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Abstract: Approaches for remote sensing can be used to estimate the influence of changes in environ-
mental conditions on terrestrial plants, providing timely protection of their growth, development, and
productivity. Different optical methods, including the informative multispectral and hyperspectral
imaging of reflected light, can be used for plant remote sensing; however, multispectral and hyper-
spectral cameras are technically complex and have a high cost. RGB imaging based on the analysis
of color images of plants is definitely simpler and more accessible, but using this tool for remote
sensing plant characteristics under changeable environmental conditions requires the development of
methods to increase its informativity. Our review focused on using RGB imaging for remote sensing
the characteristics of terrestrial plants. In this review, we considered different color models, methods
of exclusion of background in color images of plant canopies, and various color indices and their
relations to characteristics of plants, using regression models, texture analysis, and machine learning
for the estimation of these characteristics based on color images, and some approaches to provide
transformation of simple color images to hyperspectral and multispectral images. As a whole, our
review shows that RGB imaging can be an effective tool for estimating plant characteristics; however,
further development of methods to analyze color images of plants is necessary.

Keywords: RGB imaging; color models; color indices; multispectral imaging; hyperspectral imaging;
plant characteristics; plants; remote sensing; water deficit

1. Introduction

Plants play an important role for life on Earth, providing global productivity and
participating in water exchange and climate formation [1]; particularly, they are sources of
raw materials and food for humanity. Monitoring plants is important for their protection
under changeable environmental conditions and increasing productivity [2]. Particularly,
the monitoring of agricultural plants provides tracking growth and development rates,
prediction of biomass and crops [3–6], management of application of fertilizers [7–9] and
phytohormones [10], detection of biotic [11,12] and abiotic [13,14] stressor actions, and
others. In natural ecosystems, plant monitoring can be additionally used to observe
the compositions of species and the dynamics of their areas that are important for the
protection of these ecosystems [15,16]. Plant monitoring in cities can be important for
creating comfortable environmental conditions, managing pollution, and others.

Plant monitoring based on optical methods is distant and relatively simple; these
methods can be used for large areas and, therefore, provide fast remote sensing of plant
characteristics [17]. It is known that interaction with plants can qualitatively change
light spectra; this effect is related to the absorption of visible light by plant pigments
(mainly photosynthetic pigments), the absorption of short-wave infrared light (SWIR)
by water, and the scattering of near-infrared light (NIR) by the internal structures of
leaves [17,18]. Additionally, the fluorescence in the red and far-red spectral ranges can
inform on photosynthetic activity and its changes under the actions of stressors [19–21].
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It is important that physiological processes in plants can be related to narrow spectral
bands, because different pigments or their different transitive forms absorb light and,
in some cases, emit fluorescence in individual spectral bands [22–25]. Different chloro-
phylls [20,21], epoxidated and de-epoxidated forms of xanthophylls [26], or phytochrome
forms [24] are important examples of pigments influencing the spectra of light absorption in
plants. As a results, the value of reflectance [27,28], positions of its extremums (e.g., water
reflectance minimum [27] or pigment reflectance maximum [17,28]), and reflectance slope
(e.g., red edge [29]) are sensitive to physiological changes in plant. As a result, different
plant characteristics, including their changes under the actions of stressors, have specific
spectral signatures of reflectance and can be used for the remote sensing of plants.

Hyperspectral and multispectral imaging provide information about the reflectance
of plants through measuring reflectance in a series of narrow spectral bands (forming
reflectance spectrum) and in several specific bands, respectively; it is measured in each
pixel of the image [30]. Using narrowband reflectance indices, which are based on hyper-
spectral and multispectral imaging of plants, is a perspective tool for the estimation of
plant characteristics and their changes under the actions of stressors. Particularly, changes
in the reflectance indices can be related to changes in the content of photosynthetic pig-
ments [23,29], water [27], nitrogen [17], leaf area index (LAI), biomass [17,28], primary
productivity [31], and other plant characteristics. Despite the advantages of hyperspectral
and multispectral imaging for plant remote sensing, using this imaging has some serious
restrictions. Hyperspectral imaging is technically complex and needs high-cost measuring
systems (hyperspectral cameras); using a hyperspectral camera in remote sensing requires
strong synchronization between measurements and movement of the used mobile platform
(e.g., unmanned aerial vehicle, UAV) [32]. There are technologies (e.g., snapshot technol-
ogy) that can additionally increase the velocity of hyperspectral measurements; however,
the technical complexity and cost of these cameras are also strongly increasing [32,33].
Multispectral imaging is simpler and more accessible for plant remote sensing; however,
multispectral cameras remain relatively expensive [28].

In contrast, RGB imaging, which is based on the primary measurement of reflectance
in red (R), green (G), and blue (B) spectral bands, is technically simple and widely accessible
for plant remote sensing. Digital cameras with the matrix equipped by the Bayer filter
(RGB cameras) are used for this imaging [34]. The matrix of RGB cameras includes 25%,
50%, and 25% pixels with red, green, and blue light filters, respectively [34]. As a result,
values of R, G, and B are directly measured or are calculated by interpolation based
on corresponding values in the nearest pixels [34]. These systems do not require the
application of a prism (or diffraction grating) and “line by line” scanning, which are widely
used in hyperspectral cameras, or the application of several elementary cameras equipped
with narrowband spectral filters, which are widely used in multispectral cameras [28].
However, using interpolation for the color value calculation can increase spatial resolution
requirements in comparison with monochromic cameras. The simplicity of the RGB camera
contributes to using various platforms for RGB imaging [35–39], including handheld
devices (e.g., photo cameras or mobile phones) used for small and moderate distances
from plants or plant canopies, land transport (e.g., tractors) used for moderate distances,
UAV (copter and drones) used for moderate and large distances, airplanes used for large
distances, and satellites used for extremely large distances. Increasing the distance from
plants accelerates imaging [28] but decreases the spatial resolution and makes it difficult to
exclude backgrounds.

However, using RGB imaging has important restrictions. Particularly, the plant re-
flectance in red, green, and blue spectral bands has relatively small differences, e.g., the
difference between the reflectance for NIR and red light is higher than the difference be-
tween the reflectance for red and green light [40,41]. As a result, plant remote sensing
based on measuring the reflectance in both NIR and visible light spectral bands is often
better at showing plant characteristics than the sensing based on visible spectral bands
only [38,42–44]. However, there are works showing similar efficiencies of both meth-
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ods [36,45]. Particularly, some works show that the analysis of RGB spectral bands can
have a high efficiency for the estimation of plant biomass and chlorophyll content [41,44].

In spite of the fact that color changes can indicate stages of plant development, matu-
ration, senescence [11,13,46], shortage of fertilizations [7,9], action of stressors [13,14], etc.,
simple observations of color images are weakly informative and can only show strong
changes in plants. Thus, the development of methods of analysis of color images is an
important way to increase the efficiency of plant RGB imaging. Calculations of non-
dimensional color indices [44,47], texture analysis [48,49], and machine learning [14,50,51]
are widely used to estimate plant characteristics (including the contents of chlorophylls
and carotenoids, biomass and LAI, nitrogen plant content, and others) based on color
images. These plant characteristics are widely investigated because they can be used to
estimate plant development and growth rate under different environmental conditions.
Analysis of color images can also be used for the estimation of characteristics of the crops of
agricultural plants, e.g., quantity of flowers [52], grain yield [3,4], or seed quality (protein
and oil content [53]). Some works additionally show the perspectives of analysis of color
images for estimations of water content, canopy temperature, canopy-to-air temperature
difference, sap flow, and other characteristics [54,55].

Another important direction of investigations in plant RGB imaging is the develop-
ment of methods of transformation of color images to multispectral and hyperspectral
images [56]. At present, these methods are mainly preliminary; however, they could
strongly simplify plant remote sensing in the future.

Considering the potential importance of using plant RGB imaging, the aim of our
review was to summarize the literature data about the practical application of this RGB
imaging for the remote sensing of plant characteristics. This review focused on the analysis
of information on widely used color models, methods of background exclusion, ways
of using RGB imaging for the estimation of plant characteristics, and approaches for the
transformation of color images to multispectral and hyperspectral images. We did not
review numerous works (see, e.g., reviews [11,12]) devoted to the actions of phytopathogens
on plant color parameters because it is a separate and very extensive problem.

2. Widely Used Color Models

The analysis of color images, which are provided by RGB imaging, requires considera-
tion of the colorimetry basis and widely used color models. Hue, saturation, and brightness
are the basic parameters that provide information on color in the colorimetry. The hue
shows the type of chromatic color in the visible light spectrum, including violet, blue,
cyan, green, etc.; white, grey, and black, which are achromatic colors, are not included.
The degree of chromaticity is shown by the saturation of color. The achromatic color has
0% saturation, and the fully chromatic color has 100% saturation. Brightness is relative
lightness that ranges from 0% (black) to 100% (white) [57].

There are several color models that are actively used for the description of color images
(Table 1, Figure 1). HSB (hue, saturation, brightness) and similar HSI (hue, saturation,
intensity) models strongly correspond to the colorimetry basis [57] and can be effectively
used in RGB imaging (Figure 1a). Particularly, the hue is weakly affected by light conditions
and shadows [58]; as a result, using the HSI model provides effective segmentation and
contrasting of objects in color images [11,58].

However, registration of color images is based on using RGB cameras with matrices
equipped by the Bayer filter (red, green, and blue filters), meaning that the HSB and HSI
models do not technically correspond to this registration. In contrast, the RGB (red, green,
blue) model strongly corresponds to using RGB cameras because R, G, and B are absolute
chromatic coordinates showing intensities of light in red, green, and blue spectral channels,
respectively (Figure 1b). The combination of R, G, and B determines hue, saturation, and
brightness of color [49,59], providing, e.g., calculation of coordinates of HSB and HSI color
models (Table 1). The normalization of RGB (the normalized rgb color model) decreases



Plants 2024, 13, 1262 4 of 32

the influence of brightness, surface orientation, and other factors on the parameters of
color images [60].

Table 1. Color models widely used in investigations.

Color Model Color Model Transformation Description

RGB
[49,61]

R, G, and B are absolute chromatic
coordinates for red, green, and blue colors,
respectively; they determine hue, saturation,
and brightness.

Values of R, G, and B are initially measured
by matrix of RGB camera and typically range
from 0 to 255.

rgb
[58,59]

r = R
R+G+B

g = G
R+G+B

b = B
R+G+B

r, g, and b are normalized chromatic
coordinates for red, green, and blue colors,
respectively.

HSI
(variant 1)
[58]

Hue =
√

3(G−B)
(R−G)+(R−B)

Hue, saturation, and intensity are standard
color characteristics.

Saturation = 1 − 3
R+G+B (min(R, G, B))

Intensity = R+G+B
3

HSI
(variant 2)
[60]

Hue =

{
θ if B ≤ G

360 − θ otherwise

θ = cos−1

{
1
2 [(R−G)+(R−B)][

(R−G)2+(R−B)(G−B)]
1
2

} Hue, saturation, and intensity are standard
color characteristics.

Saturation = 1 − 3
R+G+B (min(R, G, B))

Intensity = R+G+B
3

HSB
[37,60]

Hue =


60·

{
G−B

max(R,G,B)−min(R,G,B)

}
, if max(R, G, B) = R

60·
{

B−R
max(R,G,B)−min(R,G,B)

}
, if max(R, G, B) = G

60·
{

R−G
max(R,G,B)−min(R,G,B)

}
, if max(R, G, B) = B

Hue, saturation, and brightness are standard
color characteristics.

Saturation =
max(R,G,B)−min(R,G,B)

max(R,G,B)
Brightness = max(R, G, B)

XYZ
[57,58,61,62]

Transformation from RGB to CIE XYZ
X = 0.607·R + 0.174·G + 0.200·B
Y = 0.299·R + 0.587·G + 0.114·B

Z = 0.066·G + 1.116·B

Y is the brightness.
X and Z are virtual components of the
primary spectra, where Z is related to
short-wavelength light and X is related to
large- and medium-wavelength light.

Transformation from rgb to CIE XYZ
X = 0.412·r + 0.358·g + 0.180·b
Y = 0.213·r + 0.751·g + 0.072·b
Z = 0.019·r + 0.119·g + 0.950·b

X/X0 > 0.01, Y/Y0 > 0.01, Z/Z0 > 0.01 X0, Y0, and Z0 are values of X, Y, and Z using
the white reflectance standard

L*a*b*
[49,58,61]

L∗ = 116
(

Y
Y0

) 1
3 − 16 L* is the normalized brightness.

a∗ = 500
((

X
X0

) 1
3 −

(
Y
Y0

) 1
3
) +a* is chroma in redness.

−a* is chroma in greenness.

b∗ = 200
((

Y
Y0

) 1
3 −

(
Z
Z0

) 1
3
) +b* is chroma in yellowness.

−b* is chroma in blueness.
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Table 1. Cont.

Color Model Color Model Transformation Description

L*u*v*
[49,58,61]

L∗ = 116
(

Y
Y0

) 1
3 − 16 L* is the normalized brightness.

u∗ = 13L∗
(

4X
X+15Y+3Z − 4X0

X0+15Y0+3Z0

) +u* is chroma in redness.
−u* is chroma in greenness.

v∗ = 13L∗
(

9Y
X+15Y+3Z − 9Y0

X0+15Y0+3Z0

) +v* is chroma in yellowness.
−v* is chroma in blueness.

L*c*h*
[49,61]

L∗ = 116
(

Y
Y0

) 1
3 − 16 L* is the normalized brightness.

c∗ =
√
(a∗)2 + (b∗)2 c* is the chroma.

h∗ = arctan
(

b∗

a∗

)
h* is the hue.
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Figure 1. Schemes of HSI (hue, saturation, intensity) (a); RGB (red, green, blue) (b); and L*a*b*
(brightness, red-green, yellow-blue) (c) color models. Typical range of R, G, and B (from 0 to 255)
is shown. The L*a*b* and L*u*v* color models are initially proposed for the industrial application
of colors. These spherical models include the normalized brightness axis (L*) and red–green (a* or
u*) and yellow–blue (b* or v*) chromatic axes (Figure 1c) [59]; all coordinates are calculated based
on X, Y, and Z (see above) and X0, Y0, and Z0, which are values of X, Y, and Z using the white
reflectance calibration standard (Table 1). The combination of these chromatic coordinates determines
all colors [61,62]. The system L*c*h* is based on other color components, including the brightness,
chroma, and hue [61], which are calculated based on L*, a*, and b* in the L*a*b* model (Table 1).
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The XYZ color model imitates the perception of light by the human retina, namely
S-cones (reception of short wavelength), M-cones (medium wavelength), and L-cones
(large wavelength) [58,59]. Y corresponds to brightness, and X and Z are virtual values of
the primary spectra [61]. Z is related to short-wavelength light, and X is related to large-
and medium-wavelength light [59]. X, Y, and Z are calculated based on R, G, and B in
accordance with the equations shown in Table 1.

Thus, there are various color models (some of which are considered above) focusing
on different characteristics of colors (e.g., hue, saturation, and brightness of plant color
can be independently investigated based on the HSB color model). It can be expected that
using various color models provides different efficiencies of detection of specific changes in
plants, i.e., using the optimal color model is one of the methods of analysis of color images
in plant remote sensing.

3. Methods of Background Exclusion

The development of methods of separation between plant canopy and background
(mainly soil background) is an important task for plant remote sensing because necessity
of this separation is supported by experimental works; particularly, Scharf and Lory [63]
revealed that excluding soil pixels increases the relation of color parameters to nitrogen
(N) content and SPAD (which shows the content of chlorophylls). However, the great
variability of color and texture characteristics of the background (e.g., various soils) can
disturb the separation between the plant canopy and the background [64,65].

The analysis of images, which include plants and background objects (water, bare
lands, roads, buildings, etc.), shows that they have significant differences in red and green
spectral bands [39]. In contrast, differences in the blue band can be weak (e.g., for plants
and water). Ref. [39] showed that the analysis of reflectance in red and green spectral
bands can be effectively used for the separation of plants from other objects. In contrast,
Woebbecke et al. [64] showed that soil reflectance in the red band is higher or similar to the
reflectance of plants, and the reflectance in the blue band is high for most soil surfaces. The
reflectance in the green band is related to plants [39,64]. These results show that R, G, and
B can be the basis of separation between plants and backgrounds; however, the efficiency
of simply using reflectance in these bands for separation is rather restricted.

Color indices, which are based on the combination of reflectance in R, G, and/or B, are
widely used for the separation between plants and background (particularly soil) [64–67],
and separation is often based on using the threshold methods. Particularly, it was shown
that using the excess green index (ExG) forms near-binary images which provide the
separation between plants and background [64]. Meyer and Neto [65] showed that the
difference (ExGR) between the excess green index (ExG) and excess red index (ExR) can be
effectively used for the separation between soybean plants and two types of background
(soil and straw). The difference between G and R (GMR) is also used for separation between
plants and soil background [68,69].

The threshold method of the separation between plants and background in color
images is widely used. It is based on the assumed threshold [70–72] or on the estimated
threshold, which can be revealed through using the Otsu-based method [65,73], Ridler
method [74,75], triangle method [76], histogram-based methods [77–80], and other methods
of object classification.

There are numerous examples of using color indices for the separation between plants
and background. Kataoka et al. [73] used the color index of vegetation (CIVE) for separation
between plants and background; the threshold level was calculated based on discriminant
analysis. Kırcı et al. [81] estimated the threshold based on color indices and histograms of
their distributions; scatter plots were used to classify vegetation and soil. Netto et al. [76]
compared methods of estimation of thresholds for normalized difference index (NDI),
ExGR, and ExG. It was shown that the triangle, Otsu-based, and Ridler methods were
very effective and had high accuracy (about 85–90%). Zhang et al. [39] used the iterative
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method to estimate the optimal threshold for the separation between background and
vegetation pixels.

The new histogram-based method of the threshold estimation was suggested by
Liu et al. [80]. In accordance with this method, the frequency histogram of index values
(ExG or a* from the L*a*b* color model), which are related to plants and background, are
fitted by the sum of Gaussians. Three variants of thresholds are further calculated. The
initial threshold (T0), which approximately shows borders between soil and plant pixels,
is estimated based on the visual minimum between maximums, related to plants and
background, in the frequency histogram of ExG (or a*). T1 and T2 thresholds are based
on the calculation of ExG (or a*) corresponding to the intersection of Gaussians related
to plants and background. Calculation of the T1 threshold is based on the minimization
of errors; calculation of the T2 threshold is based on the assumption of equal errors for
plants and background. It is interesting that the T2 threshold seems to be the most effective
in the separation between plants and background. Song et al. [82] proposed to use this
histogram-based method in combination with the HSI (hue, saturation, intensity) color
model for revealing shaded parts of plants. Zhang et al. [55] proposed to use the mean value
of Gaussian distribution of ExG for a maize canopy (MGDEXG) to exclude the background.

It should be finally noted that excluding parts of plants from the image can increase re-
lations between measured color indices and plant characteristics. Particularly, Liu et al. [83]
showed that excluding naked barley ears in the color image can improve relations between
some color indices and SPAD.

Thus, different reflectances of plants and background can be used to exclude this
background. Exclusion is the basis of further analysis of the color images of plants to
estimate their characteristics.

4. Estimation of Plant Characteristics Using RGB Imaging
4.1. Content of Photosynthetic Pigments and Nitrogen Content

We consider the relation of color parameters to the content of photosynthetic pigments
(chlorophylls a and b, carotenoids) and to the nitrogen content in the same Section 4.1
because the content of chlorophylls in plants is strongly related to the nitrogen content [84].
It should be noted that optical SPAD chlorophyll meters, which are based on the measure-
ments of light transmission through leaves at 650 and 940 nm [85], are widely used for
the estimation of the content of chlorophylls a and b, concentration of carotenoids, and
nitrogen content [86–88]. Thus, the analysis of relations between color parameters and
SPAD values is also included in this section.

Chlorophylls are known to strongly absorb light in red and blue spectral bands of
the visible light [20,89]; in contrast, green light is minimally absorbed by chlorophylls and
can be used by photosynthetic processes in deep layers of the leaf [90]. It can be expected
that the chlorophyll content should be related to the reflectance in these spectral bands;
however, these relations can be intricated.

It is known that reflectance in the red and green spectral bands is negatively correlated
to concentrations of chlorophylls a and b and total chlorophylls; in contrast, reflectance
in the blue spectral band has a positive linear correlation with the chlorophyll concen-
trations [37,53,91–94]. The relation between B and the chlorophyll content can be non-
stable [95]; this relation is stronger for the normalized b values [93,96]. The investigation
by Gupta et al. [97] showed that the relation between SPAD values and non-normalized R,
G, and B were low and not significant; in contrast, using the normalized r, g, and b was
more efficient. The chlorophyll content is also related to parameters of other color models,
including HSI, HSB, and L*a*b* [37,91,93] (Table 2); however, the strength of these relations
can be moderate in some cases (e.g., R2 is about 0.38–0.39 for relations between the content
of photosynthetic pigments and a* and 0.48 for the relation between the total chlorophyll
content and the hue [37]).
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Table 2. Plant characteristics (related to color parameters) and abiotic stressors that influence
these parameters.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Red coordinate R

Total chlorophyll content
(R2 = 0.08–0.94) [37,92,94–96,98]

Chlorophyll a (R2 = 0.45)
Chlorophyll b (R2 = 0.4)
Carotenoids (R2 = 0.45)

[37]

SPAD (R2 = 0.08–0.92) [9,83,93,99]

Plant nitrogen concentration (R2 = 0.91) [100]

Leaf nitrogen concentration (R2 = 0.05–0.99) [91,96]

Nitrogen fertilization (R2 = 0.69) [9]

N-nutrient index (R2 = 0.08–0.95) [96]

Nitrogen deficit [13]

Fresh biomass (R2 = 0.29–0.76)
Dry biomass (R2 = 0.30–0.67)

[101]

Aboveground biomass (R2 = 0.34–0.82) [5,6,96,102]

LAI (R2 = 0.26–0.72) [101,102]

Plant height (R2 = 0.17–0.55) [101]

Grain yield (R2 = 0.65–0.96) [3,38]

Protein content (R2 = 0.65)
Oil content (R2 = 0.46)

Protein plus oil content (R2 = 0.53)
1000-seed weight (R2 = 0.41)

[53]

Water deficit [13]

Green coordinate G

Total chlorophyll (R2 = 0.22–0.94) [9,37,91,92,95,96,98]

Chlorophyll a (R2 = 0.67)
Chlorophyll b (R2 = 0.62)
Carotenoids (R2 = 0.67)

[37]

SPAD (R2 = 0.37–0.90) [9,53,66,83,93,99]

Leaf nitrogen concentration (R2 = 0.36–0.92) [91,96]

Plant nitrogen concentration (R2 = 0.45–0.54)
Sap nitrate concentration (R2 = 0.46)

[66]

Nitrogen fertilization (R2 = 0.69) [9]

N-nutrient index (R2 = 0.46–0.98) [96]

Nitrogen deficit [13]

Canopy biomass (R2 = 0.49–0.72) [66]

Aboveground biomass (R2 = 0.59–0.96) [5,6,96]

Grain yield (R2 = 0.39–99) [3,38]

Protein content (R2 = 0.64)
Oil content (R2 = 0.45)

Protein plus oil content (R2 = 0.53)
1000-seed weight (R2 = 0.39)

[53]

Water deficit [13]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Blue coordinate B

Carotenoids (R2 = 0.36) [37]

SPAD (R2 = 0.04–0.64) [83,93]

Plant nitrogen concentration (R2 = 0.89) [100]

Protein content (R2 = 0.62)
Oil content (R2 = 0.45)

Protein plus oil content (R2 = 0.50)
[53]

Grain yield (R2 = 0.47–0.97) [3]

Aboveground biomass (R2 = 0.49) [6]

Plant water content (R2 = 0.48) [102]

Water deficit [13]

Normalized red
coordinate

r = R
R+G+B

Total chlorophyll content (R2 = 0.03–0.91) [94–96]

Chlorophyll a (R2 = 0.74)
Chlorophyll b (R2 = 0.67)

Total chlorophyll (R2 = 0.74)
Carotenoids (R2 = 0.76)

[37]

SPAD (R2 = 0.03–0.8) [68,83,92,93,97,99,103]

Sap nitrate concentration (R2 = 0.78) [103]

Plant nitrogen concentration (R2 = 0.48–0.67) [104,105]

Shoot nitrogen concentration (R2 = 0.63) [103]

Leaf nitrogen concentration (R2 = 0.04–0.99) [96,105]

N-nutrient index (R2 = 0.03–0.96) [96]

Nitrogen uptake (R2 = 0.34–0.41) [96]

Aboveground biomass (R2 = 0.05–0.84) [6,96,102]

LAI (R2 = 0.42–0.55) [102]

Plant height (R2 = 0.25–0.52) [102]

Grain yield (R2 = 0.01–0.94) [3,4]

Plant water content (R2 = 0.46–0.62) [102]

Water deficit [13]

Normalized green
coordinate

g = G
R+G+B

Chlorophyll content (R2 = 0.21–0.81) [96]

SPAD (R2 = 0.01–0.62) [83,93,99,103,106]

Plant nitrogen concentration (R2 = 0.29–0.61) [69,104–107]

Leaf nitrogen concentration (R2 = 0.24–0.99) [96,105]

Nitrate concentration of leafstalk (R2 = 0.62) [106]

Stem nitrate concentration (R2 = 0.62) [107]

Sap nitrate concentration (R2 = 0.68) [103]

N-nutrient index (R2 = 0.27–0.94) [96]

Shoot nitrogen accumulation (R2 = 0.56) [108]

Shoot nitrogen concentration (R2 = 0.68) [103]

Inorganic nitrogen in soil (R2 = 0.76) [106]

Aboveground biomass (R2 = 0.02–0.79) [5,69,96]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Normalized green
coordinate

g = G
R+G+B

Dry mass (R2 = 0.3–0.86) [108–110]

LAI (R2 = 0.59) [69,108]

Plant height (R2 = 0.24–0.44) [102]

Grain yield (R2 = 0.3–0.89) [3,107,109]

Normalized blue
coordinate

b = B
R+G+B

Total chlorophyll content (R2 = 0.01–0.90) [95,96,102]

SPAD (R2 = 0.03–0.71) [68,83,93,97,103]

Plant nitrogen concentration (R2 = 0.03–0.77) [102,104,105]

Leaf nitrogen concentration (R2 0.11–0.69) [96,105]

Shoot nitrogen concentration (R2 = 0.55) [103]

Sap nitrate concentration (R2 = 0.53) [103]

Nitrogen deficit [13]

N-nutrient index (R2 = 0.18–0.60) [96]

Aboveground biomass (R2 = 0.36–0.57) [5,6]

LAI (R2 = 0.03–0.48) [102]

Grain yield (R2 = 0.06–0.86) [3,4]

Water deficit [13]

Red–green sum
index (RGSI) RGSI = R + G

Total chlorophyll content (R2 = 0.72–0.87) [92,94]

SPAD (R2 = 0.57–0.59) [92,99]

Red–blue sum index
(RBSI) RBSI = R + B

Total chlorophyll content (R2 = 0.53) [92]

SPAD (R2 = 0.43–0.54) [92,99]

Normalized
red–blue sum index

(NRBSI)
NRBSI = r + b Plant nitrogen concentration (R2 = 0.7)

Leaf nitrogen concentration (R2 = 0.7)
[105]

Green–blue sum
index (GBSI) GBSI = G + B SPAD (R2 = 0.42) [99]

Red-green blue sum
index (RGBSI) RGBSI = R + G + B

Total chlorophyll content (R2 = 0.71) [92]

SPAD (R2 = 0.54–0.64) [92,99]

Difference BG-R
index (DBGRI) DBGRI = B + G − R SPAD (R2 = 0.39) [92]

Normalized
Difference BG-R
index (NDBGRI)

NDBGRI = B+G−R
B+G+R

Chlorophyll a (R2 = 0.81–0.93)
Chlorophyll b (R2 = 0.8–0.93)
Carotenoids (R2 = 0.78–0.93)

Nitrogen content (R2 = 0.69–0.78)

[44]

Red minus green RMG = R − G SPAD (R2 = 0.56) [99]

Normalized green
minus red index

(NGMR)
NGMR = g − r

Chlorophyll a (R2 = 0.36–0.62)
Chlorophyll b (R2 = 0.33–0.6)
Carotenoids (R2 = 0.28–0.56)

[44]

Green minus red
index (GMR) GMR = G − R

SPAD (R2 = 0.36) [9]

Plant nitrogen concentration (R2 = 0.46–0.93) [69,104]

Nitrogen fertilization (R2 = 0.48) [9]

LAI (R2 = 0.83–0.95) [69]

Aboveground biomass (R2 = 0.79–0.93) [69]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Normalized green
minus blue (NGMB)

NGMB = g − b
Plant nitrogen concentration (R2 = 0.6)
Leaf nitrogen concentration (R2 = 0.6)

[105]

Total chlorophyll content (R2 = 0.26–0.79) [95]

Green minus blue
(GMB) GMB = G − B

Total chlorophyll content (R2 = 0.52–0.96) [9,95]

SPAD (R2 = 0.37–0.83) [9,83]

Nitrogen fertilization (R2 = 0.77) [9]

Normalized red
minus blue index

(NRMB)
NRMB = r − b Total chlorophyll content (R2 = 0.44–0.9) [95]

Red minus blue
index (RMB) RMB = R − B

Total chlorophyll content (R2 = 0.44–0.99) [9,92,95,111]

Chlorophyll a (R2 = 0.67)
Chlorophyll b (R2 = 0.55)

[111]

SPAD (R2 = 0.32–0.62) [9,83,92,99,111]

Leaf nitrogen content (R2 = 0.6) [111]

Nitrogen fertilization (R2 = 0.76) [9]

Green–blue simple
ratio (GB) GB = G

B

SPAD (R2 = 0.18–0.82) [112]

Plant nitrogen concentration (R2 = 0.7)
Leaf nitrogen concentration (R2 = 0.7)

[105]

Aboveground biomass (R2 = 0.57) [5]

Blue–green simple
ratio (BG) BG = B

G

SPAD (R2 = 0.00–0.74) [83]

Fresh biomass (R2 = 0.92–0.94)
Dry biomass (R2 = 0.74–0.85)

LAI (R2 = 0.79–0.94)
Plant height (R2 = 0.74–0.90)

[101]

Red–blue simple
ratio (RB) RB = R

B

Plant nitrogen concentration (R2 = 0.00–0.77) [104,105]

Leaf nitrogen concentration (R2 = 0.6) [105]

Fresh biomass (R2 = 0.77–0.94)
Dry biomass (R2 = 0.64–0.90)

[101]

Aboveground biomass (R2 = 0.47) [5]

LAI (R2 = 0.76–0.88)
Plant height (R2 = 0.61–0.86)

[101]

Blue–red simple
ratio (BR) BR = B

R

Total chlorophyll content (R2 = 0.09–0.97) [96,111]

Chlorophyll a (R2 = 0.6)
Chlorophyll b (R2 = 0.45)

SPAD (R2 = 0.48)
[111]

Leaf nitrogen content (R2 = 0.05–0.96) [36,96,111]

Total canopy nitrogen content (R2 = 0.55) [36]

N-nutrient level (R2 = 0.12–0.92) [96]

Aboveground biomass (R2 = 0.48–0.84) [96]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Green–red simple
ratio (GR) GR = G

R

Total chlorophyll content (R2 = 0.01–0.92) [94,96]

Chlorophyll a (R2 = 0.69–0.89)
Chlorophyll b (R2 = 0.68–0.89)
Carotenoids (R2 = 0.64–0.88)

[44]

SPAD (R2 = 0.04–0.91) [68,83,112,113]

Aboveground biomass (R2 = 0.01–0.85) [50,69,96]

LAI (R2 = 0.66–0.93) [69]

Plant nitrogen concentration (R2 = 0.55–0.92) [69,104,105]

Leaf nitrogen concentration (R2 = 0.12–0.99) [96,105]

N-nutrient index (R2 = 0.11–0.95) [96]

Red–green ratio
index

(RGRI)
RGRI = R

G

Canopy temperature [54]

Leaf nitrogen concentration (R2 = 0.7–0.87) [47,105]

Plant nitrogen concentration (R2 = 0.1–0.7) [101,105]

Flower number (R2 = 0.83) [52]

Normalized
difference red–blue

index (NDRBI),
(alternative name is
Kawashima index,

IKAW)

NDRBI = R−B
R+B

Total chlorophyll content (R2 = 0.33–0.9) [94,95,111]

Chlorophyll a (R2 = 0.59)
Chlorophyll b (R2 = 0.44)

[111]

SPAD (R2 = 0.2–0.84) [111,112,114,115]

Leaf nitrogen concentration (R2 = 0.51–0.92) [47,105,111]

Plant nitrogen concentration (R2 = 0.6) [105]

Aboveground biomass (R2 = 0.48–0.50) [5,116]

LAI (R2 = 0.71) [117]

Grain yield (R2 = 0.25–0.59) [114]

Normalized
green–blue difference

index; normalized
difference green–blue

index (NGBDI,
NDGBI)

NGBDI = G−B
G+B

Total chlorophyll content (R2 = 0.29–0.85) [95]

SPAD (R2 = 0.00–0.71) [83]

Normalized
green–red difference

index (NGRDI)
NGRDI = G−R

G+R

Total leaf chlorophyll (R2 = 0.62) [118]

Chlorophyll a (R2 = 0.72–0.89)
Chlorophyll b (R2 = 0.71–0.89)
Carotenoids (R2 = 0.68–0.89)

[44]

SPAD (R2 = 0.05–0.84) [83,112,118,119]

Plant nitrogen concentration (R2 = 0.46–0.79) [104,105,120]

Leaf nitrogen concentration (R2 = 0.51–0.87) [47,105,120]

Leaf nitrogen accumulation (R2 = 0.5) [43]

Aboveground biomass (R2 = 0.39–0.56) [40,50,116,121]

Aboveground dry biomass (R2 = 0.3–0.55) [41]

Dry biomass (R2 = 0.0–0.92) [72,122,123]

Leaf dry matter (R2 = 0.53) [43]

LAI (R2 = 0.18–0.74) [43,102,117,124]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Normalized
green–red difference

index (NGRDI)
NGRDI = G−R

G+R

Surface of an individual plant [125]

Vegetation cover (R2 = 0.05–0.81) [45]

Stem diameter [125]

Plant height (R2 = 0.27–0.53) [102,125]

Plant water content (R2 = 0.37–0.50) [102]

Grain yield (R2 = 0.26–0.59) [124]

Flower number (R2 = 0.83) [52]

Woebbecke’s indices
(WI) WI = G−B

|R−G| SPAD (R2 = 0.17–0.85) [112]

Ku’s index (KI) KI = R
R−B Total chlorophyll (R2 = 0.33–0.99) [9]

Simple ratio intensity
R-GB (SRrgb) SRrgb = R

G+B

Chlorophyll a (R2 = 0.82–0.93)
Chlorophyll b (R2 = 0.81–0.93)
Carotenoids (R2 = 0.79–0.93)

Leaf nitrogen concentration (R2 = 0.69–0.79)

[44]

Normalized
difference index

(NDI)
NDI = r−g

r+g+0.01

Chlorophyll a (R2 = 0.72–0.9)
Chlorophyll b (R2 = 0.71–0.9)
Carotenoids (R2 = 0.67–0.89)

[44]

Dry mass (R2 = 0.48)
LAI (R2 = 0.52)

Shoot nitrogen accumulation (R2 = 0.56)
[108]

Soil adjusted
vegetation index

green (RGB)
(SAVIgreen)

SAVIgreen =
(1+L)(g−r)
(g+r)+L , L = 0.5

Chlorophyll a (R2 = 0.7–0.89)
Chlorophyll b (R2 = 0.69–0.88)
Carotenoids (R2 = 0.65–0.88)

[44]

Optimized soil
adjusted vegetation
index green (RGB)

(OSAVIgreen)

OSAVIgreen =
1.5·(g−r)
g+r+0.16

Chlorophyll a (R2 = 0.71–0.89)
Chlorophyll b (R2 = 0.7–0.89)
Carotenoids (R2 = 0.67–0.88)

[44]

Enhanced vegetation
index green (RGB)

(EVIgreen)
EVIgreen =

2.5·(g−r)
g+6·r−7.5·b+1

Chlorophyll a (R2 = 0.81–0.92)
Chlorophyll b (R2 = 0.8–0.92)
Carotenoids (R2 = 0.79–0.92)

Leaf nitrogen concentration (R2 = 0.69–0.77)

[44]

Enhanced vegetation
index 2 green (RGB)

(EVI2green)
EVI2green =

2.5·(g−r)
g+2.4·r+1

Chlorophyll a (R2 = 0.69–0.89)
Chlorophyll b (R2 = 0.68–0.88)
Carotenoids (R2 = 0.66–0.88)

[44]

Principal component
analysis Pagola’s

index (IPCA)

Ipca = 0.7582|r − b|−
−0.1168|r − g|+ 0.6414|g − b|

SPAD (R2 = 0.1–0.88)
Grain yield (R2 = 0.35–0.59)

[114]

Principal component
analysis Saberioon’s

index (IPCAS)

IPCAS = 0.994|R − B|+
+0.914|G − R|+ 0.961|G − B|

SPAD (R2 = 0.62) [126]

Aboveground biomass (R2 = 0.78) [5]

Red–green fit index
(RGFI)

RGFI = 2·G − 0.924·R−
−44.851 − B SPAD (R2 = 0.94) [119]

Blue–green fit index
(BGFI)

BGFI = 2·G − R−
−73.645 − 0.71·B SPAD (R2 = 0.62) [119]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Normalized excess
green index (NExG)

NExG = 2·g − r − b

Canopy-to-air temperature difference
(R2 = 0.47–0.8)

Crop water stress index (R2 = 0.63–0.8)
Canopy temperature (R2 = 0.66–0.73)
Leaf water potential (R2 = 0.85–0.87)

Sap flow (R2 = 0.62)

[55]

SPAD (R2 = 0.45) [126]

Plant nitrogen concentration (R2 = 0.28–0.68) [105,120]

Leaf nitrogen concentration (R2 = 0.26–0.65) [105,120]

Aboveground biomass (R2 = 0.47) [5]

Fresh biomass (R2 = 0.48–0.88)
Dry biomass (R2 = 0.27–0.81)

[101]

Global primary productivity (GPP) [46]

LAI (R2 = 0.09–0.88) [101,124]

Surface of an individual plant [125]

Vegetation cover (R2 = 0.03–0.77) [45]

Plant height (R2 = 0.53–0.69) [101,125]

Stem diameter [125]

Excess green index
(ExG) ExG = 2·G − R − B

SPAD (R2 = 0.34–0.86) [83,119]

Flower number (R2 = 0.58) [52]

Excess red index
(ExR)

ExR = 1.4·g − r

Plant nitrogen concentration (R2 = 0.52–0.72) [104,105]

Leaf nitrogen concentration (R2 = 0.7) [105]

Leaf nitrogen accumulation (R2 = 0.49) [43]

Aboveground biomass (R2 = 0.40–0.56) [102,116]

LAI (R2 = 0.16–0.8) [43,102,117,124]

Leaf dry matter (R2 = 0.52) [43]

Surface of an individual plant
Stem diameter [125]

Plant height (R2 = 0.26–0.52) [102,125]

Plant water content (R2 = 0.40–0.52) [102]

Grain yield (R2 = 0.26–0.58) [124]

Excess blue
vegetation index

(ExB)
ExB = 1.4·b − g

Aboveground biomass (R2 = 0.57) [5]

Plant nitrogen concentration (R2 = 0.7)
Leaf nitrogen concentration (R2 = 0.7)

[105]

Normalized excess
green minus excess

red (ExGR)
NExGR = NExG − NExR

SPAD (R2 = 0.44) [126]

Plant nitrogen concentration (R2 = 0.6)
Leaf nitrogen concentration (R2 = 0.6)

[105]

LAI (R2 = 0.09–0.65) [124]

Aboveground biomass (R2 = 0.39) [5]

Surface of an individual plant
Plant height

Stem diameter
[125]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Excess green minus
excess red (ExGR) ExGR = ExG − ExR SPAD (R2 = 0.09–0.72) [112]

Green leaf index
(GLI) GLI = 2·G−R−B

2·G+R+B

SPAD (R2 = 0.00–0.79) [83,118,119,127]

Total leaf chlorophyll (R2 = 0.64) [118]

Leaf nitrogen concentration (R2 = 0.6)
Plant nitrogen concentration (R2 = 0.6)

[105]

Aboveground biomass (R2 = 0.49–0.74) [5,50]

Dry biomass (R2 = 0.33–0.36) [123]

LAI (R2 = 0.07–0.58) [124]

Surface of an individual plant
Stem diameter [125]

Plant height (R2 = 0.24–0.44) [102,125]

Flower number (R2 = 0.37) [52]

Water damage in field [128]

Modified green–red
vegetation index

(MGRVI)
MGRVI = G2−R2

G2+R2

Plant nitrogen concentration (R2 = 0.6)
Leaf nitrogen concentration (R2 = 0.6)

[105]

Aboveground biomass (R2 = 0.40–0.56) [50,102,116]

Dry biomass (R2 = 0.53–0.59) [122]

LAI (R2 = 0.45–0.80) [102,117]

Plant height (R2 = 0.27–0.53) [102]

Plant water content (R2 = 0.37–0.48) [102]

Flower number (R2 = 0.83) [52]

Red–green blue
vegetation index

(RGBVI)
RGBVI = G2−R·B

G2+R·B

SPAD (R2 = 0.18–0.53) [112]

Plant nitrogen concentration (R2 = 0.6)
Leaf nitrogen concentration (R2 = 0.6)

[105]

Fresh biomass (R2 = 0.21–0.55) [129]

Dry biomass (R2 = 0.44) [122]

Color index of
vegetation (CIVE)

CIVE = 0.441·R − 0.881·G+
+0.385·B + 18.78745

Aboveground biomass (R2 = 0.72) [5]

Flower number (R2 = 0.59) [52]

Color index of
vegetation (CIVE)

CIVE = 0.441·r − 0.881·g+
+0.385·b + 18.78745 Plant height (R2 = 0.24–0.46) [102]

Vegetative index
(VEG)

VEG = G
RaB1−a a = 0.667

SPAD (R2 = 0.17–0.84) [112]

LAI (R2 = 0.5–0.8) [117]

Aboveground biomass (R2 = 0.4–0.71) [5,50]

Flower number (R2 = 0.44) [52]

True color vegetation
index (TCVI)

TCVI =
=

1.4·2·(R−B)
2·R−G−2·B+255·0.4

Leaf nitrogen concentration (R2 = 0.81–0.91) [47]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Visible
atmospherically
resistance index

(VARI)

VARI = G−R
G+R−B

Total leaf chlorophyll (R2 = 0.61) [118]

Chlorophyll a (R2 = 0.78–0.92)
Chlorophyll b (R2 = 0.77–0.92)
Carotenoids (R2 = 0.75–0.92)

[44]

Plant nitrogen concentration (R2 = 0.59–0.77) [104,105]

Leaf nitrogen concentration (R2 = 0.7–0.89) [44,47,105]

Leaf nitrogen accumulation (R2 = 0.61) [43]

SPAD (R2 = 0.18–0.75) [112,118]

Aboveground biomass (R2 = 0.16–0.62) [6,50,102,116]

Leaf dry matter (R2 = 0.64) [43]

Dry biomass (R2 =0.57–0.63) [123]

LAI (R2 = 0.23–0.77) [43,102,117,124]

Surface of an individual plant
Stem diameter [125]

Plant height (R2 = 0.27–0.52) [102,125]

Plant water content (R2 = 0.38–0.52) [102]

Grain yield (R2 = 0.28–0.71) [124]

Flower number (R2 = 0.81) [52]

Visible
atmospherically
resistance index

(VARI) by Sakamoto

VARIs = G−R
G+R

Plant length (R2 = 0.23–0.98)
Total dry weight (R2 = 0.06–0.97)

[130]

LAI (R2 = 0.62–0.98) [130,131]

Combination (COM)
COM = 0.25·NExG + 0.3·

·NExGR+
+0.33·CIVE + 0.12·VEG

Aboveground biomass (R2 = 0.72) [5]

ChOL log sig
(

G− R
3 −

B
3

255

)
Total chlorophyll content (R2 = 0.48–0.94) [94,98]

Coordinates of the
HSI model

Hue

Total chlorophyll content (R2 = 0.71) [91]

Leaf nitrogen concentration (R2 = 0.77) [91]

Nitrogen deficit
Water deficit [13]

Saturation Water deficit [13]

Intensity

SPAD (R2 = 0.08–0.92) [83]

Plant nitrogen concentration (R2 = 0.49–0.76) [104]

Nitrogen deficit
Water deficit [13]

Aboveground biomass (R2 = 0.57) [5]
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Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

Coordinates of the
HSB model

Hue

Total chlorophyll (R2 = 0.48) [37]

Chlorophyll a (R2 = 0.49–0.92)
Chlorophyll b (R2 = 0.4–0.92)
Carotenoids (R2 = 0.49–0.92)

[37,44]

SPAD (R2 = 0.65–0.76) [68]

Leaf nitrogen concentration (R2 = 0.71–0.79) [44]

Protein content (R2 = 0.64)
Oil content (R2 = 0.50)

Protein plus oil content (R2 = 0.49)
1000-seed weight (R2 = 0.43)

[53]

Saturation

Total chlorophyll (R2 = 0.77)
Chlorophyll a (R2 = 0.77)
Chlorophyll b (R2 = 0.71)
Carotenoids (R2 = 0.77)

[37]

Protein content (R2 = 0.69)
Oil content (R2 = 0.47)

Protein plus oil content (R2 = 0.58)
1000-seed weight (R2 = 0.40)

[53]

Brightness

Total chlorophyll (R2 = 0.66)
Chlorophyll a (R2 = 0.67)
Chlorophyll b (R2 = 0.61)
Carotenoids (R2 = 0.66)

[37]

Protein content (R2 = 0.64)
Oil content (R2 = 0.46)

Protein plus oil content (R2 = 0.53)
1000-seed weight (R2 = 0.39)

[53]

Dark green color
index (DGCI) on
basis HSB model

DGCI =
Hue−60

60
3 +

+ (1−Saturation)
3 +

+
1−Brightness

3

Total chlorophyll (R2 = 0.71) [37]

Chlorophyll a (R2 = 0.71–0.86)
Chlorophyll b (R2 = 0.61–0.86)
Carotenoids (R2 = 0.71–0.86)

[37,44]

SPAD (R2 = 0.16–0.94) [132]

Leaf nitrogen concentration (R2 = 0.18–0.86) [132]

Nitrogen fertilization [133]

Grain yield (R2 = 0.04–0.88) [132]

Coordinates of the
L*a*b* model

L∗

Total chlorophyll content (R2 = 0.66–0.68) [37,92]

Chlorophyll a (R2 = 0.66)
Chlorophyll b (R2 = 0.61)
Carotenoids (R2 = 0.66)

[37]

SPAD (R2 = 0.58–0.85) [83,92]

a∗

Total chlorophyll content (R2 = 0.38–0.39) [37,92]

Chlorophyll a (R2 = 0.38)
Chlorophyll b (R2 = 0.38)
Carotenoids (R2 = 0.37)

[37]

SPAD (R2 = 0.44) [92]

N, P, Mg, and Fe deficit [7]



Plants 2024, 13, 1262 18 of 32

Table 2. Cont.

Name of Color
Parameter Equation Plant Characteristic/Influencing Factor Reference

b∗

Total chlorophyll content (R2 = 0.62–0.81) [37,92]

Chlorophyll a (R2 = 0.81)
Chlorophyll b (R2 = 0.74)
Carotenoids (R2 = 0.81)

[37]

SPAD (R2 = 0.31–0.81) [83,92,134]

Leaf nitrogen concentration (R2 = 0.58–0.86) [134]

Nitrogen fertilization [135]

Plant nitrogen concentration (R2 = 0.66–0.67) [7,136]

Ratio of b* to a* b∗

a∗ SPAD (R2 = 0.02–0.67) [83,134]

R2 is the determination coefficient for the regression describing the relation between the color parameter and
plant characteristic. These coefficients are directly provided in cited works or are calculated as squares of Pearson
correlation coefficients (R2 for the linear regression). If several R2s are shown in the cited works (e.g., under
different measuring conditions), the ranging R2 is included in this table. The determination coefficient is absent
from this table if the relations between color parameters and plant characteristics are not investigated or if the
Spearmen correlation coefficient is analyzed in cited works. Relations with minimum R2 ≥ 0.7 (for separate
determination coefficients or their ranges) are marked by bold. Relations with maximum R2 ≥ 0.7 (for ranges of
determination coefficients) are marked by bold and italics. Relations with maximum R2 < 0.36 are not included
in this table because R2 = 0.36 approximately corresponds with the correlation coefficient with absolute value
equaling to 0.6, i.e., R2 < 0.36 corresponds with the weak correlation. Non-marked relations are moderate and
can be potentially used to further develop effective tools for estimation of plant characteristics (e.g., through the
combination of several color parameters that have these relations).

The relations of R, G, and B to the nitrogen concentration are similar to their relations to
chlorophyll contents, i.e., high and negative correlations are observed for R and G, and a low
correlation is observed for B [91]. However, Mercado-Luna et al. [100] showed that R and B
can be negatively correlated with the nitrogen content in plants; in contrast, G is weakly
related to this content. The sign of correlation coefficients between the nitrogen content and
color coordinates (R, G, B, r, g, and b) can be dependent on the stage of development [96,104];
these dependences, potentially, explain the confused results described above.

The analysis of other color models shows similar results, e.g., the relations of b* (L*a*b*
color model) to the leaf nitrogen concentration and SPAD differ at different stages of plant
development [134]. Leaf thickness and plant cultivar can also influence these relations [134].

However, the simple analysis of coordinates in different color models has limited
efficiency for the estimation of the concentration of photosynthetic pigments and nitrogen
content. There are complex analyses of color parameters that provide increased efficiency
of this estimation.

It is known that ExG, VARI (visible atmospherically resistance index), GLI (green
leaf index), simple and normalized ratio indices, DGCI (dark green color index), and
others can be strongly related to SPAD, chlorophyll concentration, or nitrogen content
(Table 2). Particularly, color indices can be used for the estimation of nitrate concentrations
in leaves [105] and whole plants [104,105] and for the estimation of these concentrations in
soil [106]. It should be noted that using color indices, which are simultaneously based on R,
G, and B, can be more effective for the estimation of nitrogen and chlorophyll content than
using the indices, which are based on two spectral bands [126]. The last point is supported
by the efficiency of the application of RGFI (red–green fit index) and BGFI (blue–green fit
index) for SPAD estimation in potato [119]; both indices are calculated by using all R, G,
and B and fitting-based constants.

Using regression models, which describe dependences of concentrations of chloro-
phylls and SPAD on color parameters, is another way to analyze images. Riccardi et al. [98]
showed that single (based on R or G) and multiple (based on R, G, and B) regression mod-
els can be effective tools for estimating chlorophyll content by using plant RGB imaging
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and have low noise. Ge et al. [104] showed that regression models, which are based on
using both color indices and color moments, can be the most effective for estimating plant
nitrogen concentration.

PCA (principal component analysis) can be additionally used to increase the efficiency
of analysis of color images. It is known [101] that PCA-based components can be the basis
of regression models estimating nitrogen content in plants. On the other hand, PCA is a
powerful instrument for the construction of new color indices, e.g., IPCA, which can be used
to estimate SPAD [114,126].

There are other approaches that can be used to estimate the concentrations of chloro-
phylls, nitrogen content, and SPAD. Particularly, Wiwart et al. [137] showed the high
efficiency of using Euclidean distances between parameters of HSI or L*a*b* color models
for the detection of N and Mg deficiencies in plants.

Methods of texture analysis are the next group of methods to estimate plant char-
acteristics based on RGB imaging. Particularly, Chen et al. [99] showed that the texture
parameters of leaves (including mean, median, and skewness parameters) can be effectively
used for the estimation of SPAD through the development and application of regression
models describing dependences of SPAD on these parameters. Additionally, Fu et al. [49]
showed that Gaussian process regression using Gabor-based textures provides high accu-
racy for the estimation of plant nitrogen density; in contrast, partial least square regression
using gray level cooccurrence matrix-based textures is optimal for the measurement of
plant nitrogen concentration.

Color indices can also be used as input variables for machine learning to provide
effective estimations of SPAD [112], chlorophyll content [51], and plant and leaf nitrogen
concentrations [105,138]; the efficiency of machine learning (at least, for the estimation
of nitrogen in plants) can be decreased by increasing the plant growth stage [105]. The
combination of texture parameters and color indices can be also used as input variables of
neural networks with back propagation; using this combination increases the efficiency of
chlorophyll concentration estimation in comparison with using only color indices for the
machine learning [51].

Finally, it should be noted that changes in the concentration of carotenoids can also
be related to the parameters of color images. It is known that carotenoids mainly absorb
blue and green light [23]; in contrast, chlorophylls mainly absorb blue and red light. The
actions of stressors or senescence induce degradation of both chlorophylls and carotenoids;
however, carotenoid degradation is slower [22]. Thereby, the changes in reflectance in red
and blue spectral bands should be different [22,28], i.e., changes in the parameters of color
images should also be sensitive to the carotenoid concentration. It was shown [37] that
G is negatively related to the concentration of carotenoids (R2 is 0.67); in contrast, R was
moderately related to this concentration (R2 is 0.45). Using HSB and L*a*b* color models,
the calculation of DGCI additionally showed the relation of the parameters of color images
to the content of chlorophylls and carotenoids [37]. Widjaja Putra and Soni also showed
that the carotenoid concentration is correlated with some additional color indices [44].

As a whole, RGB imaging can be used to estimate concentrations of chlorophylls and
carotenoids in plants, their nitrogen content, and SPAD (which is widely used as the simple
characteristic of the chlorophyll content in plants).

4.2. Plant Development and Productivity

Remote sensing of plant productivity can be based on the estimation of its biomass,
which is related to the growth rate, nutrition status, grain yield, and other character-
istics [116,129], or its LAI, which is related to light absorption [139] and the biomass
production rate [140]. LAI is also used as the important variable in models for estimation
of the CO2 assimilation and water exchange [141,142].

It is known that R can be strongly related to the fresh and dry biomass and LAI [101];
G is also related to the biomass [66]. This result is in good accordance with the relations of
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R and G to the content of chlorophylls (Table 2) because light absorption by chlorophylls
plays a key role in the photosynthesis and, thereby, productivity of plants.

It is known that numerous color indices (including GLI, GR (green/red simple ratio),
NGRDI (normalized green/red difference index), VEG (vegetative index), and others) can
be strongly related to the plant biomass and can be used for its estimation [6,50,116,122,129].
Leaf overlapping can disrupt relations between color indices and the plant biomass [69],
e.g., this effect is observed using NGRDI [40]. There are numerous color indices including
GMR, simple ratios, NDRBI (normalized difference red/blue index), NExG (normalized
excess green index), ExR, NGRDI, VARI, and VEG [69,101,117,124] that are strongly related
to LAI and can be used for its estimation; however, leaf overlapping can also disrupt these
relations [69]. Finally, it is interesting that the plant height and stem diameter [101,125] can
also be estimated based on color indices (see Table 2 for detail).

There are several ways to increase the efficiency of using color indices to estimate plant
biomass. Particularly, using the canopy volume model, which is based on the simultaneous
measurements of color indices and the structural characteristics of the canopy (e.g., height
and pixel area), provides an effective biomass estimation [5]. It is important to note that
using color indices to estimate aboveground plant biomass is more effective than using
narrowband reflectance indices [50].

Using a multiple stepwise regression technique based on the measurements of color
indices and texture parameters also increases the accuracy of plant biomass estimation [6];
investigations using only color indices or only texture parameters are less effective. Color
indices can be used as input variables for machine learning to estimate plant biomass [6,50];
analysis of the combination of color indices and narrowband reflectance indices is more
effective for plant biomass estimation (e.g., using the random forest model [50]). Finally, it
should be noted that the PCA is a powerful instrument for the construction of new color
indices that can be used to estimate plant biomass, LAI, and height [5,101].

Plant yield is another characteristic that is strongly related to plant productivity. It
is known that plant yield can be strongly related to color indices, including, e.g., VARI
and DGCI (Table 2). The relations between color indices and grain yield can be dependent
on the development stage, e.g., the booting stage [124], filling stage [4], or stage after
flowering [143] are optimal for the prediction of the yield based on color indices.

The sensitivity of color indices to the grain yield is mainly based on the dependence of
this yield on the nitrogen content [3,4,38,107,109], which plays a key role in the grain forma-
tion and is strongly related to color parameters (see Section 4.1 and Table 2). Additionally,
the nitrogen content influences the grain quality and nutritional value [144,145], i.e., these
characteristics can also be related to color parameters. Vollmann et al. [53] showed that R
and G are moderately and negatively related to protein and oil content in soybean seeds
(R2 is about 0.45–0.65); in contrast, B is positively correlated with these characteristics (R2 is
about 0.45–0.62) (see Table 2 for details).

These results are the basis for the development of nutrition management based on
RGB imaging. Yuzhu et al. [106] showed that g is negatively related to the total content of
nitrogen in plants, nitrate concentration of leafstalk, content of inorganic nitrogen in soil,
and SPAD (R2 is about 0.58–0.76); as a result, remote sensing of this normalized parameter
can support the timely use of nitrogen fertilizers to contribute to the maximal yield of the
plant (pepper). There are other examples of nutrition management increasing the plant
yield. Leaf color and textures can be used in the fuzzy K-nearest neighbor classifier [8] to
estimate deficits in mineral nutrient elements; parameter a* from the L*a*b* color model
can be used to timely reveal N, P, Mg, and Fe deficits [7].

Estimation (or prediction) of the plant yield can be based on the more complex analysis
of color images. Particularly, plant quantity, plant height, and color parameters (G, B,
R/B, (G-B)/(R-G), VARI, and GLI) can be used as input values for multiple and stepwise
regression models to estimate plant yield [146]. The application of color indices and texture
parameters as input for the RFE_ELM model can be effectively used to estimate cotton
yield [147]. The complex analysis of color indices by using the crop surface model and



Plants 2024, 13, 1262 21 of 32

linear regression model provides a prediction of corn yield [75]. Using color indices at two
different stages of plant development (at the booting and jointing stages for VARI) in the
multiple linear regression model increases the efficiency of grain yield prediction [124].
Using a combination (sum) of color indices (NGBDI, GR, and ExG) in the regression model
can also be very effective for estimating grain yield [143]. Finally, it should be noted that
the remote sensing of flower formation can be additionally used for the prediction of plant
yield. Wan et al. [52] showed that color indices correlate with flower number and can be
used as the input in the random forest or optimal subset regression model to provide the
yield prediction.

Remote sensing of plant development can be based on the biomass and yield estima-
tion; however, there are other estimators of this process. Particularly, the development
induces color changes in the leaves of plants [13,46], i.e., the plant greenness increases
from spring to summer, and the red reflectance band prevails in the autumn (as a result
of leaf senescence). This dynamic is related to changes in the ratio of concentrations of
chlorophylls, carotenoids, and anthocyanins caused by seasonal plant development [22,46].
This effect is lower in evergreen plants (particularly, coniferous trees) [46]; however, the
dynamics of ExG have the summer maximum for both types of plants. It is interesting that
the seasonal dynamics of ExG are strongly correlated with the global primary productivity
of plants [46].

Finally, RGB imaging can also be used for revealing leaf senescence caused by the
actions of environmental stressors. It is known that the actions of many abiotic stressors
induce leaf redness [13]. Particularly, Adamsen et al. [113] investigated the senescence
rate of wheat under elevated CO2 and limited soil nitrogen. It was shown that GR can
be used for estimation of the senescence rate because this color index is related to the
quantity of leaves, which decreases under senescence, and SPAD, which is dependent on
the concentration of chlorophylls and, thereby, is also sensitive to leaf senescence.

As a whole, RGB imaging can be effectively used for remote sensing of plant produc-
tivity, yield, and development. Particularly, this imaging provides revealing plant stress
changes caused by deficits of nutrients (especially, nitrogen) and supports the timely use
of fertilizers.

4.3. Plant Changes Induced by Water Deficit

Water deficit, which is caused by drought and salinization, is the key abiotic stressor
influencing terrestrial plants. A water deficit decreases the productivity of plants and can
induce their death. Stomata closure accompanying this deficit suppresses photosynthesis
and increases leaf temperature [148]. It means that the remote sensing (including RGB
imaging) of plant changes due to water deficits is an important applied problem.

It is known that the water stress level can be detected based on the color coordinates
in the HSI, RGB, and rgb color models (Table 2) [13] because the water deficit causes plant
senescence, which leads to a significant prevalence of reflectance in the red spectral band
over reflectance in the green and blue bands [22,46]. A great fraction of red reflected light
is not typical for leaves of plants under favorable environmental conditions [13]. However,
these simple methods of water deficit detection have limitations because these changes in
leaf color can be induced by other reasons (e.g., leaf senescence is observed during seasonal
changes in plants [13]). Thus, further development of methods of water deficit detection
based on plant RGB imaging is important.

The color index MGDEXG (the mean value of the Gaussian distribution of the excess
green index) can be used for revealing water deficits in plants; a decrease in this index
shows insufficient irrigation [55]. It is known that MGDEXG is strongly related to the
leaf water potential and sap flow during the late vegetation stage, reproductive stage, and
maturation stage of plant development [55].

It is interesting that MGDEXG (and NExG, Table 2) is strongly related to the crop
water stress index (which is used in thermography as an indicator of water stress [149]) and
to canopy temperature [55]. The canopy temperature is also related to RGRI (red/green
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ratio index) [54]. These results show that the canopy temperature and, probably, the crop
water stress index can be estimated based on color images, i.e., plant RGB imaging can be
potentially used for revealing stomata closure caused by the water deficit.

The texture analysis of color images can also be used for the estimation of plant water
status. It is known that the mean and kurtosis of the grayscale values of RGB are strongly
correlated with the water content of leaves [48]. It can be hypothesized that changes in
kurtosis are possibly related to the increasing heterogeneity of leaf coloring and formation
of defects and roughness under water deficit action. Increased color heterogeneity can be
caused by heterogeneous chlorophyll destruction; the formation of defects and roughness
can be potentially induced by decreasing the water content in the epidermal cells of plant
leaves. This is also a potential reason for changes in the mean grayscale values of RGB,
because the roughness can influence light scattering from the leaf surface [150].

Machine learning can also be used to detect the action of water deficit on plants based
on RGB imaging. Particularly, Zakaluk and Ranjan [14] analyzed color parameters and
indices in plants with PCA; the PCA components were used as the input in the artificial
neural network-based model. The analysis showed [14] that using principal components
in combination with machine learning provided the detection of changes in the leaf water
potential and distinguished these changes from changes induced by soil nitrate content.

Finally, there are preliminary arguments supporting the possibility of revealing small
and fast changes in water content based on RGB imaging. Our previous works [151,152]
showed that changes in the intensity of reflected light in broad spectral bands (about
100 nm, similar to the spectral bands of RGB imaging) and reflectance indices based on
these intensities were related to small and fast changes in the water content in leaves under
generation and propagation of long-distance electrical signals.

As a whole, RGB imaging seems to be the perspective tool for the detection of water
deficit action on plants and the estimation of characteristics of this action.

4.4. Variability of Efficiency of Color Parameter Used for Estimation of Plant Characteristics

It should be additionally noted that we did not exclude relations with low determi-
nation coefficients from Table 2 in cases ranging R2 (R2 < 0.36 is shown as a minimum
determination coefficient in the table). These relations provide a more accurate analysis of
efficiency of using specific parameters of color images for the estimation of specific plant
characteristics and exclude misrepresentations of the estimation of their efficiency. Results
of the current review show that this efficiency can be strongly varied because determination
coefficients for regressions describing relations between the color parameters and plant
characteristics are widely ranged (Table 2).

This variability of relations can be observed for regressions that are shown in dif-
ferent investigations and for regressions that are shown in the same investigation (see,
e.g., [3,4,9,41,44,69,83,95,101,102,112,114,124,129,132]). Particularly, the determination coef-
ficient for the regression describing the relation of the aboveground biomass to r, g, and GR
are 0.05–0.84 [6,96,102], 0.02–0.79 [5,69,96], and 0.01–0.85 [50,69,96], respectively.

These results mean that there are conditions providing effective estimations of plant
characteristics based on color parameters; in contrast, estimation can be impossible under
non-optimal conditions. Revealing these optimal conditions is an important task of plant
remote sensing based on RGB imaging. Particularly, it is known that the efficiency of plant
characteristic estimation can be strongly dependent on the growth stage [4,102,104,120,134],
and the direction of effect can differ for different color indices. The height of the plant [83],
leaf thickness [134], leaf overlapping [69], and plant species and cultivars [72,132] are
other properties that can influence relations between color parameters and plant charac-
teristics. Measurement conditions (e.g., distance between camera and plant canopy [83]
or measurements on the leaf level/on the whole plant level [44]) can also influence this
efficiency. Finally, in some cases, this efficiency can dramatically decrease when using total
datasets that include plants with different characteristics, e.g., determination coefficients for
regressions describing relations between b* and leaf nitrogen concentration are 0.58–0.86
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for datasets of rice plants with specific growth stages and 0.12 for datasets of rice plants
with all growth stages (total dataset) [134].

Thus, the variability of relations between specific color parameters and specific plant
characteristics can be a factor that restricts the efficiency of using these parameters in plant
remote sensing. Revealing and providing optimal measurement conditions or searching
and using color parameters that have stable relations with plant characteristics are potential
ways to eliminate this restriction.

5. Transformation of Color Images to Multispectral and Hyperspectral Images

It is known [17,18] that the interaction with plant tissues can strongly change light
spectra. Chlorophylls, carotenoids, and anthocyanins absorb light in the visible spectral
region [20,22,26] (characteristic of internal leaf structure influence absorption and scattering
of the NIR light [18,28]), and water content is related to SWIR light absorption [27]. As a
result, specific plant characteristics are considered to be related to the light reflectance in
specific narrow spectral bands. Thus, plant remote sensing based on multispectral and
hyperspectral imaging is widely used to detect the action of abiotic stressors and phy-
topathogens and to estimate the growth rate, development, and productivity [12,17,25,31].
There are numerous methods devoted to analysis of results of both variants of imag-
ing [12,28]. However, multispectral and hyperspectral cameras are technically complex and
have a high cost [28,30], meaning that the estimation of parameters of multispectral and
hyperspectral imaging based on the parameters of simple and low-cost RGB imaging can
be a very important problem.

It is known that the transformation of a hyperspectral image in a color image is a
simple task because it requires the reduction of information [57]. However, the inverse
transformation from a color image to a hyperspectral or multispectral image is not a
trivial task (Figure 2). The methods of reconstruction of hyperspectral or multispectral
images from color images are dynamically developed and can be divided into the following
two groups [56]:
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multispectral image. The color image is based on reflectance at three broad spectral bands (red, green,
and blue); the hyperspectral or multispectral image is based on reflectance at the sequence of the
narrow spectral bands or at several separate narrow spectral bands, respectively.

(1) Prior-based methods (for example, dictionary learning [153,154], manifold learn-
ing [155] and the Gaussian process [156]) use statistical information such as spatial structure
similarity, spectral correlation, sparsity, and others. These methods are mainly based on
creating libraries of elementary reflectance spectra that form a total reflectance spectrum
(or reflectance in specific narrow spectral bands) and weights of these spectra at different
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parameters of color images. The libraries provide coefficients for transformation of the RGB
image to the plausible hyperspectral (or multispectral) image.

(2) Data-driven methods are based on deep machine learning using different neural
networks, including BPNN (back propagation neural network) [157], HSCNN (hybrid
Siamese convolutional neural network) [158], GAN (generative adversarial network) [159],
and others. These methods do not require prior information (or hypothesis) about elemen-
tary spectra forming the total reflectance (or reflectance in specific narrow spectral bands);
however, they need large datasets for training, validation, and testing.

In general, these methods can be used for reconstructions of hyperspectral images that
include plants, landscapes, various anthropogenic artifacts, and other objects [56,153,154];
however, this “universal” reconstruction is difficult because the spectra of objects in the
image can be strongly varied, disrupting the accuracy of the reconstructed total reflectance
spectra. Alternatively, the reconstruction of hyperspectral or multispectral images of only
plants or fruits can increase the accuracy of this reconstruction [153,154].

Particularly, Gong et al. [160] investigated the efficiency of the reconstruction of
the hyperspectral image of plant leaves from color images based on using the BPNN
and pseudo-inverse methods. It was shown that using the BPNN method provided a
more accurate reconstruction than the pseudo-inverse method. The maximal error of
the reconstruction was observed in the 530–560 nm spectral region. These hyperspectral
images reconstructed from color images can be used as input into a regression model to
estimate the chlorophyll content in each pixel of the image [160]; however, sensitivity of the
reconstructed reflectance spectra to the chlorophyll content is lower than this sensitivity of
measured reflectance spectra.

Using the MHPCG-Net (multimodal hyperspectral point cloud generation network)
forms the reflectance spectra with a 10 nm spectral resolution, depth map, and 3D point
cloud based on color images [161]; these parameters provide both spectral information and
information about physical geometry of investigated plants. This method can be used for
investigations of whole plants and their parts.

The reflectance spectra of fruits are also analyzed by the described methods. Particu-
larly, hyperspectral images of tomato fruit can be reconstructed from color images based
on using HSCNN [158]. The reconstructed spectra (using the random forest model) predict
the lycopene content and ratio of soluble solid content to total titratable acidity.

Thus, there are methods of reconstruction of plant reflectance spectra based on their
color images; however, these reconstructions are not unique ways to estimate parameters of
multispectral and hyperspectral imaging based on RGB imaging. Particularly, the analysis
of relations between color parameters and narrowband reflectance indices is another way
of this estimation. Narrowband reflectance indices are known to be widely used for the
estimation of photosynthesis activity, pigment content, de-epoxidation of carotenoids, LAI,
biomass, water and nitrogen content, and others [17,25,28], meaning that the reconstruction
of these indices based on color parameters can be an effective tool for plant remote sensing.

It is known that broadband indices can be related to plant characteristics [42,152,162]
and, particularly, to narrowband reflectance indices [152]. The results potentially show that
color parameters (including color indices) can be used for the estimation of narrowband
reflectance indices.

The sparse dictionary method can be used for the reconstruction of reflectance in red
and NIR narrow spectral bands from color images [163]. Further, this reconstruction is used
to calculate NDVI. There are works that reveal relations of color indices or color coordinates
to narrowband spectral indices (Table 3) being sensitive to biomass and LAI (NDVI, WDRVI,
VARI, SRVI, and SRRE), chlorophyll content (CIgreen and CCCI), senescence (NDVI), or
flower forming [44,52,113,131].



Plants 2024, 13, 1262 25 of 32

Table 3. Color indices related to narrowband reflectance indices.

Color Indices Narrowband Reflectance Indices Reference

GR

Normalized Difference Vegetation Index (NDVI) [44,113]

Narrowband spectral indices Simple Ratio Vegetation Index (SRVI)
Simple Ration Red Edge (SRRE)

Normalized Difference Red Edge (NDRE)
Canopy Chlorophyll Content Index (CCCI)

[44]

NGRDI

Spectral indices (R944 − R758)/(R944 + R758), R944/R758 [52]

Narrowband spectral indices Simple Ratio Vegetation Index (SRVI)
Simple Ration Red Edge (SRRE)

Normalized Difference Red Edge (NDRE)
Normalized Difference Vegetation Index (NDVI)

Canopy Chlorophyll Content Index (CCCI)

[44]

ExG

Normalized Difference Vegetation Index (NDVI)
Green Red Normalized Difference index (VARI)

Simple ratio of NIR and Red (SR)
Green Chlorophyll index (CIgreen)

[131]

Spectral indices (R944 − R758)/(R944 + R758), R944/R758 [52]

VARI

Spectral indices (R944 − R758)/(R944 + R758), R944/R758 [52]

Narrowband spectral indices Simple Ratio Vegetation Index (SRVI)
Simple Ration Red Edge (SRRE)

Normalized Difference Red Edge (NDRE)
Normalized Difference Vegetation Index (NDVI)

Canopy Chlorophyll Content Index (CCCI)

[44]

VARIs

Normalized Difference Vegetation Index (NDVI)
Green Red Normalized Difference index (VARI)

Simple ratio of NIR and Red (SR)
Green Chlorophyll index (CIgreen)

[131]

NDBGRI

Narrowband spectral indices Simple Ratio Vegetation Index (SRVI)
Simple Ration Red Edge (SRRE)

Normalized Difference Red Edge (NDRE)
Normalized Difference Vegetation Index (NDVI)

Canopy Chlorophyll Content Index (CCCI)

[44]

GMR
NDI

SAVIgreen
OSAVIgreen

EVIgreen
EVI2green

Hue (HSB)
DGCI (HSB)

RGRI

Spectral indices (R944 − R758)/(R944 + R758), R944/R758 [52]
GLI
VEG
CIVE

MGRVI

The determination coefficients (R2) for the regressions describing relation between color indices and narrowband
reflectance indices are about 0.50 and more (mostly 0.70–0.96) excluding GMR. The last color index is weakly
related to narrowband reflectance indices in some cases (e.g., R2 could be 0.38 for GMR and SRRE [44]).

Thus, the transformation of color images to hyperspectral and multispectral images
can strongly increase the efficiency and availability of plant remote sensing; however,
further development of these methods remains a topical problem.

6. Conclusions and Perspectives

Methods of optical remote sensing are effective tools for the estimation of plant
characteristics, with methods based on ecological monitoring, crop management, and plant
protection. RGB imaging is a perspective optical method of plant remote sensing because
RGB cameras are technically simple, low-cost, and, therefore, the most accessible. However,
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the effective use of plant RGB imaging requires the development of methods of analysis of
color images to provide information about characteristics of plants.

There are different ways of color image analysis. Particularly, using color indices and
color coordinates, which are related to the concentration of photosynthetic pigments, nitro-
gen and water contents, biomass, grain yield, LAI, senescence, action of water deficit, etc., is
a perspective method for estimating plant characteristics. However, the high variability of
efficiency of these parameters for estimating plant characteristics is an important problem
of using RGB imaging because there are only some parameters that are stably effective. For
example, VARI is stably related to the leaf nitrogen concentration or DGCI is stably related
to the concentrations of chlorophyll a and carotenoids. In contrast, e.g., the determination
coefficients for relations of the color coordinate R to the total chlorophyll content or leaf ni-
trogen concentration can be strongly ranging (R2 = 0.08–0.94 or R2 = 0.05–0.99, respectively).
This variability of efficiency is probably the main limitation of using color parameters for
estimating plant characteristics. There are methods to increase the efficiency of using color
coordinates or indices for estimating plant characteristics that can be, particularly, based on
using PCA, regression and canopy volume models, texture analysis, machine learning, and
many other tools of the complex analysis of color parameters.

The development of methods of reconstruction of hyperspectral and multispectral
images (including reconstruction of narrowband reflectance indices) based on color images
is an alternative perspective way of increasing informativity of plant RGB imaging because
reflectance spectra and narrowband reflectance indices can be strongly related to specific
characteristics of plants. However, the efficiency of these methods can be strongly limited
by the accuracy of the reconstruction of reflectance spectra, reflectance in specific spectral
narrow bands, or narrowband reflectance indices.

Although all the noted ways of color image analysis are actively used, they have
limitations and require further development to provide increasing analysis accuracy and
extend investigated plant characteristics. Some potential perspectives of this development
should be noted as follows. (i) Revealing new color parameters with maximum and stable
efficiency of estimating specific plant characteristics; searching conditions to maximize
this efficiency. (ii) Development of methods of the complex analysis of color and spatial
(particularly, texture) parameters using regression models, crop surface models, machine
learning, and other approaches. It is probable that the simultaneous use of additional
methods of remote sensing of plant and, maybe, soils can improve the efficiency of this
analysis (see, e.g., work [164], which is devoted to the development of complex methods
of estimating soil organic carbon at plant cultivation). (iii) Development and analysis of
radiation transfer models, which describe light absorption, transmission, and reflectance
in plant leaves and canopy. Our review is not focused on the description of the models;
however, radiation transfer models [165–167] are effectively used as a tool to analyze
plant reflectance and to interpret the results of multispectral and hyperspectral imaging of
terrestrial plants. It is probable that these models can also be used to analyze the results of
plant RGB imaging.
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137. Wiwart, M.; Fordoński, G.; Żuk-Gołaszewska, K.; Suchowilska, E. Early diagnostics of macronutrient deficiencies in three legume

species by color image analysis. Comput. Electron. Agric. 2009, 65, 125–132. [CrossRef]
138. Kou, J.; Duan, L.; Yin, C.; Ma, L.; Chen, X.; Gao, P.; Lv, X. Predicting leaf nitrogen content in cotton with UAV RGB images.

Sustainability 2022, 14, 9259. [CrossRef]
139. Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens.

Environ. 1995, 51, 375–384. [CrossRef]
140. Guerif, G.; Duke, C. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote

sensing data assimilation. Agric. Ecosyst. Environ. 2000, 81, 57–69. [CrossRef]
141. Sellers, J.P.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Dall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.;

Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997,
275, 502–509. [CrossRef] [PubMed]

https://doi.org/10.1186/s13007-019-0402-3
https://www.ncbi.nlm.nih.gov/pubmed/30828356
https://doi.org/10.3390/rs11151763
https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.3390/rs14194814
https://doi.org/10.3390/rs10060824
https://doi.org/10.1016/j.ecolind.2016.03.036
https://doi.org/10.1016/j.jag.2015.02.012
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.1016/j.jag.2014.03.018
https://doi.org/10.2134/agronj2010.0395
https://doi.org/10.1080/10106040108542184
https://doi.org/10.3390/rs70911449
https://doi.org/10.1016/j.isprsjprs.2011.08.005
https://doi.org/10.1016/j.agrformet.2011.10.014
https://doi.org/10.2134/agronj2010.0296
https://doi.org/10.2135/cropsci2003.9430
https://doi.org/10.1186/1746-4811-10-36
https://www.ncbi.nlm.nih.gov/pubmed/25411579
https://doi.org/10.1016/S1161-0301(03)00007-8
https://doi.org/10.1155/2008/359760
https://doi.org/10.1016/j.compag.2008.08.003
https://doi.org/10.3390/su14159259
https://doi.org/10.1016/0034-4257(94)00114-3
https://doi.org/10.1016/S0167-8809(00)00168-7
https://doi.org/10.1126/science.275.5299.502
https://www.ncbi.nlm.nih.gov/pubmed/8999789


Plants 2024, 13, 1262 32 of 32

142. Weiss, M.; Troufleau, D.; Baret, F.; Chauki, H.; Prévot, L.; Olioso, A.; Bruguier, N.; Brisson, N. Coupling canopy functioning and
radiative transfer models for remote sensing data assimilation. Agric. Forest Meteorol. 2001, 108, 113–128. [CrossRef]

143. Du, M.; Noguchi, N. Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color
images acquired from UAV-camera system. Remote Sens. 2017, 9, 289. [CrossRef]

144. Walsh, O.S.; Marshall, J.; Nambi, E.; Shafian, S.; Jayawardena, D.; Jackson, C.; Lamichhane, R.; Ansah, E.O.; McClintick-Chess, J.
Spring wheat yield and grain quality response to nitrogen rate. Agron. J. 2022, 114, 2562–2572. [CrossRef]

145. Wang, J.; Qiu, Y.; Zhang, X.; Zhou, Z.; Han, X.; Zhou, Y.; Qin, L.; Liu, K.; Li, S.; Wang, W.; et al. Increasing basal nitrogen fertilizer
rate improves grain yield, quality and 2-acetyl-1-pyrroline in rice under wheat straw returning. Front. Plant Sci. 2023, 13, 1099751.
[CrossRef] [PubMed]

146. Fu, H.; Wang, C.; Cui, G.; She, W.; Zhao, L. Ramie yield estimation based on UAV RGB images. Sensors 2021, 21, 669. [CrossRef]
147. Ma, Y.; Ma, L.; Zhang, Q.; Huang, C.; Yi, X.; Chen, X.; Hou, T.; Lv, X.; Zhang, Z. Cotton yield estimation based on vegetation

indices and texture features derived from RGB image. Front. Plant Sci. 2022, 13, 925986. [CrossRef]
148. dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological responses to drought, salinity,

and heat stress in plants: A review. Stresses 2022, 2, 113–135. [CrossRef]
149. Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental

variability. Agric. Meteorol. 1981, 24, 45–55. [CrossRef]
150. Xu, K.; Ye, H. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and

transmittance of natural leaves. Sci. Rep. 2023, 13, 4694. [CrossRef] [PubMed]
151. Sukhova, E.; Yudina, L.; Akinchits, E.; Vodeneev, V.; Sukhov, V. Influence of electrical signals on pea leaf reflectance in the

400–800-nm range. Plant Signal. Behav. 2019, 14, 1610301. [CrossRef] [PubMed]
152. Sukhova, E.; Yudina, L.; Gromova, E.; Nerush, V.; Vodeneev, V.; Sukhov, V. Burning-induced electrical signals influence broadband

reflectance indices and water index in pea leaves. Plant Signal. Behav. 2020, 15, 1737786. [CrossRef]
153. Arad, B.; Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural RGB images. In Computer Vision—ECCV 2016.

ECCV 2016. Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Germany, 2016;
Volume 9911, pp. 19–34.

154. Fu, Y.; Zheng, Y.; Zhang, L.; Huang, H. Spectral reflectance recovery from a single RGB image. IEEE Trans. Comput. Imaging 2018,
4, 382–394. [CrossRef]

155. Jia, Y.; Zheng, Y.; Gu, L.; Subpa-Asa, A.; Lam, A.; Sato, Y.; Sato, I. From RGB to spectrum for natural scenes via manifold-based
mapping. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

156. Akhtar, N.; Mian, A. Hyperspectral recovery from RGB images using Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 100–113. [CrossRef] [PubMed]

157. Han, X.; Yu, J.; Xue, J.-H.; Sun, W. Spectral super-resolution for RGB images using class-based BP neural networks. In Proceedings
of the 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, ACT, Australia, 10–13 December 2018.

158. Zhao, J.; Kechasov, D.; Rewald, B.; Bodner, G.; Verheul, M.; Clarke, N.; Clarke, J.L. Deep learning in hyperspectral image
reconstruction from single RGB images—A case study on tomato quality parameters. Remote Sens. 2020, 12, 3258. [CrossRef]

159. Alvarez-Gila, A.; Van De Weijer, J.; Garrote, E. Adversarial networks for spatial context-aware spectral image reconstruction
from RGB. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 23 October 2017;
pp. 480–490.

160. Gong, L.; Zhu, C.; Luo, Y.; Fu, X. Spectral reflectance reconstruction from Red-Green-Blue (RGB) images for chlorophyll content
detection. Appl. Spectrosc. 2023, 77, 200–209. [CrossRef]

161. Cai, W.; Zhao, G.; Wang, Z.; Peng, Y.; Su, H.; Cheng, L. MHPCG:multi-modal hyperspectral point cloud generation based on
single RGB image. Optica Open 2023, in press. [CrossRef]

162. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.
Environ. 2002, 80, 76–87. [CrossRef]

163. Gkillas, A.; Kosmopoulos, D.; Constantinopoulos, C.; Ampeliotis, D.; Berberidis, K. A method for recovering near infrared
information from RGB measurements with application in precision agriculture. In Proceedings of the 2021 29th European Signal
Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021.

164. Wang, J.; Zhao, D.; Zare, E.; Sefton, M.; Triantafilis, J. Unravelling drivers of field-scale digital mapping of topsoil organic carbon
and its implications for nitrogen practices. Comput. Electron. Agric. 2022, 193, 106640. [CrossRef]

165. Maier, S.W.; Lüdeker, W.; Günther, K.P. SLOP: A revised version of the stochastic model for leaf optical properties. Remote Sens.
Environ. 1999, 68, 273–280. [CrossRef]

166. Ustin, S.L.; Jacquemoud, S.; Govaerts, Y. Simulation of photon transport in a three-dimensional leaf: Implications for photosyn-
thesis. Plant Cell Environ. 2001, 24, 1095–1103. [CrossRef]

167. Féret, J.-B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a
complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0168-1923(01)00234-9
https://doi.org/10.3390/rs9030289
https://doi.org/10.1002/agj2.21101
https://doi.org/10.3389/fpls.2022.1099751
https://www.ncbi.nlm.nih.gov/pubmed/36714775
https://doi.org/10.3390/s21020669
https://doi.org/10.3389/fpls.2022.925986
https://doi.org/10.3390/stresses2010009
https://doi.org/10.1016/0002-1571(81)90032-7
https://doi.org/10.1038/s41598-023-31718-1
https://www.ncbi.nlm.nih.gov/pubmed/36949090
https://doi.org/10.1080/15592324.2019.1610301
https://www.ncbi.nlm.nih.gov/pubmed/31025577
https://doi.org/10.1080/15592324.2020.1737786
https://doi.org/10.1109/TCI.2018.2855445
https://doi.org/10.1109/TPAMI.2018.2873729
https://www.ncbi.nlm.nih.gov/pubmed/30295614
https://doi.org/10.3390/rs12193258
https://doi.org/10.1177/00037028221139871
https://doi.org/10.1364/opticaopen.22643236.v1
https://doi.org/10.1016/S0034-4257(01)00289-9
https://doi.org/10.1016/j.compag.2021.106640
https://doi.org/10.1016/S0034-4257(98)00118-7
https://doi.org/10.1046/j.0016-8025.2001.00762.x
https://doi.org/10.1016/j.rse.2017.03.004

	Introduction 
	Widely Used Color Models 
	Methods of Background Exclusion 
	Estimation of Plant Characteristics Using RGB Imaging 
	Content of Photosynthetic Pigments and Nitrogen Content 
	Plant Development and Productivity 
	Plant Changes Induced by Water Deficit 
	Variability of Efficiency of Color Parameter Used for Estimation of Plant Characteristics 

	Transformation of Color Images to Multispectral and Hyperspectral Images 
	Conclusions and Perspectives 
	References

