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Abstract: One of the key problems of biology is how plants adapt to unfavorable conditions, such
as low temperatures. A special focus is placed on finding ways to increase tolerance in important
agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in
this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents.
When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In
addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the
effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5–50 µg mL−1) on cold
tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable
wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low
temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity
of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions
of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs’ influence on the cold
tolerance of wheat varieties were considered.

Keywords: Au-based nanoparticles; low temperature tolerance; lipid peroxidation; photosynthetic
pigments; sugars; Cor-genes; Triticum aestivum

1. Introduction

One of the main goals of biology is the study of the physiological, biochemical, and
molecular mechanisms of plants’ adaptation to abiotic factors. The majority of arable land
is currently located in an unstable agricultural region. This makes it relevant to study the
adaptation strategies of such an important crop as wheat to low temperatures. Wheat is
one of the cold- and freezing-tolerant crops that is able to survive even near-zero negative
temperatures. The cultivation of wheat for centuries has resulted in the development of a
wide range of cold- and freezing-tolerant varieties, and cold-sustainable genotypes respond
differently to low temperatures [1]. No doubt, the diversity of wheat genotypes and the
characteristics of their stress response make this crop an ideal subject for the research of
physiological, biochemical, and molecular mechanisms that contribute to improving of
their tolerance [2,3].

At low temperatures, cold-tolerant genotypes of wheat are able to maintain a stable
content of photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCo) activity, and photosynthetic intensity, and as a result, accumulate sugars required
for the adaptation to low temperature [4–6]. It is known that more tolerant wheat genotypes
at low temperatures enact a powerful response, including the expression of a number of
Cor-genes (Cold-Regulated Genes) [7,8]. As for cold-sustainable genotypes, their set of
mechanisms for maintaining cold and freezing tolerance may be significantly limited [4,5,9].

Many Cor-genes encode COR proteins, which are important in plant adaptation to low
temperatures. These are hydrophilic low-molecular-weight proteins that function as chaper-
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ones in cells, limiting protein aggregation, cell water loss, and membrane degradation [10].
The WCS (Wheat Cold Specific) family is also referred to as COR proteins—dehydrins [7,11].
The molecular weights of these proteins encoded by the Wcs120 gene family range from
12 to 200 kD [8]. The accumulation of dehydrins and increased expression of genes encoding
them are associated with the development of tolerance to low temperatures [7,12].

Plants also have cold-sensitive genes that encode chloroplast-targeted proteins [8].
These include the cold-sensitive wheat Wcor15 gene [13], which is related to Arabidopsis
cor15 gene [14,15]. It encodes proteins that form an ordered structure when exposed to low
temperature stress. These proteins can bind to chloroplast membranes in this condition,
making them more tolerant [16].

The use of metal nanoparticles (NPs), which can have a positive effect on plant
metabolism and stress tolerance in low concentrations, is a promising trend [17–20]. NPs
cross cellular barriers and affect practically all processes in the plant organism due to their
small size (less than 100 nm) and unique physical, electrical, optical, and chemical prop-
erties [17,18,21,22]. NPs are being employed more and more widely in biology, medicine,
and agriculture as plant growth and development regulators, medicinal components, herbi-
cidal/pesticidal chemicals, and nanofertilizers [19,21,23].

It is known that the effects of NPs on plants depend on a number of factors (for exam-
ple, type of NPs, method of treatment, plant species, experimental conditions, etc.). First of
all, the type of nanoparticles matters. In our research, we used Au-based NPs (Au-NPs).
We should emphasize that Au-NPs occupy a special place among metallic NPs. On the one
hand, Au-NPs can be produced fast and easily using low-cost chemical reagents [24–26].
On the other hand, when employed in microdoses up to 100 µg mL−1, Au-NPs are often
non-toxic to plants, animals, and people [27–30]. According to the literature, Au-NPs
mainly have favorable impacts on plants [26,29,30]. The increase in seed germination
rate and growth intensity under the influence of Au-NPs was shown in maize [31], Ara-
bidopsis [32], mungbean [33], mustard [34,35], gloriose [36], arugula [37], lavender [38],
watermelon [39], onion [40] and barley [41]. Under the influence of Au-NPs, researchers
observed increased photosynthetic intensity [33,42], and changes in fluorescence parame-
ters [43], photosynthetic pigment content [31,33,34] and chloroplast ultrastructure [31]. The
presence of unique optical properties associated with the excitation of localized plasmon
resonances during light interaction is responsible for the worldwide scientific interest in the
use of Au-NPs in biology and medicine as photoprotective substances that reduce the risks
of oxidative stress [24,28,29,44–46]. In this regard, Au-NPs have recently attracted a lot of
attention as substances with the potential to increase crop environmental tolerance. It is
worth noting that there are a few studies on the impact of Au-NPs on plant metabolism and
tolerance. According to studies in barley and Arabidopsis, Au-NPs that enter plants through
the roots alter the expression of DGR1 and DGR2 genes that code cell wall proteins [29], as
well as changing chemical composition and increasing the stiffness of the cell wall, which
helps plants withstand stress [41]. The treatment of rice plant roots with nanocomposites
containing Au-NPs reduced cadmium toxicity by limiting root cell uptake and lowering the
risk of oxidative stress [47,48]. Under saline conditions, Au-NPs preserved ionic balance,
reduced the formation of NO as a signaling molecule and regulator of many processes in
the plant, and boosted the activity of antioxidant system enzymes [49]. The potential for
further integrating Au-NPs into biological sciences and agriculture is quite intriguing in
this regard. It is critical to research them as substances that improve plant tolerance to low
temperatures. There are no such studies in the literature, in connection with which our
research is groundbreaking.

In a previous study [50], we demonstrated for the first time that Au-NPs can increase
the tolerance to low temperatures of the freezing-tolerant genotype of wheat Moskovskaya
39. However, it is an open question whether Au-NPs can increase the low temperature
tolerance of more cold-sensitive genotypes. In this research, we explored the effects of
Au-NPs on the low temperature tolerance of cold-sustainable wheat genotype Zlata. We
chose nanopriming (soaking seeds in NPs solutions) as the mode of nanoparticle treatment.
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Nanopriming is largely regarded as the safest, simplest, and most cost-effective method
of treating plants with NPs. This allows for scientific and agricultural applications. We
attempted to discover potential mechanisms by which Au-NPs can influence plant stress
tolerance. For this purpose, we assayed the following indices: survival of wheat seedlings
after freezing, seed germination, length of the first leaf, the content of malondialdehyde
(MDA), photosynthetic pigments and soluble sugars in leaves and the expression of some
genes of photosynthetic apparatus (PSA) and Cor-genes, which are important in plant
acclimation to low temperatures.

2. Results

It was necessary to assess the impacts of various Au-NPs concentrations (5, 10, 20
and 50 µg mL−1) on the low temperature tolerance of wheat genotype Zlata at the start of
the study. The survival rate of wheat plants at 0 ◦C was 100% in all experiment variants.
The survival rate of unhardened seedlings at −3 ◦C was increased by a factor of two to
three after exposure to Au-NPs, but only at concentrations of 5 and 10 µg mL−1 (Table 1).
When we dropped the temperature to −5 ◦C, all the plants died. The tolerance to cold
was improved by low-temperature hardening and was shown to be 60%. The stimulating
impact of Au-NPs on cold tolerance was clearly established at −5 ◦C. There, Au-NPs at a
concentration of 10 µg mL−1 increased cold tolerance from 7% to 67% (Table 1).

Table 1. Impact of Au-based nanoparticles (Au-NPs) on the survival rate (%) of unhardened and
hardened (4 ◦C, 7 d) wheat seedlings of genotype Zlata (concentration test).

Temperature
of Freezing

Concentration of Au-NPs, µg mL−1

0 5 10 20 50

Unhardened seedlings
−3 ◦C 15 ± 3 c 30 ± 5 b 50 ± 5 a 10 ± 3 c 10 ± 3 c

−5 ◦C 0 0 0 0 0
Hardened seedlings

−3 ◦C 60 ± 3 b 90 ± 3 a 97 ± 3 a 90 ± 3 a 90 ± 3 a

−5 ◦C 7 ± 3 c 50 ± 3 b 67 ± 3 a 50 ± 3 b 50 ± 3 b

−7 ◦C 0 5 ± 3 a 7 ± 3 a 6 ± 3 a 0
−9 ◦C 0 0 0 0 0

Survival rate was calculated as the percentage of undamaged seedlings from the total number of plants frozen at
−3, −5, −7 and −9 ◦C for 24 h. In each variant of the treatment, 30 plants were used in 3 replications (90 plants in
all). The experiment was repeated 2 times. In every line the values that significantly differ at p < 0.05 are denoted
by different letters.

We assessed the impacts of various Au-NPs concentrations (5, 10, 20 and 50 µg mL−1)
on the seed germination and growth of the first leaf of wheat seedlings (Figure 1). The
stimulating impact of Au-NPs on seed germination was only noticed at a concentration of
20 µg mL−1 (Figure 1A). At the same time, Au-NPs treatment accelerated the growth of the
first leaf of seedlings at all concentrations tested (Figure 1B). Under hardening, the growth
of seedlings was completely stopped (Figure 1C).

Based on the results of concentration tests, a Au-NPs concentration of 10 µg mL−1 was
chosen as causing the maximum effect on the low temperature tolerance of unhardened
and hardened seedlings of wheat genotype Zlata (Figures 2 and 3).

Table 2 displays data on the Au contents in roots, seeds and leaves of wheat. The study
revealed that Au is present in Au-NPs-treated wheat roots and seeds. Furthermore, a trace
of Au was discovered in the wheat leaves.
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Table 2. Au concentrations in roots, seed and leaves of wheat seedlings of genotype Zlata in control
variant and in plants treated with Au-based nanoparticles (Au-NPs).

Variant of
Experiment

Au, µg g−1 Dry Weight

Roots Leaves Seeds

Control <0.05 <0.05 <0.05
Au-NPs 1.6 ± 0.1 0.28 ± 0.01 3.9 ± 0.2

In each variant of the treatment, 3 statistical repetitions were carried out. The experiment was repeated 2 times. Au-
NPs concentration—10 µg mL−1 (as concentrations causing the maximum effect on tolerance to low temperature).
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Figure 1. Impact of Au-based nanoparticles (Au-NPs) on seed germination (A) and leaf length before
(B) and after (C) cold hardening (4 ◦C, 7 d) of wheat seedlings of genotype Zlata. In each variant of
the treatment, 30 plants were used in 3 replications. The experiment was repeated 2 times. Different
letters indicate mean values that are significantly different at p < 0.05.
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Figure 2. Unhardened wheat seedlings of genotype Zlata after freezing at −3 ◦C for 24 h: (A) control
seedlings; (B) seedlings grown from seeds treated with Au-based nanoparticles at 10 µg mL−1.
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Figure 3. Hardened (4 ◦C, 7 d) wheat seedlings of genotype Zlata after freezing at −5 ◦C for
24 h: (A) control seedlings; (B) seedlings grown from seeds treated with Au-based nanoparticles at
10 µg mL−1.

We studied MDA accumulation in wheat tissues as one of the end products of lipid per-
oxidation (LPO) of cell membranes. Treatment with Au-NPs both in control and hardening
conditions did not affect MDA content in wheat leaves (Table 3).

Table 3. Impact of Au-based nanoparticles (Au-NPs) on some physiological indicators of unhardened
and hardened (4 ◦C, 7 d) wheat seedlings of genotype Zlata.

Variant
of Experiment MDA (µmol/g DW) DW (%) Monosaccharide

(mg g−1 DW) Sucrose (mg g−1 DW) Sum of Sugars
(mg g−1 DW)

Unhardened seedlings
Control 36.8 ± 1.8 a 13.2 ± 0.2 c 55.0 ± 1.5 a 4.4 ± 0.2 d 59.4 ± 3.0 b

Au-NPs 36.4 ± 1.2 a 13.3 ± 0.2 c 42.8 ± 1.5 b 7.6 ± 0.2 c 50.4 ± 2.5 c

Hardened seedlings
Control 20.8 ± 1.0 b 17.8 ± 0.3 b 45.2 ± 1.2 b 14.1 ± 0.2 b 59.3 ± 3.0 b

Au-NPs 19.8 ± 1.3 b 19.1 ± 0.4 a 44.2 ± 1.7 b 24.5 ± 0.2 a 68.7 ± 3.4 a

In each variant of the treatment 3 statistical repetitions were carried out. The experiment was repeated 3 times.
Au-NPs concentration—10 µg mL−1 (as concentrations causing maximum effect on tolerance to low temperature).
DW—dry weight. In each column the values that significantly differ at p < 0.05 are denoted by different letters.
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Under control conditions, Au-NPs treatment resulted in a significant increase in total
chlorophyll content without affecting carotenoids concentration or pigment ratio in wheat
leaves (Figure 4A,C,E,G,I). Au-NPs treatment had no influence on photosynthetic pigment
quantity or ratio under low-temperature conditions (Figure 4B,D,F,H,J).
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Figure 4. Impact of Au-based nanoparticles (Au-NPs) on content of chlorophylls a + b (A,B),
carotenoids (C,D), ratio a/b (E,F) and a + b/carotenoids (G,H), and content of chlorophyll in light har-
vesting complex (LCH) (I,J) in leaves of unhardened (A,C,E,G,I) and hardened (4 ◦C, 7 d) (B,D,F,H,J)
wheat seedlings of genotype Zlata. In each variant of the treatment 3 statistical repetitions were
carried out. The experiment was repeated 3 times. Different letters indicate mean values, which are
significantly different at p < 0.05. Au-NPs concentration—10 µg mL−1 (as concentrations causing
maximum effect on tolerance to low temperature). DW—dry weight.
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Au-NPs treatment had no effect on the buildup of leaf dry weight of wheat leaves
under control conditions. Dry leaf weight rose under hardening conditions, and Au-NPs
treatment accelerated this process (Table 3).

Au-NPs treatment under control conditions considerably lowered the sugar content in
wheat leaves by decreasing the content of monosaccharides (glucose and fructose). The
content of sugars in leaves did not change under low-temperature conditions, whereas
Au-NPs treatment increased them due to enhanced sucrose accumulation (Table 3).

We analyzed the effects of Au-NPs on the expression level of PSA genes RbcS and
RbcL, encoding, respectively, the small and large subunits of RuBisCo. It was found that the
expression level of RbcS and RbcL was increased in Au-NPs-treated plants under control
conditions (Figure 5A,C). Under low-temperature hardening, Au-NPs had no significant
effect on the expression levels of these genes (Figure 5B,D).
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Figure 5. Impact of Au-based nanoparticles (Au-NPs) on RbcL (A,B) and RbcS (C,D) gene tran-
scription of unhardened (A,C) and hardened (4 ◦C, 7 d) (B,D) wheat seedlings of genotype Zlata.
In each variant of the treatment 3 statistical repetitions were carried out. The experiment was re-
peated 3 times. Different letters indicate mean values, which are significantly different at p < 0.05.
Au-NPs concentration—10 µg mL−1 (as concentrations causing maximum effect on tolerance to
low temperature).

We also examined the impacts of Au-NPs on the expression of Wcor726 and Wcor15,
encoding protective proteins. Expression of the Wcor15 gene increased 8-fold in wheat
leaves, whereas the expression of the Wcor726 gene did not change (Figure 6A,C). Au-NPs
treatment also slightly enhanced Wcor15 gene expression under low-temperature conditions
(Figure 6B,D).
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transcription of unhardened (A,C) and hardened (4 ◦C, 7 d) (B,D) wheat seedlings of genotype
Zlata. In each variant of the treatment 3 statistical repetitions were carried out. The experiment was
repeated 3 times. Different letters indicate mean values, which are significantly different at p < 0.05.
Au-NPs concentration—10 µg mL−1 (as concentrations causing maximum effect on tolerance to
low temperature).

3. Discussion

In our experiments, wheat seeds of cold-susceptible genotype Zlata were soaked in
Au-NPs solutions (5, 10, 20, and 50 µg mL−1) for 24 h. Based on data from the literature,
concentrations of Au-NPs solutions below 50 µg mL−1 generally have a stimulating effect
on plants [28,29]. The nanopriming procedure, which involves soaking seeds in NPs
solution, is thought to be the mildest for such studies [31,39,51]. In this situation, NPs most
likely enter the seeds passively with water, as well as through the damaged sections of
the seed coat [52]. The mechanism of NPs continuing “work” in the plant organism is not
entirely clear. Au-NPs are not only adsorbed and/or deposited in the treated seeds, but also
penetrate further into the seedlings, where they spread through their tissues and cells. For
instance, Au-NPs were found in the leaves of wheat, oat, and maize seedlings developed
from seeds treated with Au-NPs, as demonstrated by fluorescence microscopy and optical
emission spectroscopy [31,53]. Employing plasma-atomic emission and inductively coupled
plasma mass spectrometry, we found Au in roots and seeds of treated seedlings. Minor
concentrations of Au were found in the leaves of wheat grown from Au-NPs-treated seeds
(Table 2). It is important to note that these plants differed from the control (untreated) in a
number of indicators and, most critically, had a different adaptive status due to their ability
to develop higher tolerance to low temperatures.

The Au-NPs concentration tests revealed that the nanopriming of wheat improved
its tolerance to low temperatures in control conditions and after cold-hardening (4 ◦C,
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7 d). The maximum effect was achieved in genotype Zlata after the treatment of seeds
with Au-NPs at a concentration of 10 µg mL−1 (Table 1). Additionally, the treatment of
seeds with Au-NPs induced the growth of plants (Figure 1B). We selected a concentration
of 10 µg mL−1 for the further study of Au-NPs’ effects on physiological, biochemical and
molecular parameters of wheat.

Similar results on the growth-promoting effects of low concentrations of Au-NPs were
obtained in many other plant species, including maize, Arabidopsis, mungbean, mustard,
gloriosa, arugula, lavender, and watermelon [31,32,34,35,38,40,41]. It is hypothesized
that Au-NPs may participate in cell differentiation through molecular pathways [54]; for
example, there is evidence of the ability of Au-NPs to activate genes that are involved in the
regulation of aquaporins and responsible for the cell cycle [29,41]. Additionally, Au-NPs
can affect cell differentiation through miRNAs—short, non-coding RNAs that regulate
a variety of biological functions, including growth and stress responses. Thus, Au-NPs
altered the expressions of miR398, miR408, miR164, miR167, and miR169 in Arabidopsis [32].
Furthermore, miR167 expression was linked to the activity of genes that regulate plant
reproductive processes via affecting auxin signal transduction pathways. The altered
expressions of miR169, miR398 and miR408 influenced the sizes of seedlings, as well as the
development of their root systems, and was responsible for the early flowering of plants
and hastened seed maturation [32].

We emphasize that the effects of Au-NP on PSA were expressed via a significant
increase in the level of chlorophylls in the leaves of wheat under control conditions
(Figure 4A). This could imply that the PSA is actively working, and that thylakoid mem-
branes are stable. Another indication of the PSA’s stability is the consistent ratio of photosyn-
thetic pigments of wheat under the impact of Au-NPs (Figure 4E–H). Other studies indicate
that Au-NPs increased chlorophyll content in soybean, corn, and mustard plants [31,33,34].
Researchers observed an increase in the electronic transport rate and Hill reaction [33,43],
as well as changes in fluorescence parameters and photosynthetic intensity [33,42], under
the influence of Au-NPs. The peculiar features of Au-NPs in this area are attributed to
the effect of plasmon resonance. The impact is that electrons on the surfaces of Au-NPs
can dramatically enhance their activity due to their propensity to collectively oscillate in
response to a certain wavelength of light (Hu and Xianyu 2021) [45]. Active electrons on
the surfaces of Au-NPs can “trap” photons of light, facilitating the transfer of energy in the
light-harvesting complex (LHC) [33,43]. Au-NPs’ effects on PSA parameters were shown
not only in leaves sprayed with Au-NPs, but also in plants grown from treated seeds [55].

NPs also change the intensity of photosynthetic pigment synthesis and the activity of
PSA by regulating the expression of genes involved. For example, zinc oxide NPs increased
the expression of genes encoding photosystem structural units (PSAD2, PSAE2, PSAK) and
photosynthetic pigment synthesis genes (CAO, CHLG, GGPS6, PSY, PDS, ZDS) [56]. Silicon
oxide NPs enhanced the expression of PsbH, PsbB, and PsbD genes encoding photosystem
II (PS II) proteins [57]. Titanium oxide particles enhanced the expression of genes involved
in the synthesis of RuBisCo [58]. Au-NPs’ effects on RbcL and RbcS genes were shown in
our study under control conditions (Figure 5A,C). The expression levels of RbcL and RbcS
genes encoding the large and small subunits of RuBisCo were increased upon Au-NPs
treatment, which may indicate an increase in RuBisCo as a key PSA enzyme.

Under low-temperature hardening, Au-NPs caused an additional increase in the cold
tolerance of wheat seedlings (Table 1). However, the effects of Au-NPs on growth processes
and PSA activity were almost completely cancelled out by the effect of low temperature.
At the same time, under the Au-NPs treatment, the process of increasing cold tolerance
was accompanied by a significant increase in sucrose content (Table 3). The buildup of
soluble sugars is known to be the most important nonspecific plant response to abiotic
stress, which is required for survival under low temperatures [59,60]. Frost tolerance
(resistance to sub-zero temperatures) in cereals is related to the outflow of water from
cells into intercellular spaces, and the formation of intercellular ice. At the same time,
the high content of sugars in the cells reduces the risks of dehydration and decreases
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ice nucleation temperature. Sugars act as osmolytes and cryoprotectants; they stabilize
membranes and act as antioxidants [61,62]. Furthermore, sugars are reserve substances,
and their accumulation is required for the energy-intensive cold adaptation process [63–65].

It is understood that Au-NPs, as alien exogenous particles to the plant organism, can
operate as triggers for oxidative stress [66]. The development of LPO products, on the other
hand, is a critical link in the chain of plant cell-adaptive responses to abiotic stress [59].
The products of LPO (including reactive oxygen species, MDA and ET) created in plant
cells during oxidative stress development can induce the ICE-CBF/DREB1 ((ICE)-C-Repeat
Binding Factor/Dehydration Responsive Element Binding Factor 1) signaling pathway of
cold adaptation in plants, which triggers the expression of Cor-genes [60,67]. Additionally,
they stimulate the antioxidant system (AOS), which in plants is the most significant non-
specific protective enzymatic mechanism. It was shown in watermelon and mustard that
exposure to Au-NPs was accompanied not only by an increase in MDA in leaves, but also
by an increase in the activity of AOS enzymes [35,39]. We found that under either control or
hardening conditions, the Au-NPs treatment had no effect on the MDA contents of wheat
leaves (Table 3). It can be concluded that in our case, NPs do not cause oxidative stress.

We studied the effects of Au-NPs on the expression of the Cor-genes Wcor15 and
Wcor726. Note that the Wcor726 gene belongs to the Wcs120 family, which is specific to
wheat [68,69]. These genes are regulated by low temperatures and encode WCS protein
accumulation, which directly correlates with the ability of plants to increase tolerance to
low temperatures [68]. According to some research [7], Wcor726 is a member of the family
D11 of the large class LEA (Late Embryogenesis Abundant) proteins, which are dehydrins
involved in plant defense against a variety of stresses.

WCOR15 appears to belong to group III LEA proteins that target chloroplasts [70,71].
The Wcor15 gene encoding chloroplast proteins contains CRT/DRE cis-elements similar to
Wcs120 [13]. There is proof that the Wcor15 gene produces the WCOR15 protein, which
builds up in chloroplasts and reduces the degree of photoinhibition of PS II [72,73].

According to our studies, under the influence of Au-NPs, in control conditions an
8-fold increase in the expression of the Wcor15 gene was observed (Figure 6C). Under
low-temperature hardening, the expressions of Wcor726 and Wcor15 in untreated wheat
plants were significantly increased. Au-NPs treatment caused a small additional increase
in the expressions of these genes. As shown in other studies, plants of cold-sensitive wheat
genotypes tended to accumulate less Wcor15 transcripts [13]. However, our data suggest
that in wheat genotype Zlata, the increase in freezing tolerance under the influence of
Au-NPs seems to be related to the expression of this gene. Most likely, this ensured an
increase in their freezing tolerance.

This research demonstrates that the nanopriming method can successfully deliver
Au-NPs to seeds, and the NPs then permeate the plant organism. Plants grown from
treated seeds differed from control (untreated) plants not only in physiological, biochemical
and molecular characteristics, but also in adaptive status. The treatment with Au-NPs
improved tolerance to low temperatures in control conditions and after cold hardening.
Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic
pigments, sucrose in leaves, and the expression of genes, such as encoded RuBisCo and
the Wcor15 gene (Figure 7). The mechanisms of cold tolerance enhancement under the
influence of Au-NPs are not completely clear. It can be assumed based on our data that
improvements in wheat’s low temperature tolerance are associated with a high content of
soluble sugars and an increased level of Wcor15 gene expression.

Comparing biochemical and molecular processes related to this phenomenon in the
freezing-tolerant genotype Moskovskaya 39 (presented in previous study [50]) and the
cold-susceptible genotype Zlata revealed that, under control conditions, Au-NPs treatment
increased the content of photosynthetic pigments and the expression of the Wcor15 gene
in both wheat genotypes. There were also differences between genotypes. In the freezing-
tolerant genotype Moskovskaya 39, the rise in cold tolerance was followed by an increase
in peroxide processes, but in cold-susceptible genotype Zlata, the increase in peroxide
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processes was not detected, while the concentrations of suitable osmolytes in tissues rose.
The considerable improvement in cold tolerance under Au-NPs treatment in freezing-
tolerant genotype Moskovskaya 39 under low-temperature hardening conditions was
related to a complex of adaptation changes: increased chlorophyll and carotenoids content,
sucrose, and the expression of Wcor15 and Wcor726 genes. The increase in cold tolerance of
cold-susceptible genotype Zlata under these conditions was connected with the expression
of the Wcor15 gene and a rise in multiple sugars.
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Figure 7. Some physiological, biochemical and molecular mechanisms of freezing tolerance improve-
ment due to Au-NPs’ effects in seedlings of wheat of the cold-susceptible genotype Zlata.

4. Materials and Methods
4.1. Experimental Design

The experiments were carried out according to the following scheme (Figure 8). The
first stage is the chemical synthesis of Au-NPs solutions. Based on data from the literature,
we selected four concentrations of Au-NPs solutions—5, 10, 20 and 50 µg mL−1—since
it is known that concentrations of Au-NPs solutions below 50 µg mL−1 generally have a
stimulating effect on plants [28,29].

The second step was the nanopriming (soaking for 24 h) of seeds in Au-NPs solutions
at the selected concentrations. The next step involved growing plants from treated seeds
under controlled conditions for 10 days.

Then, we determined the tolerance of plants to low temperatures (concentration tests)
using growth indicators and survival rates after freezing. As a result, the concentrations of
Au-NPs solutions with the maximum effect on low temperature tolerance were selected.

All further experiments were conducted under control conditions (at 22 ◦C) and after
cold hardening (4 ◦C, 7 d) using Au-NPs concentrations giving the maximum effect on the
low temperature tolerance of plants.
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4.2. The synthesis of Au-NPs

Gold spherical nanoparticles were created using the citrate method [25] by reducing
chloroauric acid (Sigma-Aldrich, St. Louis, MO, USA) with sodium citrate (Fluka, St. Gallen,
Switzerland). The reduction was accomplished by heating 250 mL of a 0.01% aqueous
solution of chloroauric acid to 100 ◦C in an Erlenmeyer flask on a magnetic stirrer with a
reflux water condenser. In the next step, 7.75 mL of 1% aqueous sodium citrate solution
was added, and the mixture was boiled for an additional 30 min until a crimson sol formed.
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Freshly produced Au-NP solutions were transferred to sterile glass vials with tight-fitting
lids and kept at 4 ◦C.

The resulting Au-NPs were studied by transmission electron microscopy, spectroscopy,
and dynamic light scattering [74]. According to the measurement results, the average
diameter of Au-NPs was 15.3 nm. Detailed characterizations and TEM images of Au-NPs
have been presented in our previous study [50].

4.3. Growth Conditions

Seeds of cold-susceptible wheat (Triticum aestivum L., Poaceae) genotype Zlata (Federal
Research Center “Nemchinovka”, Moscow, Russia) were used in the investigations. The
seeds were immersed in Au-NPs solutions for 24 h, and then were washed in distilled
water. The seeds were germinated in distilled water at 22 ◦C, 60–70% relative humidity,
and a photoperiod of 16 h (illumination 100 µmol photons m−2 s−1) with OSRAM L
80W/640 lamps (Osram, Smolensk, Russia). The seedlings were grown on distilled water
under the same conditions until 10 days of age. Then, a part of plants was hardened at 4 ◦C
for 7 days in a KBW-240 climatic chamber (Binder, Tuttlingen, Germany).

4.4. Parameters of Growth

Wheat seed germination was measured on day 7 and reported as a percentage. The
initial leaf’s length was measured both at 10 days of growth and at 17 days following
hardening. In each variant of the treatment, 30 plants were used in 3 replications (90 plants
in all). The experiment was repeated 2 times.

4.5. Survival of Plants after Freezing

In order to identify the concentrations of Au-NPs that have the maximum protective
effect on wheat plants of genotype Zlata, the degree of tolerance to low temperatures was
determined by direct freezing. The rate of survival of seedlings was measured after freezing
in a climatic chamber MIR-153 (Sanyo, Osaka, Japan) at 0 ◦C, −3 ◦C, −5 ◦C, −7 ◦C and
−9 ◦C, with a 24 h interval. After freezing, the plants were preserved for one day at 4 ◦C in
the dark before being transplanted to normal temperatures (22 ◦C, daylight) for 72 h. The
number of undamaged seedlings as a percentage of the total number of frozen plants was
used to calculate the survival rate. The choice of temperatures for freezing was made on
the basis of our own research and literature data. In each variant of the treatment, 30 plants
were used in 3 replications. The experiment was repeated 2 times.

4.6. Quantification of Au

We analyzed tissues of 10-day-old seedlings grown at 22 ◦C from seeds treated with
Au-NPs at a concentration of 10 µg mL−1. Roots, seeds, and leaves of wheat seedlings
were oven-dried at 70 ◦C for 72 h, weighed, and digested (the seeds were first cleaned
and dried). The digestion was performed using microwave-assisted digestion (UltraClave
III, Milestone, Santa Clara, CA, USA) at 105 ◦C for 15 min with 3 mL of plasma pure
HNO3. Then, the volume of the sample was adjusted to 10 mL using deionized water. The
concentration of Au was measured using an inductively coupled plasma-atomic emission
spectrometer (Agilent Technologies, Santa Clara, CA, USA) and an inductively coupled
plasma mass spectrometer 820 (Bruker, Bremen, Germany). In each variant of the treatment,
3 statistical repetitions were carried out. The experiment was repeated 2 times.

4.7. Dry Matter Content

Given that plants lose water at low temperatures, the data for all indicators were
converted to dry weight. The dry matter content was determined by drying them in a
thermostat (at 100–105 ◦C) to a constant weight and expressed as a percentage of the
sample’s initial wet weight.
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4.8. Lipid Peroxidation Level (LPO)

LPO level was evaluated as the content of MDA [75] with slight modifications. Leaf
samples (300 mg) were homogenized in 5 mL of extraction medium (0.35 M NaCl in 0.1 M
Tris-HCl buffer, pH 7.6). The homogenate (3 mL) mixed with 2 mL 0.5% thiobarbituric acid
in 20% trichloroacetic acid was incubated (95 ◦C for 30 min), then cooled and filtered. The
extraction medium with the reagent was employed as a control. Results were adjusted for
nonspecific absorbance by subtracting the values observed at 532 and 600 nm. A Genesys
10UV spectrophotometer (Thermo Electron Corporation, Waltham, MA, USA) was used
in the study. MDA concentration was determined using a molar extinction coefficient
(ε = 1.56·105 M−1 cm−1) in µM g−1 dry weight of leaves. In each variant of the treatment,
3 statistical repetitions were carried out. The experiment was repeated 3 times.

4.9. Content of Chlorophylls and Carotenoids

Chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) concentration in
the leaves were measured spectrophotometrically at wavelengths 663, 646, and 470 nm,
respectively, in an 80% acetone solution. The contents of pigments were calculated using
the formula [76]:

Ccar = (1000D470 − 3.27Ca − 104Cb)/198, Ca = 12.21D663 − 2.81D646, Cb = 20.13D646 − 5.03D663.

Total chlorophyll was determined as the sum of chlorophylls a and b. The pigment
content was expressed as mg g−1 dry weight of leaves.

We calculated chlorophyll portion in light harvesting complex (LHC), assuming that
practically all Chl b was located in LHC and the chlorophyll ratio Chl a/Chl b in this
complex was equal to 1.2 [77]: LHC (%) = (Chl b + 1.2 × Chl b)/(Chl a + Chl b) × 100.

In each variant of the treatment, 3 statistical repetitions were carried out. The experi-
ment was repeated 3 times.

4.10. Soluble Sugars (Glucose, Fructose, and Sucrose) Content

Solution of sugars were obtained from 500 mg of plant tissue after ethanol extraction
three times. The fructose content was evaluated via the interaction of ketoses with resorci-
nol, and then the sucrose concentration was recalculated [78]. The content of glucose was
measured by the glucose oxidase method using the Olvex diagnosticum Kit (Vital Diagnos-
tics, Saint Petersburg, Russia). In each variant of the treatment, 3 statistical repetitions were
carried out. The experiment was repeated 3 times.

4.11. Total RNA Extraction and cDNA Synthesis

Total RNA was isolated from 50 mg of leaf tissue samples using the Spectrum Plant
Total RNA Kit (Sigma-Aldrich, USA) according to the manufacturer’s instructions with
modification of the homogenization step according to [79]. The quality and quantity of
purified RNA was determined by the NanoDrop-2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and analyzed by 2% agarose gel electrophoresis. To remove
residual genomic DNA impurities, total RNA preparations were treated with DNase I
(Thermo Fisher Scientific, USA).

cDNA was synthesized using a RevertAid reverse transcription kit (Thermo Fisher
Scientific, USA).

4.12. Gene Expression by RT-qPCR

Real-time quantitative PCR (RT-qPCR) was carried out on the CFX96 Touch™ (Bio-
Rad, Hercules, CA, USA), using the SYBR Green I intercalating dye (Evrogen, Moscow,
Russia). The reaction mixture for quantitative PCR in a volume of 25 µL contained 5 µL
of qPCRmix HS SYBR (Evrogen), 0.2 µM of each primer, and 15 ng of the cDNA template.
The following amplification conditions were used: 95 ◦C for 5 min, followed by 40 cycles of
95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s.
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Gene-specific primers (Table 4) for the amplification of large and small subunits of
RuBisCo (RbcS and RbcS) target genes were borrowed from [80]; gene-specific primers for
amplification of the target genes (Wcor726, Wcor15) and reference genes (TaAct7, TaRP15)
were selected using the Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/, accessed on 13 March 2024) and OligoAnalyzer™ Tool (https://eu.idtdna.com/
pages/tools/oligoanalyzer, accessed on 13 March 2024) online resources. Primers were
designed to bind to all three wheat sub-genomes [80].

Table 4. Primers for qRT-PCR analysis.

Gene Primer Primer Sequences

TaAct7
Forward TGCTATCCTTCGTTTGGACCTT
Reverse AGCGGTTGTTGTGAGGGAGT

TaRP15
Forward TCATTGTGGAGGACTCGTGG
Reverse GCAGACATAGCCCACACAT

RbcS
Forward GGATTCGACAACATGCGCCAGG
Reverse ATATGGCCTGTCGTGAGTGAGC

RbcL
Forward ACCATTTATGCGCTGGAGAGACC
Reverse CAAGTAATGCCCCTTGATTTCACC

Wcor726
Forward ACTGGAATGACCGGCTCG
Reverse TGTCCCGACTTCCCGTAGTT

Wcor15
Forward CCACCCATCCATCAGCAGTT
Reverse CTTGGAGCGTTCTGCAGGC

Wcor726 encodes WCOR 726 dehydrin, which refers to Wheat Cold Specific family
proteins that are important in plant cold and freezing adaptation. Wcor15 encodes the
WCOR15 chloroplast-targeted COR protein. The transcript levels were normalized to the
expression of the reference genes TaAct7 (actin) [81] and TaRP15 (RNA polymerase I, II,
and III, 15 kDa subunit) [82]. The relative expression levels were calculated using the
Pfaffl method [83]. Each qRT-PCR reaction was performed in three biological and two
technical replicates.

4.13. Statistical Analysis

Subject to the method used, the experiments were repeated three times to obtain
similar reproducible results. Statistical significance was calculated via one-way ANOVA
with a Tukey’s test (p < 0.05) using Origin 7.0 software. The tables and figures show the
mean values and their standard errors.

5. Conclusions

Our results demonstrate that Au-NPs can “reprogram” the plant organism by altering
the metabolism and the expression of genes involved in stress responses. It is important
that Au-NPs act not only on freezing-tolerant, plants as we have previously established [50],
but also on varieties whose genetic tolerance to low temperatures is reduced. As a result,
plants are able to withstand low temperatures much better. Au-NPs regulated growth
processes, increased the content of photosynthetic pigments and soluble sugars in leaves,
and also increased the expression of COR genes and PSA genes. It should be mentioned
that more research in this area is needed to better understand the effects of Au-NPs on
plants, and the mechanisms of action in the plant organism. Perhaps in the future, Au-NPs
can be used as growth and development stimulants as well as potential adaptogens. The
development of strategies for the use of NPs should aim to reduce agricultural risks, i.e.,
focus on the development of sustainable agriculture.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://eu.idtdna.com/pages/tools/oligoanalyzer
https://eu.idtdna.com/pages/tools/oligoanalyzer
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