Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus) †
Abstract
1. Introduction
2. Results
2.1. Control Period
2.2. ACGW Oviposition Period (t1 and t2 Stages)
2.3. Gall Induction (t3) and Early Morphogenesis (t4)
2.4. Advanced Gall Development Stage
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Sampling
4.2. Histochemical Detection of Hydrogen Peroxide Synthesis
4.3. DAB Staining Scoring and Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Am | Apical meristem |
ACGW | Asian chestnut gall wasp |
E | Eggs |
G | Gall |
Gf | Gall formation |
HR | Hypersensitive response |
H2O2 | Hydrogen peroxide |
DAB | 3,3′-diaminobenzidine |
ROS | Reactive oxygen species |
R | Resistance |
LS | Less susceptible |
L | Larvae |
Lv | Lateral vein |
Lb | Leaf blades |
Lp | Leaf promordia |
Mv | Midvein |
N | Necrosis |
Np | Needle puncture |
References
- Pereira-Lorenzo, S.; Ballester, A.; Corredoira, E.; Vieitez, A.M.; Agnanostakis, S.; Costa, R.; Ramos-Cabrer, A.M. Chestnut. In Fruit Breeding; Springer: Boston, MA, USA, 2012; pp. 729–769. [Google Scholar]
- Soylu, A. Kestane yetiştiriciliği ve özellikleri (Genişletilmiş II. Baskı); Hasad Yayıncılık: İstanbul, Turkey, 2004; 64p. [Google Scholar]
- Bounous, G.; Beccaro, G. Chestnut culture: Directions for establishing new orchards. Nucis E Inf. Bull. Res. Netw. Nuts (FAOCIHEAM) 2002, 11, 30–34. [Google Scholar]
- Gençer, N.S.; Mert, C. Studies on the gall characteristics of Dryocosmus kuriphilus in chestnut genotypes in Yalova and Bursa provinces of Turkey. Not. Bot. Horti Agrobo. 2018, 47, 177–182. [Google Scholar] [CrossRef]
- Müftüoğlu, B.; Mert, C.; Gençer, N.S. Assessing the susceptibility levels of chestnut cultivars/genotypes to Asian chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu). Not. Bot. Horti Agrobo. 2023, 51, 13056. [Google Scholar] [CrossRef]
- Okudai, S. Studies on the resistance of chestnut varieties to the chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu). Bull. Hort. Div. Tokai-Kinki Agric. Exp. Sta. 1956, 2, 85–94. [Google Scholar]
- Míguez-Soto, B.; Martínez Chamorro, E.; Fernández López, J. Tolerancia a la Avispa del Castano (Dryocosmus kuriphilus) en Variedades Tradicionales de Fruto e Híbridos Interespecíficos; Centro de Investigación Forestal de Lourizán Web; Xunta de Galicia: Santiago de Compostela, Spain, 2018; Available online: https://mediorural.xunta.gal/sites/default/files/publicacions/2019-10/Avespa_castineiro_cas.pdf (accessed on 10 August 2024).
- Panzavolta, T.; Bracalini, M.; Croci, F. Asian chestnut gall wasp in Tuscany: Gall characteristics, egg distribution and chestnut cultivars susceptibility. Agric. For. Entomol. 2012, 14, 139–145. [Google Scholar] [CrossRef]
- Sartor, C.; Dini, F.; Torello Marinoni, D.; Mellano, M.G.; Beccaro, G.L.; Alma, A.; Quacchia, A.; Botta, R. Impact of the Asian wasp Dryocosmus kuriphilus (Yasumatsu) on cultivated chestnut: Yield loss and cultivar susceptibility. Sci. Hortic. 2015, 197, 454–460. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Álvarez-Álvarez, P.; Cuenca Valera, B.; Lombardero, M.J. Local-scale dispersal patterns and susceptibility to Dryocosmus kuriphilus in different Castanea species and hybrid clones: Insights from a field trial. New For. 2021, 54, 9–28. [Google Scholar] [CrossRef]
- Dini, F.; Sartor, C.; Botta, R. Detection of a hypersensitive reaction in the chestnut hybrid ‘Bouche de Bétizac’ infested by Dryocosmus kuriphilus Yasumatsu. Plant Physiol. Biochem. 2012, 60, 67–73. [Google Scholar] [CrossRef]
- Murakami, Y. A History of studies on the chestnut gall wasp in Japan. In Proceedings, A Global Serious Pest of Chestnut Trees, Dryocosmus kuriphilus: Yesterday, Today and Tomorrow; Moriya, S., Ed.; National Agricultural Research Center (NARO): Tsukuba, Japan, 2010; pp. 38–40. [Google Scholar]
- Abrahamson, W.G.; McCrea, K.D.; Whitwell, A.J.; Vernieri, L.A. The role of phenolics in goldenrod ball gall resistance and formation. Biochem. Syst. Ecol. 1991, 19, 615–622. [Google Scholar] [CrossRef]
- Lombardero, M.J.; Ayres, M.P.; Álvarez-Álvarez, P.; Castedo-Dorado, F. Defensive patterns of chestnut genotypes (Castanea spp.) against the gall wasp, Dryocosmus kuriphilus. Front. For. Glob. Chang. 2022, 5, 1046606. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Bio. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef]
- Choudhury, S.; Panda, P.; Sahoo, L.; Panda, S.K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 2013, 8, e23681. [Google Scholar] [CrossRef]
- Bienert, G.P.; Møller, A.L.B.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007, 282, 1183–1192. [Google Scholar] [CrossRef]
- VanBreusegem, F.; Bailey-Serres, J.; Mittler, R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 2008, 147, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Offler, C.E.; Ruan, Y.L. A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing. Front. Plant Sci. 2014, 5, 745. [Google Scholar] [CrossRef] [PubMed]
- Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 2002, 3, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Veljovic-Jovanovic, S.; Noctor, G.; Foyer, C.H. Are leaf hydrogen peroxide concentrations commonly over estimated? The potential influence of artefactual interference by tissue phenols and ascorbate. Plant Physiol. Biochem. 2002, 40, 501–507. [Google Scholar] [CrossRef]
- Petrov, V.D.; Van Breusegem, F. Hydrogen peroxide—A central hub for information flow in plant cells. AoB Plants 2012, 2012, pls014. [Google Scholar] [CrossRef]
- Thordal-Christensen, H.; Zhang, Z.G.; Wei, Y.D.; Collinge, D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—Powdery mildew interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Spruce, J.; Mayer, A.M.; Osborne, D.J. A simple histochemical method for locating enzymes in plant tissue using nitrocellulose blotting. Phytochemistry 1987, 26, 2901–2903. [Google Scholar] [CrossRef]
- Bozsó, Z.; Ott, P.G.; Szatmári, Á.; Czelleng, A.; Varga, G.; Besenyei, E.; Sárdi, É.; Bányai, E.; Klement, Z. Early detection of bacterium-induced basal resistance in tobacco leaves with diaminobenzidine and dichlorofluorescein Diacetate. J. Phytopathol. 2005, 153, 596–607. [Google Scholar] [CrossRef]
- Bindschedler, L.V.; Dewdney, J.; Blee, K.A.; Stone, J.M.; Asai, T.; Plotnikov, J.M.; Denoux, C.; Hayes, T.; Gerrish, C.; Davies, D.R.; et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006, 47, 851–863. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L.; Buchenauer, H.; Han, Q.; Zhang, H.; Kang, Z.-S. Histochemical studies on the accumulation of reactive oxygen species (O2− and H2O2) in the incompatible and compatible interaction of wheat—Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 2007, 71, 230–239. [Google Scholar] [CrossRef]
- Jin, X.; Huang, Y.; Zeng, F.; Zhou, M.; Zhang, G. Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiol. Plant. 2009, 31, 1103–1109. [Google Scholar] [CrossRef]
- Chathalingath, N.; Gunasekar, A. Elucidating the physiological and molecular characteristics of bacterial blight incitant Xanthomonas auxonopodis pv. punicae; a life threatening phytopathogen of pomegranate (Punica granatum L.) and assessment of H2O2 accumulation during host-pathogen interaction. Microb. Pathog. 2023, 182, 106277. [Google Scholar] [CrossRef]
- White, J.F.; Torres, M.S.; Somu, M.P.; Johnson, H.L.; Irizarry, I.; Chen, Q.; Zhang, N.; Walsh, E.; Tadych, M.; Bergen, M.S. Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc. Res. Tech. 2012, 77, 566–573. [Google Scholar] [CrossRef]
- Guedes, L.M.; Torres, S.; Sáez-Carillo, K.; Becerra, J.; Pérez, C.; Aguilera, N. High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. Plant Sci. 2022, 314, 111114. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Isaias, R.M.S.; Fernandes, G.W.; Ferreira, B.G.; Carneiro, R.G.S.; Fuzaro, L. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J. Insect Physiol. 2016, 84, 103–113. [Google Scholar] [CrossRef]
- Hossain, M.A.; Bhattacharjee, S.; Saed-Moucheshi, A.; Qian, P.; Wang, X.; Li, H.; Burritt, D.J.; Fujita, M.; Tran, L.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef]
- Pérez, F.J.; Noriega, X.; Rubio, S.F. Hydrogen peroxide increases during endodormancy and decreases during budbreak in grapevine (Vitis vinifera L.) buds. Antioxidants 2021, 10, 873. [Google Scholar] [CrossRef] [PubMed]
- Nazir, F.; Fariduddin, Q.; Khan, T.A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef] [PubMed]
- Gaupels, F.; Furch, A.C.; Zimmermann, M.R.; Chen, F.; Kaever, V.; Buhtz, A.; Kehr, J.; Sarioglu, H.; Kogel, K.H.; Durner, J. Systemic induction of NO-, Redox-, and cGMP signaling in the pumpkin extrafascicular phloem upon local leaf wounding. Front. Plant Sci. 2016, 7, 154. [Google Scholar] [CrossRef]
- Corpas, F.J.; Chaki, M.; Fernández-Ocaña, A.; Valderrama, R.; Palma, J.M.; Carreras, A.; Begara-Morales, J.C.; Airaki, M.; del Río, L.A.; Barroso, J.B. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 2008, 49, 1711–1722. [Google Scholar] [CrossRef]
- Tanou, G.; Job, C.; Rajjou, L.; Arc, E.; Belghazi, M.; Diamantidis, G.; Molassiotis, A.; Job, D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009, 60, 795–804. [Google Scholar] [CrossRef]
- Bedetti, C.S.; Modolo, L.V.; Isaias, R.M.S. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem. Syst. Ecol. 2014, 55, 53–59. [Google Scholar] [CrossRef]
- Guiguet, A.; Dubreuil, G.; Harris, M.O.; Appel, H.M.; Schultz, J.C.; Pereira, M.H.; Giron, D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. J. Insect Physiol. 2016, 84, 4–21. [Google Scholar] [CrossRef]
- Salehi-Eskandari, B.; Kazemi Renani, S.; Hajihashemi, S. Evaluation of physiological and morphological responses of Salix alba and Salix babylonica to witches’ broom gall. Eur. J. Plant Pathol. 2024, 169, 395–408. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, W.; Chen, Y.; Zhao, Y.; Zhang, S.; Shi, F.; Khalil-Ur-Rehman, M.; Nieuwenhuizen, N.J. Transcriptomics and antioxidant analysis of two chinese chestnut (Castanea mollissima BL.) varieties provides new insights into the mechanisms of resistance to gall wasp Dryocosmus kuriphilus infestation. Front. Plant Sci. 2022, 13, 874434. [Google Scholar] [CrossRef]
- Pérez, F.J.; Vergara, R.; Rubio, S. H2O2 is involved in the dormancy-breaking effect of hydrogen cyanamide in grapevine buds. Plant Growth Regul. 2008, 55, 149–515. [Google Scholar] [CrossRef]
- Kuroda, H.; Sugiura, T.; Sugiura, H. Effect of hydrogen peroxide on breaking endodormancy in flower buds of Japanese Pear (Pyrus pyrifolia Nakai). J. Jpn. Soc. Hortic. Sci. 2005, 74, 255–257. [Google Scholar] [CrossRef]
- Cizkova, K.; Foltynkova, T.; Gachechiladze, M.; Tauber, Z. Comparative analysis of immunohistochemical staining intensity determined by light microscopy, imageJ and quPath in placental hofbauer cells. Acta Histochem. ET Cytochem. 2021, 54, 21–29. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Control | t1 | t2 | t3 | t4 | Sep | Oct | Dec | Jan | Feb | Mar | Apr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bouche de Betizac | 1.50 c | 1.66 bc | 2.16 ab | 2.50 a | 2.50 a | 2.66 a | 2.66 NS | 2.50 NS | 1.66 b | 1.33 cd | 2.66 NS | 1.16 NS |
Ertan | 1.00 d | 1.16 c | 1.16 c | 1.33 c | 1.16 c | 2.00 b | 2.16 | 2.16 | 1.16 b | 1.16 d | 2.66 | 1.00 |
Tülü | 1.66 bc | 1.33 bc | 1.83 b | 1.66 bc | 1.66 bc | 2.50 ab | 2.66 | 2.33 | 1.33 b | 1.16 d | 2.66 | 1.00 |
Maraval | 2.50 a | 1.66 bc | 2.33 ab | 2.50 a | 2.50 a | 2.66 a | 2.50 | 2.33 | 2.33 a | 1.83 bc | 2.83 | 1.16 |
Marigoule | 2.16 ab | 2.33 a | 2.50 a | 2.33 a | 2.50 a | 2.66 a | 2.50 | 2.50 | 2.50 a | 2.66 a | 3.00 | 1.33 |
Alimolla | 2.16 ab | 2.33 a | 2.50 a | 2.16 ab | 2.33 a | 2.33 ab | 2.50 | 2.66 | 2.50 a | 2.66 a | 2.83 | 1.33 |
Sarıkestane | 2.00 abc | 1.83 ab | 2.16 ab | 2.00 ab | 2.16 ab | 2.33 ab | 2.33 | 2.50 | 2.33 a | 2.33 ab | 2.83 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müftüoğlu, B.; Mert, C. Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus). Plants 2025, 14, 2089. https://doi.org/10.3390/plants14142089
Müftüoğlu B, Mert C. Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus). Plants. 2025; 14(14):2089. https://doi.org/10.3390/plants14142089
Chicago/Turabian StyleMüftüoğlu, Başak, and Cevriye Mert. 2025. "Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus)" Plants 14, no. 14: 2089. https://doi.org/10.3390/plants14142089
APA StyleMüftüoğlu, B., & Mert, C. (2025). Localization of Hydrogen Peroxide in Dormant Buds of Resistant and Susceptible Chestnut Cultivars: Changes During Gall Developmental Stages Induced by the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus). Plants, 14(14), 2089. https://doi.org/10.3390/plants14142089