Micropropagation and Phytochemical Characterization of Artemisia ludoviciana Nutt.: Antioxidant Activity and Phenolic Profiles
Abstract
1. Introduction
2. Results
2.1. Culture Initiation
2.2. Shoot Proliferation
2.3. Root Induction
2.4. Hardening, Acclimatization, and Reproducibility
2.5. Total Phenolic and Flavonoid Content and Antioxidant Capacity
2.6. Determination of Phenolic Composition
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Medium and Culture Conditions
4.3. Surface Sterilization and Culture Initiation
4.4. Shoot Proliferation
4.5. Rooting
4.6. Hardening, Acclimatization, and Reproducibility
4.7. Total Phenolic and Flavonoid Content and Antioxidant Capacity
4.8. Determination of Phenolic Composition
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of variance |
| BAP | Benzylaminopurine |
| DAD | Diode array detector |
| DW | Sample dry weight |
| GAE | Gallic acid equivalent |
| HPLC | High-performance liquid chromatography |
| IAA | Indole-3-acetic acid |
| KIN | Kinetin |
| MS | Murashige and Skoog |
| NAA | Naphthaleneacetic acid |
| PAR | Photosynthetically active radiation |
| PGR | Plant growth regulator |
| QE | Quercetin equivalent |
| RSA | Radical scavenging activity |
| TE | Trolox equivalent |
| TEAC | Trolox equivalent antioxidant capacity |
| TFC | Total flavonoid content |
| TPC | Total phenolic content |
References
- Heinrich, M.; Robles, M.; West, J.E.; Ortiz de Montellano, B.E.; Rodríguez, E. Ethnopharmacology of mexican Asteraceae (Compositae). Annu. Rev. Pharmacol. Toxicol. 1998, 38, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, J.L. Diversidad y distribución de la familia Asteraceae en México. Bot. Sci. 2018, 96, 332–358. [Google Scholar] [CrossRef]
- Taylor, J.R.; McArthur, E.D. Artemisia ludoviciana Nutt. In Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions; U.S. Department of Agriculture: San Juan, PR, USA, 2004; p. 69. [Google Scholar]
- Darbyshire, S.J. The Biology of Canadian Weeds. Can. J. Plant Sci. 2012, 92, 263. [Google Scholar] [CrossRef]
- Argueta, A.V.; Cano, L.A.; Rodarte, M.E. Atlas de Las Plantas de la Medicina Tradicional Mexicana; Instituto Nacional Indigenista: Mexico City, Mexico, 1994. [Google Scholar]
- Bye, R.A. Medicinal Plants of the Sierra Madre: Comparative Study of Tarahumara and Mexican Market Plants. Econ. Bot. 1986, 40, 103–124. [Google Scholar] [CrossRef]
- Hernández, T.; Canales, M.; Avila, J.G.; Duran, A.; Caballero, J.; Romo de Vivar, A.; Lira, R. Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). J. Ethnopharmacol. 2003, 88, 181–188. [Google Scholar] [CrossRef]
- Andrade-Cetto, A. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. J. Ethnopharmacol. 2009, 122, 163–171. [Google Scholar] [CrossRef]
- Leonti, M.; Vibrans, H.; Sticher, O.; Heinrich, M. Ethnopharmacology of the Popoluca, Mexico: An evaluation. J. Pharm. Pharmacol. 2010, 53, 1653–1669. [Google Scholar] [CrossRef]
- Blanco, L.; Thiagarajan, T. Ethno-botanical study of medicinal plants used by the Yucatec maya in the Northern District of Belize. Int. J. Herb. Med. 2017, 5, 33–42. [Google Scholar]
- Jasso-Gándara, S.N.; Estrada-Castillón, E.; Encina-Domínguez, J.A.; Villarreal-Quintanilla, J.A.; Arévalo Sierra, J.R. Plants used as medicinal in Güémez, Tamaulipas, north-eastern Mexico. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1130–1140. [Google Scholar] [CrossRef]
- Torres-León, C.; Rebolledo-Ramírez, F.; Aguirre-Joya, J.A.; Ramírez-Moreno, A.; Chávez-González, M.L.; Aguillón-Gutiérrez, D.R.; Camacho- Guerra, L.; Ramirez-Guzmán, N.; Hernández-Vélez, S.; Aguilar, C.N. Medicinal plants used by rural communities in the arid zone of Viesca and Parras Coahuila in northeast Mexico. Saudi Pharm. J. 2023, 31, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Figueroa, M.; Navarrete, A.; Rivero-Cruz, I. Chemistry and Biology of Mexican Medicinal Plants. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, J.K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 108, pp. 51–64. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- Anaya-Eugenio, G.D.; Rivero-Cruz, I.; Bye, R.; Linares, E.; Mata, R. Antinociceptive activity of the essential oil from Artemisia ludoviciana. J. Ethnopharmacol. 2016, 179, 403–411. [Google Scholar] [CrossRef]
- Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S.; Pérez-González, C.; Sánchez-Saldivar, D.; Arias-García, L. Antidiarrhoeal Activity of Nonanal, an Aldehyde Isolated from Artemisia ludoviciana. Pharm. Biol. 2002, 40, 263–268. [Google Scholar] [CrossRef]
- Bork, P.M.; Schmitz, M.L.; Kuhnt, M.; Escher, C.; Heinrich, M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-κB. FEBS Lett. 1997, 402, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Gálvez Romero, J.L.; Parada Sosa, C.M.; Burgoa, G.L.; Lorenzo-Leal, A.C.; Girgis El Kassis, E.; Bautista-Rodríguez, E.; Paredes-Juárez, G.A.; Hernandez, L.R.; Bach, H.; Juárez, Z.N. Antimycobacterial, cytotoxic, and anti-inflammatory activities of Artemisia ludoviciana. J. Ethnopharmacol. 2022, 293, 115249. [Google Scholar] [CrossRef]
- Rivero-Cruz, I.; Anaya-Eugenio, G.; Pérez-Vásquez, A.; Martínez, A.L.; Mata, R. Quantitative Analysis and Pharmacological Effects of Artemisia ludoviciana Aqueous Extract and Compounds. Nat. Prod. Commun. 2017, 12, 1531–1534. [Google Scholar] [CrossRef]
- Anaya-Eugenio, G.D.; Rivero-Cruz, I.; Rivera-Chávez, J.; Mata, R. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J. Ethnopharmacol. 2014, 155, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.S.; Cavaco, T.; Brodelius, M. Phenolic composition and antioxidant capacity of six Artemisia species. Ind. Crops Prod. 2011, 33, 382–388. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Swor, K.; Poudel, A.; Satyal, P.; Setzer, W.N. The Essential Oil Compositions of Ambrosia acanthicarpa Hook., Artemisia ludoviciana Nutt., and Gutierrezia sarothrae (Pursh) Britton & Rusby (Asteraceae) from the Owyhee Mountains of Idaho. Molecules 2024, 29, 1383. [Google Scholar] [CrossRef]
- Julián-Flores, A.; Aguilar-Zárate, P.; Michel, M.R.; Sepúlveda-Torre, L.; Torres-León, C.; Aguilar, C.N.; Chávez-González, M.L. Exploring the Therapeutic Potential of Medicinal Plants in the Context of Gastrointestinal Health: A Review. Plants 2025, 14, 642. [Google Scholar] [CrossRef] [PubMed]
- Rajeswara Rao, B.R. Genetic Diversity, Genetic Erosion, Conservation of Genetic Resources, and Cultivation of Medicinal Plants. In Genetic Diversity and Erosion in Plants; Ahuja, M.R., Jain, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 357–407. [Google Scholar]
- Shukla, S.K. Conservation of medicinal plants: Challenges and opportunities. J. Med. Bot. 2023, 7, 5–10. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Dantu, P.K. Micropropagation. In Plant Tissue Culture: An Introductory Text; Springer: Delhi, India, 2013; pp. 245–274. [Google Scholar]
- Li, F.; Liu, S.; Zeng, M. An efficient micropropagation protocol for Monochasma savatieri Franch. ex Maxim through seed germination and direct shoot regeneration. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 30–38. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The Genus Artemisia: A Comprehensive Review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, Genome Evolution, Biotechnological Issues and Research Including Applied Perspectives in Artemisia (Asteraceae). In Advances in Botanical Research; Kader, J.C., Delseny, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 60, pp. 349–419. [Google Scholar]
- Verma, P.K.; Verma, S. Biosynthesis of Essential Oils in Artemisia Species and Conservation through In Vitro Propagation. In Plants for Immunity and Conservation Strategies; Mishra, M.K., Kumari, N., Eds.; Springer Nature: Singapore, 2023; pp. 133–152. [Google Scholar]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Igamberdiev, A.U.; Debnath, S.C. Somaclonal Variation and Clonal Fidelity in Commercial Micropropagation: Challenges and Perspectives. Agronomy 2025, 15, 1489. [Google Scholar] [CrossRef]
- Sujatha, G.; Kumari, B.D.R. Effect of phytohormones on micropropagation of Artemisia vulgaris L. Acta Physiol. Plant. 2007, 29, 189–195. [Google Scholar] [CrossRef]
- Shinde, S.; Katewal, P.R.; Shanbhag, D.D.; Joseph, K.S.; Murthy, H.N. In Vitro Propagation of Artemisia japonica. J. Herbs Spices Med. Plants 2017, 23, 36–43. [Google Scholar] [CrossRef]
- Riahi, L.; Chograni, H.; Ben Rejeb, F.; Ben Romdhane, M.; Masmoudi, A.S.; Cherif, A. Efficient in vitro regeneration of the endangered species Artemisia arborescens L. through direct organogenesis and impact on secondary metabolites production. Hortic. Environ. Biotechnol. 2022, 63, 439–450. [Google Scholar] [CrossRef]
- Martins, J.P.R.; Wawrzyniak, M.K.; Ley-López, J.M.; Kalemba, E.M.; Mendes, M.M.; Chmielarz, P. 6-Benzylaminopurine and Kinetin Modulations during in Vitro Propagation of Quercus Robur (L.): An Assessment of Anatomical, Biochemical, and Physiological Profiling of Shoots. Plant Cell Tissue Organ Cult. 2022, 151, 149–164. [Google Scholar] [CrossRef]
- Jalal, A.; Oliveira Junior, J.C.D.; Ribeiro, J.S.; Fernandes, G.C.; Mariano, G.G.; Trindade, V.D.R.; Reis, A.R.D. Hormesis in Plants: Physiological and Biochemical Responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [Google Scholar] [CrossRef] [PubMed]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef]
- Nabi, N.; Saffeullah, P.; Singh, S. Micropropagation using direct and indirect organogenesis in Artemisia maritima L.: Scanning electron microscopy of somatic embryos and genome size analysis by flow cytometry. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 1012–1024. [Google Scholar] [CrossRef]
- Flasiński, M.; Hąc-Wydro, K. Natural vs. synthetic auxin: Studies on the interactions between plant hormones and biological membrane lipids. Environ. Res. 2014, 133, 123–134. [Google Scholar] [CrossRef]
- Shinde, S.; Sebastian, J.K.; Jain, J.R.; Hanamanthagouda, S.M.; Murthy, H.N. Efficient in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood) and assessment of genetic fidelity of micropropagated plants. Physiol. Mol. Biol. Plants 2016, 22, 595–603. [Google Scholar] [CrossRef]
- Bakhshipour, M.; Mafakheri, M.; Kordrostami, M.; Zakir, A.; Rahimi, N.; Feizi, F.; Mohseni, M. In vitro multiplication, genetic fidelity and phytochemical potentials of Vaccinium arctostaphylos L.: An endangered medicinal plant. Ind. Crops Prod. 2019, 141, 111812. [Google Scholar] [CrossRef]
- Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal Variation in Plants: Causes and Detection Methods. Plant Growth Regul. 2011, 63, 147–173. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef]
- Kumar, K.; Rao, I.U. Morphophysiologicals Problems in Acclimatization of Micropropagated Plants in-Ex. Vitro Conditions—A Reviews. J. Ornam. Hortic. Plants 2012, 2, 271–283. [Google Scholar]
- Grzelak, M.; Pacholczak, A.; Nowakowska, K. Challenges and insights in the acclimatization step of micropropagated woody plants. Plant Cell Tissue Organ Cult. 2024, 159, 72. [Google Scholar] [CrossRef]
- Martinez, P.; Serpe, M.; Barron, R.; Buerki, S. Acclimation and hardening of a slow-growing woody species emblematic to western North America from in vitro plantlets. Appl. Plant Sci. 2023, 11, e11515. [Google Scholar] [CrossRef]
- Baťková, P.; Pospíšilová, J.; Synková, H. Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol. Plant 2008, 52, 413–422. [Google Scholar] [CrossRef]
- Faisal, M.; Anis, M. Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets. Plant Cell Tiss. Organ Cult. 2009, 99, 125–132. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Wozniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Bordean, M.E.; Ungur, R.A.; Toc, D.A.; Borda, I.M.; Martis, S.G.; Pop, C.R.; Filip, M.; Vlassa, M.; Nasui, B.A.; Pop, A.; et al. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants 2023, 12, 596. [Google Scholar] [CrossRef]
- Oh, S.M.; Kim, D.Y.; Lee, S.Y.; Song, H.E.; Kim, I.S.; Seo, W.D.; Lee, J.H.; Oh, S.R.; Lee, D.Y.; Ryu, H.W. Comparisons of phenolic compounds and antioxidant activities during different growth stages in Artemisia gmelinii Weber ex Stechm with UPLC-QTOF/MS based on a metabolomics approach. Ind. Crops Prod. 2023, 202, 116999. [Google Scholar] [CrossRef]
- Foti, M.C.; Amorati, R. Non-phenolic radical-trapping antioxidants. J. Pharm. Pharm. 2009, 61, 1435–1448. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.; Jabeen, N.; Ashraf, K.; Sultan, K.; Farhan, M.; Hussain, M.I.; Deng, G.; Alsudays, I.M.; Saleh, M.A.; Tariq, S.; et al. Exploring the role of caffeic acid in mitigating abiotic stresses in plants: A review. Plant Stress. 2024, 12, 100487. [Google Scholar] [CrossRef]
- Khan, K.A.; Saleem, M.H.; Afzal, S.; Hussain, I.; Ameen, F.; Fahad, S. Ferulic acid: Therapeutic potential due to its antioxidant properties, role in plant growth, and stress tolerance. Plant Growth Regul. 2024, 104, 1329–1353. [Google Scholar] [CrossRef]
- Shanaida, M.; Korablova, O.; Rakhmetov, D.; Sydor, B.; Shanaida, V.; Hudz, N.; Brindza, J. Chromatographic Profiles of Polyphenols in the Herbs of Artemisia campestris L. and Artemisia ludoviciana Nutt. Biomed. Pharmacol. J. 2024, 17, 1461–1469. [Google Scholar] [CrossRef]
- Kamarauskaite, J.; Baniene, R.; Raudone, L.; Vilkickyte, G.; Vainoriene, R.; Motiekaityte, V.; Trumbeckaite, S. Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood (Artemisia absinthium L.) and Silver Wormwood (Artemisia ludoviciana Nutt.). Antioxidants 2021, 10, 1405. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Lister, C.E. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 2006, 19, 1–10. [Google Scholar] [CrossRef]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and Environmental Variation in Phenolic Content, Phenolic Acid Composition, and Antioxidant Activity of Hard Spring Wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zarate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate quantification of total phenolic content from plant extracts obtained by conventional and ultrasound methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Peña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Jafri, S.A.A.; Khalid, Z.M.; Khan, M.Z.; Jogezai, N. Evaluation of phytochemical and antioxidant potential of various extracts from traditionally used medicinal plants of Pakistan. Open Chem. 2022, 20, 1337–1356. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Reynoso-Camacho, R.; Mendoza-Díaz, S.; Loarca-Piña, G. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours. Food Chem. 2014, 161, 254–260. [Google Scholar] [CrossRef] [PubMed]



| Treatment | BAP 1 (mg/L) | KIN 2 (mg/L) | No. Shoots/ Explant * | Shoot Length (cm) * |
|---|---|---|---|---|
| T0 | 0.00 | 0.00 | 1.20 ± 0.09 c | 1.01 ± 0.08 d |
| T1 | 0.10 | 0.00 | 3.30 ± 0.34 a | 3.00 ± 0.12 a |
| T2 | 0.50 | 0.00 | 2.45± 0.20 b | 0.98 ± 0.07 d |
| T3 | 1.00 | 0.00 | 2.60 ± 0.18 b | 0.68 ± 0.03 e |
| T4 | 0.00 | 0.10 | 1.55 ± 0.14 c | 0.95 ± 0.08 d |
| T5 | 0.00 | 0.50 | 2.20 ± 0.24 b | 1.75 ± 0.09 b |
| T6 | 0.00 | 1.00 | 2.35 ± 0.17 b | 1.34 ± 0.08 c |
| Treatment | NAA 1 (mg/L) | IAA 2 (mg/L) | No. Roots/Shoot * | Root Length (cm) * | Shoot Length (cm) * |
|---|---|---|---|---|---|
| R0 | 0.00 | 0.00 | 8.70 ± 0.26 c | 3.44 ± 0.09 d | 2.35 ± 0.08 b |
| R1 | 0.10 | 0.00 | 9.60 ± 0.43 bc | 3.71 ± 0.08 bc | 2.44 ± 0.08 a |
| R2 | 0.50 | 0.00 | 10.60 ± 0.69 b | 4.04 ± 0.06 a | 2.20 ± 0.04 bc |
| R3 | 1.00 | 0.00 | 14.30 ± 0.92 a | 3.78 ± 0.09 b | 2.28 ± 0.06 abc |
| R4 | 0.00 | 0.10 | 10.55 ± 0.26 b | 3.48 ± 0.10 cd | 2.43 ± 0.07 a |
| R5 | 0.00 | 0.50 | 14.45 ± 0.56 a | 2.85 ± 0.05 e | 2.31 ± 0.06 abc |
| R6 | 0.00 | 1.00 | 13.85 ± 0.44 a | 2.66 ± 0.11 e | 2.11 ± 0.06 d |
| Sample | Dry Weight (%) | TPC (g GAE/100 g DW) | TFC (g QE/100 g DW) | RSA (Inhibition %) | TEAC (µmol TE/g DW) |
|---|---|---|---|---|---|
| IP | 8.00 ± 0.11 f | 1.44 ± 0.00 f | 0.29 ± 0.09 d | 59.83 ± 3.70 d | 71.28 ± 2.68 d |
| D7 | 10.52 ± 0.25 e | 1.34 ± 0.01 e | 0.13 ± 0.06 d | 38.21 ± 1.08 c | 58.51 ± 2.29 e |
| D14 | 17.97 ± 0.17 d | 2.50 ± 0.01 c | 0.91 ± 0.03 c | 81.40 ± 0.19 a | 85.56 ± 1.50 c |
| 1M | 21.28 ± 0.56 c | 1.80 ± 0.00 d | 0.96 ± 0.05 c | 82.50 ± 0.79 a | 108.61 ± 5.19 b |
| 2M | 26.39 ± 0.77 b | 2.63 ± 0.01 b | 1.38 ± 0.12 b | 81.92 ± 0.50 a | 118.51 ± 1.35 b |
| MP | 31.84 ± 0.70 a | 3.10 ± 0.03 a | 1.84 ± 0.08 a | 84.21 ± 0.38 a | 152.04 ± 5.78 a |
| TPC | TFC | RSA | TEAC | |
|---|---|---|---|---|
| TPC | 1 | |||
| TFC | 0.942 ** | 1 | ||
| RSA | 0.783 | 0.841 * | 1 | |
| TEAC | 0.853 * | 0.974 ** | 0.790 | 1 |
| Compound (mg/g DW) | IP | D7 | D14 | 1M | 2M | MP |
|---|---|---|---|---|---|---|
| Peak 1 | 0.65 ± 0.02 a | 0.62 ± 0.01 b | 0.56 ± 0.00 d | 0.59 ± 0.00 c | 0.56 ± 0.00 d | 0.58 ± 0.01 cd |
| Peak 2 | 0.42 ± 0.03 d | 0.49 ± 0.03 d | 3.93 ± 0.59 b | 2.48 ± 0.08 c | 4.59 ± 0.25 b | 8.04 ± 0.73 a |
| Caffeic acid | - | - | 0.20 ± 0.02 d | 0.33 ± 0.01 b | 0.56 ± 0.01 a | 0.28 ± 0.02 c |
| Peak 4 | - | - | - | - | - | 0.13 ± 0.01 |
| Peak 5 | 0.24 ± 0.03 a | 0.32 ± 0.06 a | - | - | - | 0.05 ± 0.03 b |
| Peak 6 | - | - | 0.18 ± 0.03 c | 0.52 ± 0.02 b | 0.65 ± 0.03 a | 0.72 ± 0.05 a |
| Ferulic acid | 1.94 ± 0.19 c | 2.15 ± 0.12 c | 4.46 ± 0.30 b | 4.44 ± 0.08 b | 4.63 ± 0.11 ab | 5.04 ± 0.17 a |
| Peak 8 | - | - | 0.13 ± 0.02 d | 0.51 ± 0.01 c | 1.43 ± 0.11 b | 2.27 ± 0.25 a |
| Peak 9 | 6.21 ± 0.16 c | 7.65 ± 0.33 b | 4.80 ± 0.18 d | 10.34 ± 0.09 a | 4.54 ± 0.35 d | 5.75 ± 0.26 c |
| Peak 10 | - | 0.32 ± 0.06 ab | - | 0.44 ± 0.01 a | 0.05 ± 0.04 c | 0.29 ± 0.07 b |
| Treatment | BAP 1 (mg/L) | KIN 2 (mg/L) |
|---|---|---|
| T0 | 0.00 | 0.00 |
| T1 | 0.10 | 0.00 |
| T2 | 0.50 | 0.00 |
| T3 | 1.00 | 0.00 |
| T4 | 0.00 | 0.10 |
| T5 | 0.00 | 0.50 |
| T6 | 0.00 | 1.00 |
| Treatment | NAA 1 (mg/L) | IAA 2 (mg/L) |
|---|---|---|
| R0 | 0.00 | 0.00 |
| R1 | 0.10 | 0.00 |
| R2 | 0.50 | 0.00 |
| R3 | 1.00 | 0.00 |
| R4 | 0.00 | 0.10 |
| R5 | 0.00 | 0.50 |
| R6 | 0.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Cortés, J.M.; Balderas-Robles, A.A.; Dufoo-Hurtado, E.; Ramírez-Jiménez, A.K.; Ruiz-Campos, G.; Madariaga-Navarrete, A.; Sharma, A.; Angulo-Bejarano, P.I. Micropropagation and Phytochemical Characterization of Artemisia ludoviciana Nutt.: Antioxidant Activity and Phenolic Profiles. Plants 2025, 14, 3781. https://doi.org/10.3390/plants14243781
Fernández-Cortés JM, Balderas-Robles AA, Dufoo-Hurtado E, Ramírez-Jiménez AK, Ruiz-Campos G, Madariaga-Navarrete A, Sharma A, Angulo-Bejarano PI. Micropropagation and Phytochemical Characterization of Artemisia ludoviciana Nutt.: Antioxidant Activity and Phenolic Profiles. Plants. 2025; 14(24):3781. https://doi.org/10.3390/plants14243781
Chicago/Turabian StyleFernández-Cortés, José Miguel, Andrea Amy Balderas-Robles, Elisa Dufoo-Hurtado, Aurea K. Ramírez-Jiménez, Genaro Ruiz-Campos, Alfredo Madariaga-Navarrete, Ashutosh Sharma, and Paola Isabel Angulo-Bejarano. 2025. "Micropropagation and Phytochemical Characterization of Artemisia ludoviciana Nutt.: Antioxidant Activity and Phenolic Profiles" Plants 14, no. 24: 3781. https://doi.org/10.3390/plants14243781
APA StyleFernández-Cortés, J. M., Balderas-Robles, A. A., Dufoo-Hurtado, E., Ramírez-Jiménez, A. K., Ruiz-Campos, G., Madariaga-Navarrete, A., Sharma, A., & Angulo-Bejarano, P. I. (2025). Micropropagation and Phytochemical Characterization of Artemisia ludoviciana Nutt.: Antioxidant Activity and Phenolic Profiles. Plants, 14(24), 3781. https://doi.org/10.3390/plants14243781

