occluded by branches, respectively.

To prevent overfitting and enhance the model’s robustness, tools such as OpenCV were
used to perform five types of data augmentation randomly on the images in the training
set, including adjusting the HSV color space, translation transformations, scaling, image
flipping, and mosaic operations. The maximum adjustment ratios for Hue, Saturation,
and Value in the HSV color space were 0.015, 0.5, and 0.3, respectively; the maximum
ratios for image translation and scaling were 0.1 and 0.4, respectively; the probability of
image left-right flipping was 0.5; and four images were randomly selected for mosaic
enhancement. Samples of the data augmentation are shown in Figure 4. It is worth noting
that no data augmentation technique was applied to the validation and test sets. After
employing data augmentation, the number of images in the training set increased to 2310,
and the number of fruits containing NO, OL, OF, and OB were 11,502, 6767, 2518, and 5631,
respectively. The detailed composition of the data set is shown in Table 1.



Plants 2025, 14, 365 6 of 24Plants 2025, 14, x FOR PEER REVIEW 6 of 25 
 

 

  

 

(a) (b) (c) 
   

(d) (e) (f) 

Figure 4. Image data augmentation. (a) Original image; (b) Random HSV adjust; (c) Random trans-
lation transformations; (d) Random Scaling; (e) Image flipping; (f) Random mosaic. 

Table 1. Distribution of data set. 

Dataset Category Image NO OL OF OB Augmented 
Training set 2310 11,502 6767 2518 5631 √ 

Validation set 121 641 322 171 429 × 
Test set 243 1191 870 343 705 × 

2.2. Overview of the YOLOv8n Model 

YOLOv8 is an advanced one-stage object-detection model that predicts both the cat-
egory and location of objects directly within images. It incorporates design ideas from 
ELAN (Efficient Layer Aggregation Network) in YOLOv7 and the decoupled head from 
YOLOv6, building on the foundation of YOLOv5. Furthermore, YOLOv8 introduces a 
novel backbone architecture and an innovative anchor-free detection head. The YOLOv8 
family comprises five sub-models: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 
YOLOv8x. To achieve faster apple detection with a smaller model size and lower compu-
tational requirements, YOLOv8n was selected as the benchmark model. The structure of 
YOLOv8n consists of four parts: the backbone, the neck, the head, and the loss function, 
as illustrated in Figure 5. 

Figure 4. Image data augmentation. (a) Original image; (b) Random HSV adjust; (c) Random
translation transformations; (d) Random Scaling; (e) Image flipping; (f) Random mosaic.

Table 1. Distribution of data set.

Dataset Category Image NO OL OF OB Augmented

Training set 2310 11,502 6767 2518 5631
√

Validation set 121 641 322 171 429 ×
Test set 243 1191 870 343 705 ×

2.2. Overview of the YOLOv8n Model

YOLOv8 is an advanced one-stage object-detection model that predicts both the
category and location of objects directly within images. It incorporates design ideas from
ELAN (Efficient Layer Aggregation Network) in YOLOv7 and the decoupled head from
YOLOv6, building on the foundation of YOLOv5. Furthermore, YOLOv8 introduces a novel
backbone architecture and an innovative anchor-free detection head. The YOLOv8 family
comprises five sub-models: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.
To achieve faster apple detection with a smaller model size and lower computational
requirements, YOLOv8n was selected as the benchmark model. The structure of YOLOv8n
consists of four parts: the backbone, the neck, the head, and the loss function, as illustrated
in Figure 5.



Plants 2025, 14, 365 7 of 24
Plants 2025, 14, x FOR PEER REVIEW 7 of 25 
 

 

 

Figure 5. Structure of the YOLOv8n model. 

The backbone network in YOLOv8 extracts features from the image, benefiting from 
the C2f module, which contains more skip connections compared to YOLOv5, leading to 
a richer gradient flow. The neck network integrates the C2f module into the Path Aggre-
gation Network (PANet) structure, maintaining a lightweight design while effectively fus-
ing multi-scale features from the backbone to improve model performance. The head net-
work includes classification and regression branches that process the features from the 
neck network to output vectors representing object categories and bounding box loca-
tions. Notably, this is accomplished without predefined anchors, thereby reducing the 
time required for non-maximum suppression. The loss function is composed of classifica-
tion loss and regression loss. Specifically, the regression loss is composed of Distribution 
Focal Loss (DFL) and Complete IoU (CIOU) Loss, while Binary Cross Entropy (BCE) Loss 
is employed for the classification loss. The total loss is the weighted sum of these individ-
ual losses. 

2.3. The Improved YOLOv8n Model 

To enhance the speed, accuracy, and efficiency of apple detection, and to make the 
model more suitable for deployment on apple-picking robots with limited computational 
resources, we improved the YOLOv8n model. The structure of the improved model is 
depicted in Figure 6. 

Figure 5. Structure of the YOLOv8n model.

The backbone network in YOLOv8 extracts features from the image, benefiting from
the C2f module, which contains more skip connections compared to YOLOv5, leading
to a richer gradient flow. The neck network integrates the C2f module into the Path
Aggregation Network (PANet) structure, maintaining a lightweight design while effectively
fusing multi-scale features from the backbone to improve model performance. The head
network includes classification and regression branches that process the features from the
neck network to output vectors representing object categories and bounding box locations.
Notably, this is accomplished without predefined anchors, thereby reducing the time
required for non-maximum suppression. The loss function is composed of classification loss
and regression loss. Specifically, the regression loss is composed of Distribution Focal Loss
(DFL) and Complete IoU (CIOU) Loss, while Binary Cross Entropy (BCE) Loss is employed
for the classification loss. The total loss is the weighted sum of these individual losses.

2.3. The Improved YOLOv8n Model

To enhance the speed, accuracy, and efficiency of apple detection, and to make the
model more suitable for deployment on apple-picking robots with limited computational
resources, we improved the YOLOv8n model. The structure of the improved model is
depicted in Figure 6.



Plants 2025, 14, 365 8 of 24Plants 2025, 14, x FOR PEER REVIEW 8 of 25 
 

 

 

Figure 6. Improved YOLOv8n model structure. 

The specific improvements to the YOLOv8n model include: (1) integrating SCC at-
tention to enhance apple-detection accuracy; (2) replacing the neck’s C2f module with the 
PCMR module to increase detection speed; (3) substituting the cross-entropy loss function 
with PolyLoss for better apple subcategory recognition; and (4) employing the backbone’s 
P2 and P3 layers for multi-scale feature fusion (instead of the default P3, P4, and P5 layers) 
to improve the detection of smaller objects. 

2.3.1. Self-Calibrated Coordinate Attention 

The presence of occluded apples can reduce the model’s accuracy. To improve detec-
tion accuracy under such conditions, we designed a self-calibrated coordinate (SCC) at-
tention module, inspired by the coordinate attention (CA) module [35]. The SCC attention 
module adaptively performs long-range spatial and inter-channel dependent calibration 
operations around each spatial location. This design enables more efficient extraction of 
both location and channel features, thereby enhancing the model’s ability to recognize 
partially occluded apples. The overall architecture of the SCC attention module is illus-
trated in Figure 7. 

 

Figure 7. SCC attention module structure. The symbols C, ×, and + within the blue circle denote 
the operations of concatenation, element-wise multiplication, and element-wise addition, respec-
tively. 

Specifically, given the feature maps x  from the previous layer, pooling operations 
are applied to each channel along the horizontal and vertical coordinate directions, re-
spectively. The output can be expressed as follows: 

Figure 6. Improved YOLOv8n model structure.

The specific improvements to the YOLOv8n model include: (1) integrating SCC
attention to enhance apple-detection accuracy; (2) replacing the neck’s C2f module with the
PCMR module to increase detection speed; (3) substituting the cross-entropy loss function
with PolyLoss for better apple subcategory recognition; and (4) employing the backbone’s
P2 and P3 layers for multi-scale feature fusion (instead of the default P3, P4, and P5 layers)
to improve the detection of smaller objects.

2.3.1. Self-Calibrated Coordinate Attention

The presence of occluded apples can reduce the model’s accuracy. To improve de-
tection accuracy under such conditions, we designed a self-calibrated coordinate (SCC)
attention module, inspired by the coordinate attention (CA) module [35]. The SCC attention
module adaptively performs long-range spatial and inter-channel dependent calibration
operations around each spatial location. This design enables more efficient extraction of
both location and channel features, thereby enhancing the model’s ability to recognize par-
tially occluded apples. The overall architecture of the SCC attention module is illustrated
in Figure 7.

Plants 2025, 14, x FOR PEER REVIEW 8 of 25 
 

 

 

Figure 6. Improved YOLOv8n model structure. 

The specific improvements to the YOLOv8n model include: (1) integrating SCC at-
tention to enhance apple-detection accuracy; (2) replacing the neck’s C2f module with the 
PCMR module to increase detection speed; (3) substituting the cross-entropy loss function 
with PolyLoss for better apple subcategory recognition; and (4) employing the backbone’s 
P2 and P3 layers for multi-scale feature fusion (instead of the default P3, P4, and P5 layers) 
to improve the detection of smaller objects. 

2.3.1. Self-Calibrated Coordinate Attention 

The presence of occluded apples can reduce the model’s accuracy. To improve detec-
tion accuracy under such conditions, we designed a self-calibrated coordinate (SCC) at-
tention module, inspired by the coordinate attention (CA) module [35]. The SCC attention 
module adaptively performs long-range spatial and inter-channel dependent calibration 
operations around each spatial location. This design enables more efficient extraction of 
both location and channel features, thereby enhancing the model’s ability to recognize 
partially occluded apples. The overall architecture of the SCC attention module is illus-
trated in Figure 7. 

 

Figure 7. SCC attention module structure. The symbols C, ×, and + within the blue circle denote 
the operations of concatenation, element-wise multiplication, and element-wise addition, respec-
tively. 

Specifically, given the feature maps x  from the previous layer, pooling operations 
are applied to each channel along the horizontal and vertical coordinate directions, re-
spectively. The output can be expressed as follows: 

Figure 7. SCC attention module structure. The symbols C, ×, and + within the blue circle denote the
operations of concatenation, element-wise multiplication, and element-wise addition, respectively.



Plants 2025, 14, 365 9 of 24

Specifically, given the feature maps x from the previous layer, pooling operations are
applied to each channel along the horizontal and vertical coordinate directions, respectively.
The output can be expressed as follows:

zh(h) =
1

W ∑
0≤i≤W

x(h, i) (1)

zw(w) =
1
H ∑

0≤j≤H
x(j, w) (2)

where W and H denote the width and height of the feature maps, respectively. Both
transformations preserve precise location information along one spatial direction, enabling
the network to accurately localize the apple’s position. The feature maps aggregated
through vertical pooling, as defined in Equation (2), are rotated and then concatenated
with the feature maps produced by horizontal pooling, as per Equation (1), to generate
orientation-aware feature maps:

z = [zh, zw′
] (3)

where [−,−] denotes the concatenation operation along the spatial dimension, and zw′

is obtained by rotating zw. The orientation-aware feature maps serve as inputs to the
self-calibration operation for subsequent processing.

The self-calibration operation is performed as follows: First, each channel is encoded
using both average pooling and max pooling to capture global channel information. There-
after, the pooled outcomes are fed into two shared 1 × 1 convolutional layers, denoted as F1

and F2, and the outputs from these layers are summed. Subsequently, the sum is processed
by a sigmoid activation function to obtain the self-calibration weights:

M = σ(F2(F1(AvgPool(z))) + F2(F1(MaxPool(z)))) (4)

where σ denotes the sigmoid activation function. The self-calibration weights M are
subsequently multiplied element by element with the feature maps obtained by applying a
1 × 1 convolution operation F3 to the feature z, completing the self-calibration operation
as follows:

y = M·F3(z) (5)

The feature maps y from the self-calibration operation are divided along the spatial
dimension into two tensors, yh and yw. These tensors are then converted into kh and kw,
matching the number of channels in the input x, through two 1 × 1 convolution operations
denoted as Fh and Fw, respectively. This process is described as follows:

kh = σ(Fh(yh)) (6)

kw = σ(Fw(yw)) (7)

where kh and kw denote the attentional weights along the horizontal and vertical direc-
tions, respectively. Finally, the feature maps from the self-calibrated attention module are
obtained, calculated as:

y(i, j) = x × kh × kw (8)

2.3.2. Partial Convolution Module Improved with Reparameterization

To make the model lightweight and improve forward prediction speed, many studies
have concentrated on minimizing FLOPs and parameter count. However, these metrics
do not correlate well with latency, primarily due to frequent memory access by opera-
tors, which results in low floating-point operations per second (FLOPS) [30]. Moreover,



Plants 2025, 14, 365 10 of 24

operations independent of parameters, such as skip connections or branches, also incur sig-
nificant memory access costs. Inspired by FasterNet [30] and MobileOne [36], we proposed
the partial convolution module improved with reparameterization (PCMR), as shown in
Figure 8. The PCMR incorporates partial convolution and reparametrizable branches into
the PANet structure to more efficiently aggregate features of apples. This design minimizes
redundant computations, reduces parameter count, and decreases memory access during
forward prediction.

Plants 2025, 14, x FOR PEER REVIEW 10 of 25 
 

 

operations independent of parameters, such as skip connections or branches, also incur 
significant memory access costs. Inspired by FasterNet [30] and MobileOne [36], we pro-
posed the partial convolution module improved with reparameterization (PCMR), as 
shown in Figure 8. The PCMR incorporates partial convolution and reparametrizable 
branches into the PANet structure to more efficiently aggregate features of apples. This 
design minimizes redundant computations, reduces parameter count, and decreases 
memory access during forward prediction. 

 

Figure 8. Structure of PCMR module. 

Specifically, input features are fused using pointwise convolutions (PWConv) to in-
tegrate information across different channels while compressing the number of channels 
to be equal to the output channel count of C2f at the same position in YOLOv8n. By lev-
eraging the redundancy in feature maps, standard convolution (Conv) is selectively ap-
plied to a subset of input channels, thereby optimizing computational costs. 

When only a quarter of the channels are subjected to standard convolution, the 
FLOPs for partial convolution are reduced to one-16th of those required for a standard 
convolution, and the memory access requirements are decreased to one-fourth of those 
required by a standard convolution [30]. 

Finally, the remaining channels, along with the output channels from the partial con-
volution, are fed into two consecutive PWConv layers, enabling features to propagate 
across all channels. 

To effectively extract spatial features, we introduced re-parameterizable skip connec-
tions with batch normalization (BN), along with trivially overparameterized branches, 
into the convolutional layers of the PCMR. During inference, a re-parameterization pro-
cess eliminates these branches [36]. Specifically, each BN layer is folded into its preceding 
convolutional layer, and skip connections are treated as 1 × 1 convolutions. In modules 
with different kernel sizes, smaller convolution kernels are zero-padded to match the 
larger kernel size. Ultimately, a final convolution kernel is obtained by summing multiple 
kernels of the same size. 

Figure 8. Structure of PCMR module.

Specifically, input features are fused using pointwise convolutions (PWConv) to
integrate information across different channels while compressing the number of channels
to be equal to the output channel count of C2f at the same position in YOLOv8n. By
leveraging the redundancy in feature maps, standard convolution (Conv) is selectively
applied to a subset of input channels, thereby optimizing computational costs.

When only a quarter of the channels are subjected to standard convolution, the FLOPs
for partial convolution are reduced to one-16th of those required for a standard convolution,
and the memory access requirements are decreased to one-fourth of those required by a
standard convolution [30].

Finally, the remaining channels, along with the output channels from the partial
convolution, are fed into two consecutive PWConv layers, enabling features to propagate
across all channels.

To effectively extract spatial features, we introduced re-parameterizable skip connec-
tions with batch normalization (BN), along with trivially overparameterized branches, into
the convolutional layers of the PCMR. During inference, a re-parameterization process
eliminates these branches [36]. Specifically, each BN layer is folded into its preceding
convolutional layer, and skip connections are treated as 1 × 1 convolutions. In modules
with different kernel sizes, smaller convolution kernels are zero-padded to match the larger



Plants 2025, 14, 365 11 of 24

kernel size. Ultimately, a final convolution kernel is obtained by summing multiple kernels
of the same size.

As a result, during inference, the convolutional layers within the PCMR adopt
an architecture without branches, eliminating additional latency costs associated with
branched structures.

2.3.3. Polynomial Loss

YOLOv8n employs the cross-entropy loss function for object classification, achieving
high classification accuracy. However, for the specialized task of apple classification, cross-
entropy loss may not fully address the unique challenges posed by this data set. To enhance
classification performance for apples, we introduced polynomial loss (PolyLoss) [37] as
a replacement for the cross-entropy loss function in YOLOv8n for apple classification.
PolyLoss allows for flexible adjustment of the importance of different polynomial bases
based on the specific task and data set, thereby optimizing classification performance
for apples.

PolyLoss can be represented by Equation (9):

LPoly = α1(1 − Pt) + α2(1 − Pt)
2 + . . . + αN(1 − Pt)

N + . . . =
∞

∑
j=1

αj(1 − Pt)
j (9)

where αj ∈ R+ represents the polynomial coefficients, and Pt denotes the model’s predicted
probability for the target ground-truth class. By applying Taylor expansion, the cross-
entropy loss can be decomposed into a series of weighted polynomial bases, as shown in
Equation (10), which can be viewed as a special case of PolyLoss, where αj = 1/j for all j.

LCE = − log(Pt) =
∞

∑
j=1

1/j(1 − Pt)
j = (1 − Pt) + 1/2(1 − Pt)

2 . . . (10)

PolyLoss enables customization of loss functions for different data sets by adjusting the
polynomial coefficients αj. However, due to the complexity involved, tuning all polynomial
coefficients is impractical. Therefore, only the first N coefficients in the cross-entropy loss
are perturbed [37], as expressed in Equation (11):

LPoly−N = (ε1 + 1)(1 − Pt) + . . . + (εN + 1/N)(1 − Pt)
N︸ ︷︷ ︸

perturbed by ε j

+ . . .

= −log(Pt) +
N
∑

j=1
ε j(1 − Pt)

j
(11)

where N represents the number of leading coefficients to be tuned and ε j ∈ [−1/j, ∞) is the
perturbation term. Leng found that setting N = 1, which modifies only the first polynomial
coefficient, significantly improved classification accuracy [37]. Therefore, following the
recommendation from the PolyLoss paper [37], we set N = 1, denoted as LPoly−1, as
expressed in Equation (12):

LPoly−1 = (1 + ε1)(1 − Pt) + 1/2(1 − Pt)
2 + . . . = −log(Pt) + ε1(1 − Pt) (12)

2.3.4. Lightweight Feature Fusion Networks

YOLOv8n defaults to extracting features from layers p3, p4, and p5 of the backbone
architecture as inputs for the neck networks, achieving a trade-off between detection accu-
racy and speed on the COCO data set. However, the variance in target object sizes in our
apple data set is less pronounced compared to that in the COCO data set. Consequently, the



Plants 2025, 14, 365 12 of 24

default combination of feature layers may not be optimal for our apple data set. Therefore,
we conducted experiments to identify a more suitable combination of feature layers for our
apple data set.

2.4. Model Quantification and Deployment

To evaluate the improved YOLOv8n model’s performance on mobile devices with
limited computational resources, we developed an Android-based apple-detection applica-
tion. The trained apple-detection model weights (.pt) were first converted to ONNX format
(.onnx), then quantized to float16 precision and transformed into NCNN format (.param
and .bin). Finally, the application was developed using Android Studio.

The application captures images from the device’s camera, draws bounding boxes
around the apples, and displays the subcategory of each apple, as shown in Figure 9.
Additionally, it provides real-time feedback on detection speed and the count of different
apple subcategories in the current interface.

Plants 2025, 14, x FOR PEER REVIEW 12 of 25 
 

 

set. Therefore, we conducted experiments to identify a more suitable combination of fea-
ture layers for our apple data set. 

2.4. Model Quantification and Deployment 

To evaluate the improved YOLOv8n model’s performance on mobile devices with 
limited computational resources, we developed an Android-based apple-detection appli-
cation. The trained apple-detection model weights (.pt) were first converted to ONNX 
format (.onnx), then quantized to float16 precision and transformed into NCNN format 
(.param and .bin). Finally, the application was developed using Android Studio. 

The application captures images from the device’s camera, draws bounding boxes 
around the apples, and displays the subcategory of each apple, as shown in Figure 9. Ad-
ditionally, it provides real-time feedback on detection speed and the count of different 
apple subcategories in the current interface. 

  

(a) (b) 

Figure 9. User interface of the developed Android application. (a) Single-category View; (b) Multi-
category View. 

2.5. Evaluation Metrics 

To comprehensively assess the model’s performance, we utilized the following met-
rics: precision (P), recall (R), mean Average Precision (mAP), parameter count, Floating 
Point Operations (FLOPs), model size, and Frames Per Second (FPS). P denotes the pro-
portion of correctly identified apples of a specific subcategory among all apples classified 
as that subcategory, as given in Equation (13). R indicates the proportion of correctly iden-
tified apples of a specific subcategory out of the total number of actual apples of that sub-
category in the data set, as expressed in Equation (14): 

TPP
TP FP

=
+

 (13) 

TPR
TP FN

=
+

 (14) 

Figure 9. User interface of the developed Android application. (a) Single-category View; (b) Multi-
category View.

2.5. Evaluation Metrics

To comprehensively assess the model’s performance, we utilized the following metrics:
precision (P), recall (R), mean Average Precision (mAP), parameter count, Floating Point
Operations (FLOPs), model size, and Frames Per Second (FPS). P denotes the proportion
of correctly identified apples of a specific subcategory among all apples classified as that
subcategory, as given in Equation (13). R indicates the proportion of correctly identified
apples of a specific subcategory out of the total number of actual apples of that subcategory
in the data set, as expressed in Equation (14):

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)



Plants 2025, 14, 365 13 of 24

where TP is the number of positive samples correctly detected, FP is the number of samples
incorrectly detected as positive, and FN is the number of positive samples missed. IoU is the
ratio of the overlapping area between the model’s predicted bounding box and the ground
truth bounding box to the total area covered by both boxes, as shown in Equation (15):

IoU =
A ∩ B
A ∪ B

(15)

where A denotes the predicted bounding box, and B denotes the ground truth bounding
box. In this study, a predicted bounding box was considered likely to be a TP for one
of the four apple subcategories if its IoU with the ground truth exceeded 0.5. Average
Precision (AP) represents the average of precision values at all recall levels between 0 and
1, which corresponds to the area beneath the Precision-Recall (P-R) curve. It is given by
Equation (16). mAP is the mean AP across all C (C = 4) classes, as given in Equation (17).

Parameter count indicates the total number of parameters within the model, as
shown in Equation (18). FLOPs measure the efficiency of the model’s execution, de-
noting the amount of computation required during prediction. This metric is expressed
in Equation (19) when ignoring the number of addition operations. Model size refers to
the storage space occupied by the model. FPS evaluates the model’s prediction speed,
representing the number of images processed per second.

AP =
∫ 1

0
P(R)dR (16)

mAP =
1
C ∑C

c=1 APc (17)

Param = ∑ (K2 × Cin × Cout) (18)

FLOPs = ∑ (H × W × K2 × Cin × Cout) (19)

2.6. Experimental Environment

The model was trained on a computer equipped with an Intel Xeon Gold 6226R
CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU. The software environment
included Ubuntu 20.04, CUDA 11.4, cuDNN v8.8.0, Python 3.8.18, and PyTorch 1.12.1. The
parameters for the training regimen were configured with the following specifications: a
batch size of 64, the polynomial coefficient ε1 was set to −0.3, Stochastic Gradient Descent
(SGD) optimizer with an initial learning rate of 0.01, a momentum of 0.937, and a weight
decay of 0.0005. The model was trained from scratch for a maximum of 300 epochs.

The computer used to test the models ran Ubuntu 18.04 and featured an Intel Core
i7-8700K CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 16 GB of RAM.

3. Results and Discussion
3.1. Performance of the Improved YOLOv8n Model

The precision-recall (P-R) curves of the improved YOLOv8n model for four distinct
occluded apple categories in the test set are depicted in Figure 10a. The model demonstrated
superior AP in identifying NO, with comparatively lower APs for OL, OF, and OB. Despite
this, the AP for all categories exceeded 85%, resulting in an overall mAP of 88.9%. The
confusion matrix in Figure 10b shows the highest recall of 87% for ON, followed by 78%,
76%, and 77% for OL, OF, and OB, respectively. The primary source of confusion occurred
between apples and background elements, leading to missed detections or false positives.
These results indicate that the model consistently maintains high accuracy in detecting
each apple subcategory, ensuring reliable performance across different occlusion scenarios.



Plants 2025, 14, 365 14 of 24

Plants 2025, 14, x FOR PEER REVIEW 14 of 25 
 

 

positives. These results indicate that the model consistently maintains high accuracy in 
detecting each apple subcategory, ensuring reliable performance across different occlu-
sion scenarios. 

(a) (b) 

Figure 10. P-R curves and confusion matrix of improved YOLOv8n test results. (a) P-R curve; (b) 
Confusion matrix. 

3.2. Comparison with Other Object-Detection Models 

To further validate the advantages of the improved YOLOv8n apple-detection 
model, comparative evaluations were conducted with eight prevalent conventional ob-
ject-detection models (Faster R-CNN [10], RetinaNet [11], SSD [9], YOLOv5l, YOLOv6-L 
[12], YOLOv7 [15], YOLOv8l, and YOLOv9-C [14]) and eight lightweight models (RT-
DETR-R18 [8], RT-DETR-R34 [8], YOLOv5n, YOLOv6-N [12], YOLOv7-tiny [15], 
YOLOv8n, YOLOv9-T [14], and YOLOv11n [16]). For fairness, each model was trained 
and tested under identical conditions using the same apple data set as the improved 
YOLOv8n model. 

The mAP curves for the different models are depicted in Figure 11. During the first 
80 iterations, the mAP increased rapidly for all models, then slowed down, stabilizing 
around epoch 300. Early stopping was used to prevent overfitting in the improved 
YOLOv8n model and several others. The mAP progression indicates that, although the 
improved YOLOv8n model did not experience the fastest mAP increase in the early 
epochs, it outperformed other lightweight models after 150 epochs. 

Figure 10. P-R curves and confusion matrix of improved YOLOv8n test results. (a) P-R curve;
(b) Confusion matrix.

3.2. Comparison with Other Object-Detection Models

To further validate the advantages of the improved YOLOv8n apple-detection
model, comparative evaluations were conducted with eight prevalent conventional object-
detection models (Faster R-CNN [10], RetinaNet [11], SSD [9], YOLOv5l, YOLOv6-L [12],
YOLOv7 [15], YOLOv8l, and YOLOv9-C [14]) and eight lightweight models (RT-DETR-
R18 [8], RT-DETR-R34 [8], YOLOv5n, YOLOv6-N [12], YOLOv7-tiny [15], YOLOv8n,
YOLOv9-T [14], and YOLOv11n [16]). For fairness, each model was trained and tested
under identical conditions using the same apple data set as the improved YOLOv8n model.

The mAP curves for the different models are depicted in Figure 11. During the
first 80 iterations, the mAP increased rapidly for all models, then slowed down, stabiliz-
ing around epoch 300. Early stopping was used to prevent overfitting in the improved
YOLOv8n model and several others. The mAP progression indicates that, although the
improved YOLOv8n model did not experience the fastest mAP increase in the early epochs,
it outperformed other lightweight models after 150 epochs.

Plants 2025, 14, x FOR PEER REVIEW 15 of 25 
 

 

 

Figure 11. MAP curves for different models. 

The performance comparison of the improved YOLOv8n model with eight conven-
tional object-detection models is presented in Table 2. While the YOLOv9-C model 
achieved the highest mAP, the improved YOLOv8n model reached a detection speed of 
220 FPS, which is 185 FPS higher. Additionally, the improved YOLOv8n model had 
99.37% fewer parameters, a 99.12% smaller model size, and 96.68% fewer FLOPs com-
pared to YOLOv9-C. The improved YOLOv8n model’s mAP was 88.90%, slightly lower 
than that of YOLOv5l, YOLOv6-L, YOLOv7, and YOLOv8l, but it significantly outper-
formed these models in detection speed by 156 FPS, 176 FPS, 149 FPS, and 166 FPS, re-
spectively. Moreover, the FLOPs of the improved YOLOv8n model were 92.66%, 94.76%, 
92.37%, and 95.21% lower than those of YOLOv5l, YOLOv6-L, YOLOv7, and YOLOv8l, 
respectively. The model size and parameter count were also reduced by over 98%. Addi-
tionally, the improved YOLOv8n model’s mAP surpassed that of Faster R-CNN, Reti-
naNet, and SSD by 17.16%, 13.74%, and 11.64%, respectively. 

Table 2. Performance comparison of the improved model with conventional object-detection mod-
els. 

Models 
AP 
NO 
(%) 

OL 
(%) 

OF 
(%) 

OB 
(%) 

mAP0.5 
(%) 

Params 
(M) 

Model 
Size (MB) 

FLOPs 
(G) FPS 

SSD 85.40 76.20 77.20 70.30 77.30 26.29 96.60 282.20 44.77 
RetinaNet 83.50 71.50 76.90 68.70 75.20 37.97 145.90 191.10 43.05 

Faster_RCNN 84.50 68.50 68.20 65.70 71.70 137.10 113.50 402.40 20.00 
YOLOv5l 96.30 89.80 88.90 90.60 91.40 46.12 92.90 107.70 64.10 

YOLOv6-L 96.20 88.00 90.10 88.00 90.60 59.54 119.60 150.70 43.40 
YOLOv7 96.30 88.60 87.90 90.80 90.90 36.50 74.80 103.50 71.05 
YOLOv8l 95.70 88.50 89.60 89.00 90.70 43.61 87.70 164.80 53.48 

YOLOv9-C 97.00 91.50 91.70 90.20 92.60 50.97 102.80 238.00 34.41 
ours 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71 

As shown in Table 3, the performance comparison of the improved YOLOv8n model 
with eight lightweight object-detection models shows that the Transformer-based RT-
DETR-R18 achieved a mAP of 84.65%, only marginally surpassing the CNN-based 
YOLOv5n by 0.45%. Despite this slight advantage in accuracy, RT-DETR-R18 exhibited 
slower detection speeds compared to all other lightweight CNN-based models. YOLOv5n 

Figure 11. MAP curves for different models.

The performance comparison of the improved YOLOv8n model with eight conven-
tional object-detection models is presented in Table 2. While the YOLOv9-C model achieved
the highest mAP, the improved YOLOv8n model reached a detection speed of 220 FPS,



Plants 2025, 14, 365 15 of 24

which is 185 FPS higher. Additionally, the improved YOLOv8n model had 99.37% fewer
parameters, a 99.12% smaller model size, and 96.68% fewer FLOPs compared to YOLOv9-C.
The improved YOLOv8n model’s mAP was 88.90%, slightly lower than that of YOLOv5l,
YOLOv6-L, YOLOv7, and YOLOv8l, but it significantly outperformed these models in
detection speed by 156 FPS, 176 FPS, 149 FPS, and 166 FPS, respectively. Moreover, the
FLOPs of the improved YOLOv8n model were 92.66%, 94.76%, 92.37%, and 95.21% lower
than those of YOLOv5l, YOLOv6-L, YOLOv7, and YOLOv8l, respectively. The model size
and parameter count were also reduced by over 98%. Additionally, the improved YOLOv8n
model’s mAP surpassed that of Faster R-CNN, RetinaNet, and SSD by 17.16%, 13.74%, and
11.64%, respectively.

Table 2. Performance comparison of the improved model with conventional object-detection models.

Models
AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

Params
(M)

Model
Size (MB)

FLOPs
(G) FPS

SSD 85.40 76.20 77.20 70.30 77.30 26.29 96.60 282.20 44.77
RetinaNet 83.50 71.50 76.90 68.70 75.20 37.97 145.90 191.10 43.05

Faster_RCNN 84.50 68.50 68.20 65.70 71.70 137.10 113.50 402.40 20.00
YOLOv5l 96.30 89.80 88.90 90.60 91.40 46.12 92.90 107.70 64.10

YOLOv6-L 96.20 88.00 90.10 88.00 90.60 59.54 119.60 150.70 43.40
YOLOv7 96.30 88.60 87.90 90.80 90.90 36.50 74.80 103.50 71.05
YOLOv8l 95.70 88.50 89.60 89.00 90.70 43.61 87.70 164.80 53.48

YOLOv9-C 97.00 91.50 91.70 90.20 92.60 50.97 102.80 238.00 34.41
ours 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71

As shown in Table 3, the performance comparison of the improved YOLOv8n model
with eight lightweight object-detection models shows that the Transformer-based RT-DETR-
R18 achieved a mAP of 84.65%, only marginally surpassing the CNN-based YOLOv5n by
0.45%. Despite this slight advantage in accuracy, RT-DETR-R18 exhibited slower detection
speeds compared to all other lightweight CNN-based models. YOLOv5n exhibited lower
FLOPs relative to all other lightweight models. However, its relatively low detection
accuracy hinders its application in detecting apples within complex orchard environments.
YOLOv8n offered a well-balanced compromise between detection accuracy and speed.
It achieved a mAP that was 1.80% higher than YOLOv5n, with just a 7 FPS reduction in
detection speed. In contrast, YOLOv11n showed a significant decrease in detection speed—
12 FPS slower than YOLOv8n—with only a minor improvement in detection accuracy,
gaining just 0.40% over YOLOv8n. Therefore, selecting YOLOv8n as the baseline model in
this study aligns with our aim to achieve faster and more accurate detection.

The improved YOLOv8n model demonstrated a significant advantage in AP for OL
and OB over other lightweight models. Moreover, it excelled across all key performance
metrics by achieving the highest mAP, maintaining the smallest model size, minimizing the
parameter count, and delivering the highest FPS among all lightweight models. Specifically,
the improved YOLOv8n outperformed RT-DETR-R18, RT-DETR-R34, YOLOv5n, YOLOv6-
N, YOLOv7-tiny, YOLOv8n, YOLOv9-T, and YOLOv11n, with mAP increases of 4.30%,
3.10%, 4.70%, 3.60%, 4.20%, 2.90%, 2.70%, and 2.50%, respectively. The model sizes were re-
duced by 99.72%, 99.82%, 76.92%, 91.35%, 92.68%, 85.48%, 85.25%, and 83.64%, respectively,
while the parameter count decreased by 98.41%, 98.98%, 81.82%, 93.09%, 94.68%, 89.37%,
87.79%, and 87.60%, respectively. Furthermore, the detection speed increased by 177 FPS,
182 FPS, 44 FPS, 122 FPS, 93 FPS, 51 FPS, 167 FPS, and 63 FPS, respectively. These results
indicate that the improved YOLOv8n model is better suited for deployment on picking
robot devices with limited computational resources.



Plants 2025, 14, 365 16 of 24

Table 3. Performance comparison of different lightweight models.

Models
AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

Params
(M)

Model
Size (MB)

FLOPs
(G) FPS

RT-DETR-R18 95.40 80.90 87.60 74.60 84.60 20.09 322.30 60.40 42.32
RT-DETR-R34 95.20 82.50 88.70 76.80 85.80 31.32 502.30 92.40 37.27

YOLOv5n 91.70 82.20 80.90 82.00 84.20 1.76 3.90 4.10 175.44
YOLOv6-N 92.20 83.40 84.70 80.80 85.30 4.63 10.40 11.40 98.00

YOLOv7-tiny 92.00 83.40 83.90 79.50 84.70 6.02 12.30 13.10 126.28
YOLOv8n 92.70 84.80 85.10 81.50 86.00 3.01 6.20 8.10 168.29
YOLOv9-T 93.20 82.90 86.70 81.90 86.20 2.62 6.10 10.70 52.36
YOLOv11n 93.20 84.00 86.10 82.20 86.40 2.58 5.50 6.30 156.25

ours 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71

3.3. Qualitative Assessment

To provide a more intuitive evaluation of the detection performance of different object-
detection models in complex orchard environments, images from various scenarios were
chosen at random from the test data set for analysis. Figure 12 shows the detection results
for apples under different lighting conditions and occlusion levels using several of the
models evaluated in this study. Notably, the other models not depicted in the figure
successfully detected all apples shown.Plants 2025, 14, x FOR PEER REVIEW 17 of 25 

 

 

Input image 

RetinaNet 

RT-DETR-18

YOLOv5n

YOLOv8n

YOLOv9-t

Ours

 (a) (b) (c) (d) (e) 

Figure 12. Comparison of detection results of different models under different lighting conditions 
and degrees of occlusion. (a) Direct light; (b) Low light; (c) Mild occlusion; (d) Moderate occlusion; 
(e) Severe occlusion. Marked blue ellipses indicate missed apples, and red ellipses indicate misclas-
sified apples. 

It can be observed that under low light conditions, all models correctly detected the 
target apples. In direct light, however, the RetinaNet and YOLOv5n models misclassified 
an OF apple as NO, while the RT-DETR-R18 and YOLOv9-T models missed detecting one 

Figure 12. Comparison of detection results of different models under different lighting conditions
and degrees of occlusion. (a) Direct light; (b) Low light; (c) Mild occlusion; (d) Moderate occlu-
sion; (e) Severe occlusion. Marked blue ellipses indicate missed apples, and red ellipses indicate
misclassified apples.



Plants 2025, 14, 365 17 of 24

It can be observed that under low light conditions, all models correctly detected the
target apples. In direct light, however, the RetinaNet and YOLOv5n models misclassified
an OF apple as NO, while the RT-DETR-R18 and YOLOv9-T models missed detecting one
apple. With mild occlusion, all models maintained accurate detection without errors. Under
moderate occlusion, the RetinaNet, YOLOv5n, and YOLOv9-T models missed detecting
one apple each. In severe occlusion scenarios, the RT-DETR-R18, YOLOv6n, YOLOv8n,
and YOLOv9-T models missed two, one, one, and three detections, respectively.

The improved YOLOv8n model correctly detected all apples in Figure 12 and per-
formed well in detecting all apple subcategories. These results highlight the effectiveness
of incorporating SCC attention, PCMR, and PolyLoss into the YOLOv8n model, as well as
utilizing features from the second and third pyramid levels of the backbone for multi-scale
information fusion. The improved YOLOv8n model outperforms the original YOLOv8n
model, demonstrating robust performance in apple detection across various scenarios.

3.4. Model Visualization

Grad-CAM [38] uses gradients to determine the importance of different regions in
an image for the prediction result, thereby generating visualizations. Regions considered
important by the detection model are highlighted in red, with deeper red indicating
greater importance, while yellow and blue represent lesser contributions and almost no
contribution, respectively. Figure 13 shows heat maps for different apple subcategories,
illustrating that the model primarily concentrates on the central region of non-occluded
apples. In contrast, it focuses on the junction between the apple and the occluder when
detecting occluded apples. Additionally, Figure 13 illustrates that the improved YOLOv8n
model focuses on more target regions compared to the original YOLOv8n model, enabling
it to learn and utilize more discriminative features.

Plants 2025, 14, x FOR PEER REVIEW 18 of 25 
 

 

apple. With mild occlusion, all models maintained accurate detection without errors. Un-
der moderate occlusion, the RetinaNet, YOLOv5n, and YOLOv9-T models missed detect-
ing one apple each. In severe occlusion scenarios, the RT-DETR-R18, YOLOv6n, 
YOLOv8n, and YOLOv9-T models missed two, one, one, and three detections, respec-
tively. 

The improved YOLOv8n model correctly detected all apples in Figure 12 and per-
formed well in detecting all apple subcategories. These results highlight the effectiveness 
of incorporating SCC attention, PCMR, and PolyLoss into the YOLOv8n model, as well as 
utilizing features from the second and third pyramid levels of the backbone for multi-
scale information fusion. The improved YOLOv8n model outperforms the original 
YOLOv8n model, demonstrating robust performance in apple detection across various 
scenarios. 

3.4. Model Visualization 

Grad-CAM [38] uses gradients to determine the importance of different regions in an 
image for the prediction result, thereby generating visualizations. Regions considered im-
portant by the detection model are highlighted in red, with deeper red indicating greater 
importance, while yellow and blue represent lesser contributions and almost no contribu-
tion, respectively. Figure 13 shows heat maps for different apple subcategories, illustrat-
ing that the model primarily concentrates on the central region of non-occluded apples. 
In contrast, it focuses on the junction between the apple and the occluder when detecting 
occluded apples. Additionally, Figure 13 illustrates that the improved YOLOv8n model 
focuses on more target regions compared to the original YOLOv8n model, enabling it to 
learn and utilize more discriminative features. 

Input image

   

YOLOv8n

   

Ours

   
 (a) (b) (c) (d) 

Figure 13. Comparison of heat maps before and after yolov8n model improvement. (a) NO; (b) OB; 
(c) OF; (d) OL. Regions highlighted in red indicate areas deemed important by the detection model, 
with darker red representing higher importance. Conversely, yellow and green hues denote areas 
of lesser significance, while blue indicates regions that contribute minimally to the modelʹs decision-
making process. 

Figure 13. Comparison of heat maps before and after yolov8n model improvement. (a) NO; (b) OB;
(c) OF; (d) OL. Regions highlighted in red indicate areas deemed important by the detection model,
with darker red representing higher importance. Conversely, yellow and green hues denote areas of
lesser significance, while blue indicates regions that contribute minimally to the model's decision-
making process.



Plants 2025, 14, 365 18 of 24

3.5. Ablation Experiments

To evaluate the effectiveness of the four improvements, ablation experiments were
conducted on the improved YOLOv8n model. The results are presented in Table 4. Intro-
ducing SCC attention effectively suppressed background interference and enhanced the
model’s feature extraction capability, leading to a 1.10% enhancement in mAP, accompanied
by a mere 0.33% increase in parameter count and a decrease of 8 FPS in detection speed.
Using PCMR as the feature fusion module reduced unnecessary convolution operations,
resulting in lower parameter count, smaller model size, and fewer FLOPs. Employing
PolyLoss increased mAP with minimal additional overhead. Furthermore, replacing the
original three-layer feature fusion (p3, p4, p5) with a two-layer feature fusion (p2, p3)
simplified the neck network, reducing parameter count and model size, while increasing
mAP and improving detection speed. Collectively, these experimental results demonstrate
that incorporating SCC attention and PolyLoss enhances the model’s accuracy, while adopt-
ing PCMR and a lightweight neck network significantly increases detection speed and
decreases parameter count and model size.

Table 4. Results of ablation experiments.

S PC Po p2,p3 P
(%)

R
(%)

AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

Params
(M)

Model
Size
(MB)

FLOPs
(G) FPS

× × × × 92.10 77.00 92.70 84.80 85.10 81.50 86.00 3.01 6.20 8.10 168.29√ × × × 94.00 76.60 93.60 85.10 87.10 82.60 87.10 3.02 6.30 8.10 160.31
× √ × × 92.00 77.00 91.30 83.60 85.00 83.10 85.80 2.86 5.90 7.80 177.54
× × √ × 92.10 77.30 92.60 85.80 86.70 82.40 86.90 3.01 6.20 8.10 167.92
× × × √

88.90 78.60 92.30 86.40 85.30 83.50 86.90 0.32 0.90 8.00 217.8√ √ × × 93.70 76.30 93.40 84.70 85.70 83.50 86.80 2.87 6.00 7.80 170.36√ √ √ × 92.30 78.50 94.00 85.60 86.20 84.70 87.60 2.87 6.00 7.80 170.07√ √ √ √
89.00 81.50 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71

S, PC, and Po represent SCC, PCMR, and PolyLoss, respectively.

3.6. Comparative Experiments with Different Attention Mechanisms

To evaluate the effectiveness of our SCC attention module, we compared it with
other attention mechanisms: shuffle attention (SA) [39], squeeze-and-excitation (SE) [40],
convolutional block attention module (CBAM) [41], and coordinate attention (CA) [35].
The experimental results are presented in Table 5.

Table 5. Comparative results of different attention modules.

Models
AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

Params
(M)

Model
Size (MB)

FLOPs
(G) FPS

YOLOv8n 92.70 84.80 85.10 81.50 86.00 3.01 6.20 8.10 168.29
YOLOv8n + SA 92.10 84.90 85.20 82.90 86.30 3.01 6.30 8.10 164.50
YOLOv8n + SE 92.60 83.50 86.30 83.30 86.40 3.01 6.30 8.10 166.00

YOLOv8n + CBAM 92.70 85.40 85.30 83.50 86.70 3.01 6.30 8.10 162.93
YOLOv8n + CA 92.60 85.50 85.20 83.90 86.80 3.01 6.30 8.10 162.65
YOLOv8n + SCC 93.60 85.10 87.10 82.60 87.10 3.02 6.30 8.10 160.31

Table 5 shows that integrating an attention module after the SPPF led to a slight
increase in model size, a decrease in detection speed, but an improvement in mAP on the
test set. Notably, our SCC attention module achieved a more significant improvement
in detection accuracy, surpassing SA, SE, CBAM, and CA by 0.80%, 0.70%, 0.40%, and
0.30%, respectively. This superior performance can be attributed to the SCC attention
module’s ability to more effectively focus the model on apples, enabling the extraction
of more discriminative features. The results demonstrate that our SCC attention module
outperforms mainstream attention mechanisms in terms of improving detection accuracy.



Plants 2025, 14, 365 19 of 24

3.7. Comparative Experiments with Different Classification Losses

To evaluate the effectiveness of PolyLoss as a classification loss function for YOLOv8n,
it was compared with several other classification loss functions: BCE Loss [42], Focal
Loss [11], and Slide Loss [43]. The experimental results, shown in Table 6, reveal that Poly-
Loss achieved a higher detection accuracy of 86.90% compared to the other classification
losses. Notably, BCE Loss outperformed Focal Loss and Slide Loss in terms of accuracy.
This can be attributed to the inclusion of Distribution Focal Loss (DFL) in the regression loss
of YOLOv8n, which addresses class imbalance and focuses on difficult-to-classify samples,
compensating for the disadvantage of using BCE Loss as the classification loss.

Table 6. Comparison results of different classification losses.

Loss P
(%)

R
(%)

AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

BCE 92.10 770 92.70 84.80 85.10 81.50 86.00
Focal 90.70 72.70 85.30 77.80 78.90 80.00 80.50
Slide 90.80 77.80 92.40 84.70 85.50 81.10 85.90

PolyLoss 92.10 77.30 92.60 85.80 86.70 82.40 86.90

PolyLoss is more flexible than BCE Loss (which is a special case of PolyLoss) and can
be customized for specific data sets. For our data set, the optimal polynomial coefficient, ε1,
for PolyLoss was found to be −0.3. A negative ε1 reduces prediction confidence, achieving
effects similar to label smoothing and confidence penalties [37], which helps the YOLOv8
model achieve higher detection accuracy.

3.8. Multi-Scale Feature Fusion Optimization Experiment

In this study, we investigated the impact of various feature combinations on apple-
detection performance by extracting features from the second (P2), third (P3), fourth (P4),
fifth (P5), and sixth (P6) layers of our backbone architecture. This allowed us to assess
how these combinations affect prediction performance. We utilized a retrained multi-scale
feature fusion network for predictions on the test set. The results, presented in Table 7, show
that the combination of feature layers P2 and P3 yielded the most favorable overall per-
formance. Specifically, its mAP was only 0.40% lower than that of the highest-performing
three-layer combination (P2, P3, P4). Moreover, it offered a significant advantage in terms
of efficiency: a 43 FPS increase in detection speed, a 66.32% decrease in parameter count, a
60.87% reduction in model size, and a 21.78% decrease in FLOPs.

Table 7. Comparative results of multi-scale feature fusion experiments.

Methods P
(%)

R
(%)

AP
NO
(%)

OL
(%)

OF
(%)

OB
(%)

mAP0.5
(%)

Params
(M)

Model
Size
(MB)

FLOPs
(G) FPS

A 77.20 58.80 73.80 65.70 50.20 66.10 64.00 3.58 7.30 3.70 181.27
B 89.40 76.60 92.10 85.80 81.30 81.60 85.20 4.30 8.80 5.10 160.57
C 85.00 80.00 91.10 85.30 81.10 81.70 84.80 2.55 5.30 5.00 199.78
D 92.30 78.50 94.00 85.60 86.20 84.70 87.60 2.87 6.00 7.80 170.07
E 87.00 79.90 94.10 86.40 84.40 84.50 87.40 0.94 2.10 6.10 205.10
F 89.40 82.90 94.50 87.50 87.30 87.70 89.30 0.95 2.30 10.10 176.65
G 89.00 81.50 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71

A represents layers p5 and p6; B represents layers p4, p5, and p6; C represents layers p4 and p5; D represents
layers p3, p4, and p5; E represents layers p3 and p4; F represents layers p2, p3, and p4; G represents layers p2
and p3.

The likely reason for this is that higher layers (P4, P5, and P6) have larger receptive
fields, which makes it harder to capture sufficient discriminative information for small
objects, leading to missed or incorrect detections. In contrast, features from P2 and P3



Plants 2025, 14, 365 20 of 24

retain more discriminative information about small apples, providing most of the useful
information from the combination of P2, P3, and P4 features.

The experimental results demonstrate that using features from the P2 and P3 layers as
inputs to the neck network achieves an optimal balance between mAP and detection speed,
the two most critical metrics for object-detection performance.

3.9. Android App Results

The apple-detection application developed in this study achieved a detection speed of
40 FPS on an iQOO Neo6 SE smartphone using the improved YOLOv8n model, compared
to 32 FPS with the original YOLOv8n model, as shown in Figure 14. Moreover, Figure 14
illustrates that the improved YOLOv8n model correctly detected all apples in the image,
whereas the original YOLOv8n model missed one. These results suggest that the improved
YOLOv8n model significantly improves both the speed and accuracy of apple detection.

Plants 2025, 14, x FOR PEER REVIEW 21 of 25 
 

 

E 87.00 79.90 94.10 86.40 84.40 84.50 87.40 0.94 2.10 6.10 205.10 
F 89.40 82.90 94.50 87.50 87.30 87.70 89.30 0.95 2.30 10.10 176.65 
G 89.00 81.50 93.70 88.40 85.60 87.90 88.90 0.32 0.90 7.90 219.71 

A represents layers p5 and p6; B represents layers p4, p5, and p6; C represents layers p4 and p5; D 
represents layers p3, p4, and p5; E represents layers p3 and p4; F represents layers p2, p3, and p4; G 
represents layers p2 and p3. 

The likely reason for this is that higher layers (P4, P5, and P6) have larger receptive 
fields, which makes it harder to capture sufficient discriminative information for small 
objects, leading to missed or incorrect detections. In contrast, features from P2 and P3 
retain more discriminative information about small apples, providing most of the useful 
information from the combination of P2, P3, and P4 features. 

The experimental results demonstrate that using features from the P2 and P3 layers 
as inputs to the neck network achieves an optimal balance between mAP and detection 
speed, the two most critical metrics for object-detection performance. 

3.9. Android App Results 

The apple-detection application developed in this study achieved a detection speed 
of 40 FPS on an iQOO Neo6 SE smartphone using the improved YOLOv8n model, com-
pared to 32 FPS with the original YOLOv8n model, as shown in Figure 14. Moreover, Fig-
ure 14 illustrates that the improved YOLOv8n model correctly detected all apples in the 
image, whereas the original YOLOv8n model missed one. These results suggest that the 
improved YOLOv8n model significantly improves both the speed and accuracy of apple 
detection. 

  

(a) (b) 

Figure 14. Comparison of the improved YOLOv8n and the original YOLOv8n in application de-
ployment. (a) Improved YOLOv8n; (b) Original YOLOv8n. Marked blue ellipses indicate missed 
apples. 

To evaluate the performance of the improved YOLOv8n model more comprehen-
sively, we compared it with the original YOLOv8n model in terms of battery 

Figure 14. Comparison of the improved YOLOv8n and the original YOLOv8n in application deploy-
ment. (a) Improved YOLOv8n; (b) Original YOLOv8n. Marked blue ellipses indicate missed apples.

To evaluate the performance of the improved YOLOv8n model more comprehensively,
we compared it with the original YOLOv8n model in terms of battery consumption. In the
comparison experiment, each model was tested five times. In each test, the iQOO Neo6 SE
smartphone was charged to 100%, and the model’s app started to run after 10 min of idle
placement. Each experiment lasted for 60 min. The experimental results, shown in Table 8,
indicate that the battery-consumption rate of the improved YOLOv8n model is slightly
lower than that of the original model. This is primarily due to the improved YOLOv8n
model reducing redundant computations, parameter count, and memory accesses, which
helps maintain a higher detection speed without accelerating battery consumption.

Table 8. Comparison of battery-level depletion rates.

Models Trial 1
(%/MIN)

Trial 2
(%/MIN)

Trial 3
(%/MIN)

Trial 4
(%/MIN)

Trial 5
(%/MIN)

Average
(%/MIN)

YOLOv8n −0.283 −0.300 −0.300 −0.300 −0.300 −0.296
ours −0.300 −0.300 −0.283 −0.283 −0.300 −0.293



Plants 2025, 14, 365 21 of 24

3.10. Limitations and Future Work

Figure 15 illustrates instances where the improved YOLOv8n model missed detecting
apples, indicated by blue ellipses.

Plants 2025, 14, x FOR PEER REVIEW 22 of 25 
 

 

consumption. In the comparison experiment, each model was tested five times. In each 
test, the iQOO Neo6 SE smartphone was charged to 100%, and the model’s app started to 
run after 10 min of idle placement. Each experiment lasted for 60 min. The experimental 
results, shown in Table 8, indicate that the battery-consumption rate of the improved 
YOLOv8n model is slightly lower than that of the original model. This is primarily due to 
the improved YOLOv8n model reducing redundant computations, parameter count, and 
memory accesses, which helps maintain a higher detection speed without accelerating 
battery consumption. 

Table 8. Comparison of battery-level depletion rates. 

Models Trial 1 
(%/MIN) 

Trial 2 
(%/MIN) 

Trial 3 
(%/MIN) 

Trial 4 
(%/MIN) 

Trial 5 
(%/MIN) 

Average 
(%/MIN) 

YOLOv8n −0.283 −0.300 −0.300 −0.300 −0.300 −0.296 
ours −0.300 −0.300 −0.283 −0.283 −0.300 −0.293 

3.10. Limitations and Future Work 

Figure 15 illustrates instances where the improved YOLOv8n model missed detect-
ing apples, indicated by blue ellipses. 

  

(a) (b) 

Figure 15. Examples of missed detection. (a) Green apples; (b) Slightly red apples. Marked blue 
ellipses indicate missed apples. 

The potential causes for these missed detections include: (1) Excessive occlusion of 
the apples results in fewer visible pixels, which makes it challenging for the model to ex-
tract sufficient and effective discriminative features, thereby leading to missed detections. 
(2) As illustrated in Figure 15a, an apple that is mostly occluded by leaves and whose color 
closely matches the background increases the complexity of the detection task. 

To mitigate the limitations of the improved YOLOv8n model, the following measures 
can be taken: (a) Collect additional data sets that include instances prone to causing 
missed or incorrect detections. This will allow the model to learn to extract features more 
effectively from apples that are difficult to recognize. (b) Utilize advanced data augmen-
tation techniques, such as adding leaf textures to apple locations in the images of the train-
ing set or using Generative Adversarial Networks (GANs) to generate realistic occlusions, 
enhancing the model’s ability to recognize occluded apples. (c) Investigate alternative fea-
ture-extraction methods that maintain detection speed while minimizing the loss of criti-
cal features, thereby improving the model’s accuracy. 

Figure 15. Examples of missed detection. (a) Green apples; (b) Slightly red apples. Marked blue
ellipses indicate missed apples.

The potential causes for these missed detections include: (1) Excessive occlusion of the
apples results in fewer visible pixels, which makes it challenging for the model to extract
sufficient and effective discriminative features, thereby leading to missed detections. (2) As
illustrated in Figure 15a, an apple that is mostly occluded by leaves and whose color closely
matches the background increases the complexity of the detection task.

To mitigate the limitations of the improved YOLOv8n model, the following measures
can be taken: (a) Collect additional data sets that include instances prone to causing
missed or incorrect detections. This will allow the model to learn to extract features
more effectively from apples that are difficult to recognize. (b) Utilize advanced data
augmentation techniques, such as adding leaf textures to apple locations in the images of
the training set or using Generative Adversarial Networks (GANs) to generate realistic
occlusions, enhancing the model’s ability to recognize occluded apples. (c) Investigate
alternative feature-extraction methods that maintain detection speed while minimizing the
loss of critical features, thereby improving the model’s accuracy.

In the future, we plan to integrate the improved YOLOv8n model into an apple-
harvesting robot system to rigorously validate its reliability and performance in real-
world conditions.

4. Conclusions
In this study, we proposed an improved object-detection model based on YOLOv8n,

achieving rapid and accurate detection of apples. We incorporated the SCC attention mod-
ule to improve detection performance, replaced the C2f module in the neck of YOLOv8n
with the PCMR module to achieve model lightweighting, and utilized features from the
P2 and P3 layers for multi-scale information fusion. Additionally, we employed PolyLoss
to better adapt the model to the apple data set. Experimental results demonstrated that
the improved YOLOv8n model enhanced lightweight properties, detection speed, and
mAP compared to the original YOLOv8n model. Specifically, the parameter counts and
FLOPs were reduced by 89.36% and 2.47%, respectively, the detection speed increased by
30.55% to 220 FPS, and mAP improved by 2.90% to 88.9%. The AP values for NO, OL,



Plants 2025, 14, 365 22 of 24

OF, and OB apples were 93.70%, 88.40%, 85.60%, and 87.90%, respectively. In comparison
with Faster R-CNN, RetinaNet, SSD, RT-DETR-R18, RT-DETR-R34, YOLOv5n, YOLOv6-N,
YOLOv7-tiny, YOLOv8n, YOLOv9-T, and YOLOv11n object-detection models, the im-
proved YOLOv8n model exhibited superior performance in terms of mAP and detection
speed. Furthermore, the improved YOLOv8n model was quantized to float16 and devel-
oped into an apple-detection application using Android Studio. This application enables
real-time apple detection in complex orchard environments on mobile devices. Together,
the improved YOLOv8n model demonstrates higher detection accuracy and speed while
maintaining superior lightweight properties, making it especially suitable for deployment
on resource-constrained devices requiring real-time apple detection.

However, the improved YOLOv8n model proposed in this study can currently only
determine the position of the apple in the image, with precise 3D spatial coordinates
remaining to be determined for its application in apple-picking robotic systems. To address
this, we plan to integrate the prediction results of the improved YOLOv8n model with
depth information from a stereo camera, enabling effective apple detection and localization.
Given that stereo cameras require significant computational resources to calculate depth
through parallax, ensuring real-time performance upon integration with the improved
YOLOv8n model may necessitate higher-performance hardware. Further research will be
required in the future to optimize algorithms and enhance hardware acceleration.

Author Contributions: Conceptualization, M.W. and F.L.; Methodology, M.W.; Software, M.W.;
Validation, Data curation, M.W.; Formal analysis, M.W.; Investigation, M.W.; Resources, M.W. and
F.L.; Writing—original draft preparation, M.W.; Writing—review and editing, F.L.; Visualization,
M.W.; Supervision, F.L.; Project administration, F.L.; Funding acquisition, F.L. and M.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key R&D Projects in Shanxi Province (202202140601021),
and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
(2022L084).

Data Availability Statement: Dataset available on request from the authors. The raw data supporting
the conclusions of this article will be made available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL

(accessed on 22 October 2024).
2. Bruni, V.; Dominijanni, G.; Vitulano, D. A Machine-Learning Approach for Automatic Grape-Bunch Detection Based on Opponent

Colors. Sustainability 2023, 15, 4341. [CrossRef]
3. Liang, J.; Huang, K.; Lei, H.; Zhong, Z.; Cai, Y.; Jiao, Z. Occlusion-Aware Fruit Segmentation in Complex Natural Environments

under Shape Prior. Comput. Electron. Agric. 2024, 217, 108620. [CrossRef]
4. Syazwani, R.W.N.; Asraf, H.M.; Amin, M.M.S.; Dalila, K.N. Automated Image Identification, Detection and Fruit Counting of

Top-View Pineapple Crown Using Machine Learning. Alex. Eng. J. 2022, 61, 1265–1276. [CrossRef]
5. Hu, K.; Wang, Z.; Coleman, G.; Bender, A.; Yao, T.; Zeng, S.; Song, D.; Schumann, A.; Walsh, M. Deep Learning Techniques for

In-Crop Weed Recognition in Large-Scale Grain Production Systems: A Review. Precis. Agric. 2024, 25, 1–29. [CrossRef]
6. Tang, Y.; Qiu, J.; Zhang, Y.; Wu, D.; Cao, Y.; Zhao, K.; Zhu, L. Optimization Strategies of Fruit Detection to Overcome the Challenge

of Unstructured Background in Field Orchard Environment: A Review. Precis. Agric. 2023, 24, 1183–1219. [CrossRef]
7. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv

2020, arXiv:2005.12872.
8. Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. DETRs Beat YOLOs on Real-Time Object Detection. arXiv

2023, arXiv:2304.08069.
9. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2015,

arXiv:1512.02325.

https://www.fao.org/faostat/en/#data/QCL
https://doi.org/10.3390/su15054341
https://doi.org/10.1016/j.compag.2024.108620
https://doi.org/10.1016/j.aej.2021.06.053
https://doi.org/10.1007/s11119-023-10073-1
https://doi.org/10.1007/s11119-023-10009-9


Plants 2025, 14, 365 23 of 24

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2015, arXiv:1506.01497. [CrossRef] [PubMed]

11. Lin, T. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
12. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.
13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,

arXiv:1506.02640.
14. Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.

arXiv 2024, arXiv:2402.13616.
15. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. arXiv 2022, arXiv:2207.02696.
16. Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725.
17. Zhang, W.; Chen, K.; Wang, J.; Shi, Y.; Guo, W. Easy Domain Adaptation Method for Filling the Species Gap in Deep Learning-

Based Fruit Detection. Hortic. Res. 2021, 8, 119. [CrossRef]
18. Jia, W.; Wang, Z.; Zhang, Z.; Yang, X.; Hou, S.; Zheng, Y. A Fast and Efficient Green Apple Object Detection Model Based on

Foveabox. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5156–5169. [CrossRef]
19. Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep Learning Techniques for Estimation of the Yield

and Size of Citrus Fruits Using a UAV. Eur. J. Agron. 2020, 115, 126030. [CrossRef]
20. Gao, F.; Fu, L.; Zhang, X.; Majeed, Y.; Li, R.; Karkee, M.; Zhang, Q. Multi-Class Fruit-on-Plant Detection for Apple in SNAP

System Using Faster R-CNN. Comput. Electron. Agric. 2020, 176, 105634. [CrossRef]
21. Wang, A.; Qian, W.; Li, A.; Xu, Y.; Hu, J.; Xie, Y.; Zhang, L. NVW-YOLOv8s: An Improved YOLOv8s Network for Real-Time

Detection and Segmentation of Tomato Fruits at Different Ripeness Stages. Comput. Electron. Agric. 2024, 219, 108833. [CrossRef]
22. Zhang, J.; Xie, J.; Zhang, F.; Gao, J.; Yang, C.; Song, C.; Rao, W.; Zhang, Y. Greenhouse Tomato Detection and Pose Classification

Algorithm Based on Improved YOLOv5. Comput. Electron. Agric. 2024, 216, 108519. [CrossRef]
23. Hu, J.; Fan, C.; Wang, Z.; Ruan, J.; Wu, S. Fruit Detection and Counting in Apple Orchards Based on Improved Yolov7 and

Multi-Object Tracking Methods. Sensors 2023, 23, 5903. [CrossRef] [PubMed]
24. Zhang, W.; Wang, J.; Liu, Y.; Chen, K.; Li, H.; Duan, Y.; Wu, W.; Shi, Y.; Guo, W. Deep-Learning-Based in-Field Citrus Fruit

Detection and Tracking. Hortic. Res. 2022, 9, uhac003. [CrossRef] [PubMed]
25. Suo, R.; Gao, F.; Zhou, Z.; Fu, L.; Song, Z.; Dhupia, J.; Li, R.; Cui, Y. Improved Multi-Classes Kiwifruit Detection in Orchard to

Avoid Collisions during Robotic Picking. Comput. Electron. Agric. 2021, 182, 106052. [CrossRef]
26. Yu, C.; Feng, J.; Zheng, Z.; Guo, J.; Hu, Y. A Lightweight SOD-YOLOv5n Model-Based Winter Jujube Detection and Counting

Method Deployed on Android. Comput. Electron. Agric. 2024, 218, 108701. [CrossRef]
27. Lu, J.; Chen, P.; Yu, C.; Lan, Y.; Yu, L.; Yang, R.; Niu, H.; Chang, H.; Yuan, J.; Wang, L. Lightweight Green Citrus Fruit Detection

Method for Practical Environmental Applications. Comput. Electron. Agric. 2023, 215, 108205. [CrossRef]
28. Zhao, R.; Zhu, Y.; Li, Y. An End-to-End Lightweight Model for Grape and Picking Point Simultaneous Detection. Biosyst. Eng.

2022, 223, 174–188. [CrossRef]
29. Wang, L.; Zhao, Y.; Xiong, Z.; Wang, S.; Li, Y.; Lan, Y. Fast and Precise Detection of Litchi Fruits for Yield Estimation Based on the

Improved YOLOv5 Model. Front. Plant Sci. 2022, 13, 965425. [CrossRef] [PubMed]
30. Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural

Networks. arXiv 2023, arXiv:2303.03667.
31. Wu, H.; Mo, X.; Wen, S.; Wu, K.; Ye, Y.; Wang, Y.; Zhang, Y. DNE-YOLO: A Method for Apple Fruit Detection in Diverse Natural

Environments. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102220. [CrossRef]
32. Wang, H.; Feng, J.; Yin, H. Improved Method for Apple Fruit Target Detection Based on YOLOv5s. Agriculture 2023, 13, 2167.

[CrossRef]
33. Wu, T.; Miao, Z.; Huang, W.; Han, W.; Guo, Z.; Li, T. SGW-YOLOv8n: An Improved YOLOv8n-Based Model for Apple Detection

and Segmentation in Complex Orchard Environments. Agriculture 2024, 14, 1958. [CrossRef]
34. Fu, H.; Guo, Z.; Feng, Q.; Xie, F.; Zuo, Y.; Li, T. MSOAR-YOLOv10: Multi-Scale Occluded Apple Detection for Enhanced Harvest

Robotics. Horticulturae 2024, 10, 1246. [CrossRef]
35. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. arXiv 2021, arXiv:2103.02907.
36. Vasu, P.K.A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. MobileOne: An Improved One Millisecond Mobile Backbone. arXiv 2023,

arXiv:2206.04040.
37. Leng, Z.; Tan, M.; Liu, C.; Dogus Cubuk, E.; Shi, X.; Cheng, S.; Anguelov, D. PolyLoss: A Polynomial Expansion Perspective of

Classification Loss Functions. arXiv 2022, arXiv:2204.12511.
38. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks

via Gradient-Based Localization. arXiv 2016, arXiv:1610.02391.

https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1038/s41438-021-00553-8
https://doi.org/10.1016/j.jksuci.2022.01.005
https://doi.org/10.1016/j.eja.2020.126030
https://doi.org/10.1016/j.compag.2020.105634
https://doi.org/10.1016/j.compag.2024.108833
https://doi.org/10.1016/j.compag.2023.108519
https://doi.org/10.3390/s23135903
https://www.ncbi.nlm.nih.gov/pubmed/37447752
https://doi.org/10.1093/hr/uhac003
https://www.ncbi.nlm.nih.gov/pubmed/35147157
https://doi.org/10.1016/j.compag.2021.106052
https://doi.org/10.1016/j.compag.2024.108701
https://doi.org/10.1016/j.compag.2023.108205
https://doi.org/10.1016/j.biosystemseng.2022.08.013
https://doi.org/10.3389/fpls.2022.965425
https://www.ncbi.nlm.nih.gov/pubmed/36017261
https://doi.org/10.1016/j.jksuci.2024.102220
https://doi.org/10.3390/agriculture13112167
https://doi.org/10.3390/agriculture14111958
https://doi.org/10.3390/horticulturae10121246


Plants 2025, 14, 365 24 of 24

39. Yang, Q.-L.Z.Y.-B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks. arXiv 2021, arXiv:2102.00240.
40. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507.
41. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521.
42. De Boer, P.-T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A Tutorial on the Cross-Entropy Method. Ann. Oper. Res. 2005, 134, 19–67.

[CrossRef]
43. Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-Facev2: A Scale and Occlusion Aware Face Detector. Pattern Recognit.

2024, 155, 110714. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1016/j.patcog.2024.110714

	Introduction 
	Materials and Methods 
	Preparation of the Data Set 
	Overview of the YOLOv8n Model 
	The Improved YOLOv8n Model 
	Self-Calibrated Coordinate Attention 
	Partial Convolution Module Improved with Reparameterization 
	Polynomial Loss 
	Lightweight Feature Fusion Networks 

	Model Quantification and Deployment 
	Evaluation Metrics 
	Experimental Environment 

	Results and Discussion 
	Performance of the Improved YOLOv8n Model 
	Comparison with Other Object-Detection Models 
	Qualitative Assessment 
	Model Visualization 
	Ablation Experiments 
	Comparative Experiments with Different Attention Mechanisms 
	Comparative Experiments with Different Classification Losses 
	Multi-Scale Feature Fusion Optimization Experiment 
	Android App Results 
	Limitations and Future Work 

	Conclusions 
	References

