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Abstract: The nitrogen deposition process, as an important phenomenon of global climate change
and an important link in the nitrogen cycle, has had serious and far-reaching impacts on grassland
ecosystems. This study aimed to investigate the survival adaptation strategies of plants of different
functional groups under nitrogen deposition, and the study identified the following outcomes of
differences in biomass changes by conducting in situ simulated nitrogen deposition experiments
while integrating plant nutrient contents and soil physicochemical properties: (1) nitrogen addition
enhanced the aboveground biomass of grassland communities, in which Poaceae were significantly
affected by nitrogen addition. Additionally, nitrogen addition significantly influenced plant total
nitrogen and total phosphorus; (2) nitrogen addition improved the plant growth environment,
alleviated plant nitrogen limitation, and promoted plant phosphorus uptake; and (3) there was
variability in the biomass responses of different functional groups to nitrogen addition. The level of
nitrogen addition was the primary factor affecting differences in biomass changes, while nitrogen
addition frequency was an important factor affecting changes in plant community structure.

Keywords: nitrogen addition; alpine grassland; biomass; ecochemical characterization; structural
equation modeling

1. Introduction

Grassland is one of the most important and widely distributed ecosystem types in
terrestrial ecosystems [1,2], and they play an important role in the global carbon and
nitrogen cycle, climate regulation, and in coping with global changes [3,4]. Grasslands
in China cover an area of about 4.0 × 108 hm2, accounting for about 41.7% of the total
land area [5]. A significant portion of these grasslands are located in sensitive and critical
zones of global climate change, making them important experimental sites for the study of
nutrient cycling in grassland ecosystems in the context of global climate change.

Since the Industrial Revolution, the burning of fossil fuels and the extensive use of
nitrogen fertilizers have caused a dramatic increase in nitrogenous compounds emitted
into the atmosphere and deposited on the surface [6]. In China, nitrogen deposition
saw a significant rise between 1980 and 2010, with an average growth rate of about
0.4 kg·N·ha−1·yr−1 [7], and in recent years, China has developed into the third-largest
high-nitrogen-depositing area in the world after Europe and the United States [8]. As an
important phenomenon of global climate change and an important link in the nitrogen
cycle, the impact of the nitrogen deposition process on grassland ecosystems has become
one of the research hotspots in ecology. Currently, research on nitrogen deposition in
grassland ecosystems mainly focuses on the differences in plant productivity and changes
in species diversity due to nitrogen addition [9–11]. In contrast, studies on physicochemical
soil properties are less common. A close mutual feedback relationship exists between soil
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and plants during plant growth, with the soil providing the necessary nutrients for plant
growth and development, and plants influencing the soil nutrients through, for example,
apoplastic matter return [12,13]. The physicochemical soil properties tend to respond
factors such as soil pH, total organic carbon, total nitrogen, and available phosphorus,
tending to respond more directly and rapidly to nitrogen additions compared to the slow
response of plant growth characteristics such as plant community and productivity. Tian
et al. [14] found that nitrogen addition decreased the soil pH by a global meta-analysis, Xu
et al. [15] found that nitrogen addition increased the soil total organic carbon by a global
meta-analysis, Zhou et al. [16] found that nitrogen addition increased the soil nitrogen
effectiveness by a global meta-analysis, and Lu et al. [17] found that nitrogen addition
increased the soil available phosphorus content.

Moderate nitrogen input enhances ecosystem productivity by raising the soil nitrogen
levels and stimulating microbial activity. This, in turn, promotes microbial nitrogen miner-
alization and boosts the soil’s nutrient content, making more nitrogen available for plant
growth [18–20]. However, as nitrogen input continues to increase, humus decomposing
enzymes produced by soil microorganisms decrease, microbial activity decreases, and soil
nitrogen mineralization is weakened [21]. Once the ecosystem becomes saturated with
nitrogen, the excess inorganic nitrogen undergoes nitrification and denitrification, which
increases the risk of nitrogen loss [22,23]. Concurrently, increased nitrogen input boosts
the accumulation of reactive nitrogen in the soil, which can lead to the rapid growth of
nitrogen-loving plants within the community, thereby affecting the structure and func-
tion of the grassland ecosystem [24]. The impact of nitrogen deposition on ecosystems
varies significantly based on climate zone, grassland system type, nitrogen addition level,
nitrogen fertilizer type, and experiment duration [25,26], and some studies have shown
that the frequency of nitrogen addition is also one of the important factors affecting the
ecosystem effect [27]. Simultaneously integrating soil and plant stoichiometric characteris-
tics in response to nitrogen addition and studying nutrient cycling from both plant–soil
levels can more comprehensively explain the intrinsic and extrinsic factors of species
diversity changes.

Bayanbulak Grassland, located in the Tianshan Mountains, is the largest subalpine
alpine grassland in China and the second-largest alpine grassland in China [28]. According
to the observation data of the Chinese Academy of Sciences, the environmental nitrogen
deposition of the grassland is about 8 kg·N·ha−1·yr−1 [29], which is slightly lower than the
normal critical load of global grassland nitrogen deposition (10–20 kg·N·ha−1·yr−1) [30],
but given its unique geographical location and climatic conditions, it is particularly impor-
tant to study the changes in the Bayanbulak alpine grassland ecosystem in the context of
nitrogen deposition to predict future changes in grassland structure and function. In this
study, we investigated the effects of increased nitrogen deposition on the physicochemical
soil properties (soil water content, pH, soil salt content, total organic carbon, total nitrogen,
and total phosphorus) and plant nutrient contents (total organic carbon, total nitrogen, and
total phosphorus) of Bayanbulak alpine grassland through nitrogen addition experiments
with different levels and frequencies, in order to provide a scientific foundation for the adap-
tive management of ecosystems against the background of increasing atmospheric nitrogen
deposition. Additionally, our research aimed to address the following scientific inquiries:
(1) Is there variability in the responses of grassland community biomass to different patterns
of nitrogen addition? Is the frequency of nitrogen addition also an important factor causing
changes in the plant community structure? (2) Is plant biomass growth directly affected
by the physicochemical soil properties? Are there differences in the effects of the soil’s
physical and chemical properties on plants of different functional groups? Are the influence
pathways that cause changes in the biomass of different functional groups consistent?
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2. Materials and Methods
2.1. Study Area

The study area is located near the Bayanbulak Grassland Ecosystem Research Station
of the Chinese Academy of Sciences (42◦88′ N, 83◦70′ E) in Hejing County, Bayin’guoleng
Mongol Autonomous Prefecture, Xinjiang, China (Figure 1). This region has a typical alpine
climate and an altitude of about 2470 m [31]. The average annual temperature is −4.6 ◦C,
with an extreme maximum of 25.4 ◦C and an extreme minimum of −40.5 ◦C. The annual
rainfall ranges from 216.8 to 316.8 mm, with an average annual rainfall of about 270 mm, of
which 60% to 80% is concentrated in the growing season. The soil type of the study area is
chestnut-calcium soil, which is flat and has a homogeneous distribution of grass species.
The experimental treatments were preceded by five years of enclosure, and the vegetation
type was alpine grassland dominated by perennial herbaceous plants, with the main species
being Festuca ovina L. (Poaceae), Agropyron cristatum (Linn.) Gaertn. (Poaceae), Potentilla
fragarioides L. (Rosaceae), Potentilla bifurca Linn. (Rosaceae), and Astragalus adsurgens (Fisch.)
Bunge. (Fabaceae).
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Figure 1. Study area.

2.2. Experimental Design

The experiment was designed as a randomized block group experiment, and NH4NO3
(35%N) was selected as the sole nitrogen additive for the in situ simulated nitrogen addition
experiments. A total of five nitrogen addition levels were set up in the experiments:
Control (CK) (0 g·m−2), Low N (LN) (5 g·m−2), Medium N (MN) (10 g·m−2), High N
(HN) (15 g·m−2), and Severe N (SN) (20 g·m−2), and two nitrogen addition frequencies:
high-frequency nitrogen addition (3 lots of nitrogen addition) and low-frequency nitrogen
addition (1 lot of nitrogen addition). Each treatment was set up with 4 replications. The
experimental plots consisted of 40 3 m × 3 m plots with a 0.5 m buffer strip between plots
(Figure 2). The low-frequency nitrogen addition was carried out at the end of April 2021,
and the high-frequency nitrogen addition was divided into three groups at the end of April,
May, and June 2021, respectively.
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2.3. Sample Collection and Sample Determination Methods
2.3.1. Sample Collection

Plant sample collection: At the end of August 2021, 40 0.5 m × 0.5 m sample squares
were randomly set up within 40 sample squares, and all plants within the small sample
squares were harvested flush and classified into archival bags according to species to be
returned to the laboratory, placed in the oven to be killed first (105 ◦C, 30 min), and dried
to a constant weight (65 ◦C, 48 h) to perform the weighing process (0.01 g).

Soil sample collection: After harvesting the sample plots, the surface withered material
was removed in 40 small sample plots, and soil samples were collected by the soil auger
method (d = 5 cm). In total, 3 soil augers were collected in each sample plot (classification
according to 0–10 cm and 10–20 cm deep: 0–10 cm soil represents shallow soil and 10–20 cm
soil represents deep soil) and mixed into 2 soil samples, totaling 80 soil samples. Each soil
sample was divided into two parts, one part for soil water content determination and one
part for soil physicochemical property determination, including pH, EC, soil TOC, soil TN,
and soil TP.

2.3.2. Sample Determination Methods

The dried plant samples were categorized based on different functional groups and
then ground using a 100-mesh sieve to sieve to access the nutrient content. The air-dried
soil samples were sieved through a 100-mesh sieve to determine the physical and chemical
properties of the soil. The research methodology is as follows [32]:

The plant total organic carbon (Plant TOC) was determined by the K2Cr2O7-FeSO4
titration method. The soil sample was weighed using an electronic balance to weigh 0.03 g
of a 100-mesh sieve of a plant sample (accurate to 0.0001 g) into a conical flask. Next, 10 mL
of a 1/6 mol/L K2Cr2O7 solution (prepared by dissolving 49.04 g of K2Cr2O7 in solvent to a
final volume of 1 L) was added to the flask, followed by thorough shaking to ensure proper
mixing. Subsequently, 10 mL of 98% H2SO4 was added, and the mixture was shaken well
and allowed to react for 30 min. After the reaction time had elapsed, 100 mL of distilled
water was added to the flask to dilute the acidic mixture. The solution was then shaken well
to ensure homogeneity. Following this, 5–8 drops of o-phenanthroline indicator solution
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(prepared by dissolving 1.485 g of o-phenanthroline and 0.795 g of FeSO4 in solvent to a
final volume of 100 mL) were added, and the flask was shaken well once more to ensure
an even distribution of the indicator. Finally, the solution was titrated with a 1/2 mol/L
FeSO4 solution (prepared by dissolving 140 g of FeSO4 and 15 mL of 98% H2SO4 in solvent
to a final volume of 1 L). The endpoint of the titration was indicated by a color change
in the solution, which initially shifted from blue to green and then to red, signaling the
completion of the reaction.

The plant total nitrogen (Plant TN) was determined by the semi-micro Kjeldahl method.
A total of 0.05 g of the plant sample (accurate to 0.0001 g) was taken and placed at the
bottom of a digestion tube. Then, 5 mL of 98% H2SO4 was added to the tube. Next, heating
over a small flame in the digestion furnace was performed, waiting for the H2SO4 to
produce white fumes. Then, the temperature was increased. Once the solution turned into
a uniform brownish-black, it was removed from the heat and allowed to cool slightly. Ten
drops of H2O2 were added and then the mixture was heated until it reached a gentle boil,
cooking for about 7 to 10 min. After cooling slightly, the addition of H2O2 was repeated,
followed by more heating. This process was repeated three times, with each subsequent
addition of H2O2 being in smaller amounts. Cooking was continued until the solution was
colorless or clear, and then it was heated for an additional 10 min to remove any remaining
H2O2. After the solution cooled, it was transferred to a 100 mL volumetric flask using
water, and filled to the mark once it reached room temperature. The digest was allowed to
stand overnight. The next day, 5 mL of the clear solution was taken and 2 mL of 1/2 mol/L
potassium sodium tartrate solution (prepared by dissolving 100 g in 1 L of water), 5 mL of
1.783 mol/L potassium hydroxide (prepared by dissolving 100 g in 1 L of water), 25 mL
of distilled water, and 2.5 mL of Nasrid reagent (prepared by dissolving 45.0 g of HgI2
and 35.0 g of KI in 400 mL of distilled water, then transferring to a 1 L volumetric flask
and adding 112 g of KOH. After adding distilled water up to 800 mL, it was mixed well,
cooled to a volume of 1 L, left to stand overnight, and then filtered into a brown volumetric
flask for later use) were added. Water was added to the mixture, shaken well to bring the
volume up to 30 mL, and then a UV spectrophotometer was used to compare the color
intensity at a wavelength of 425 nm. Finally, the mass of total nitrogen in the plant was
determined using the standard curve.

The plant total phosphorus (Plant TP) was determined by the Mo-Sb Colorimetric
method. In total, 0.05 g of the plant sample (accurate to 0.0001 g) was taken and placed at
the bottom of a digestion tube. Next, 5 mL of 98% H2SO4 was added to the tube. Heating
over a small flame in the digestion furnace was performed, waiting for the H2SO4 to
produce white fumes. Then, the temperature was increased. Once the solution turned into
a uniform brownish-black, it was removed from the heat and allowed to cool slightly. Ten
drops of H2O2 were added and then the mixture was heated until it reached a gentle boil,
cooking for about 7 to 10 min. After cooling slightly, the addition of H2O2 was repeated,
followed by more heating. This process was repeated three times, with each subsequent
addition of H2O2 being in smaller amounts. Cooking was continued until the solution was
colorless or clear, then it was heated for an additional 10 min to remove any remaining
H2O2. After the solution cooled, it was transferred to a 100 mL volumetric flask using
water, and filled to the mark once it reached room temperature. The digest was allowed to
stand overnight. A total of 5 mL of supernatant was taken after standing overnight, 2 drops
of indicator were added, 10 mL of distilled water was added, the supernatant was adjusted
to a light yellow color with 4 mol/L of NaOH (160 g NaOH was volume to 1 L), and then a
drop of NaOH was added. NaOH (160 g NaOH to 1 L) adjusted it to a slight yellow, and
then a few drops of 2 mol/L diluted H2SO4 (60 mL of concentrated H2SO4 to 1 L) adjusted
this to fade. Molybdenum and antimony anti were added (first the molybdenum and
antimony mixture was configured (A: 153 mL of concentrated H2SO4 added into 300 mL of
distilled water, mixed and then cooled; 10 g of ammonium molybdate in the cooled H2SO4)
and dissolved completely. B: Potassium antimony tartrate 0.5 g was fixed to a 100 mL
volumetric flask. Solution B was poured into solution A to a 1 L brown volumetric flask),
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followed by 1.5 g of ascorbic acid into 100 mL of molybdenum and antimony mixture) at
5 mL, shaking well and then fixing to 50 mL. After 30 min, the absorbance was recorded by
an ultraviolet spectrophotometer with a wavelength of 880 nm, and the total phosphorus
content of the plant was calculated by the standard curve.

The soil pH was determined using a pH meter. To prepare the sample, a ratio of
water to soil of 5:1 was used. Specifically, 10 g soil, which was sieved through a 20-mesh
sieve, was weighed and placed into a triangular flask. Then, 50 mL of distilled water was
added to the flask. The mixture was shaken on a shaker for 15 min to ensure thorough
mixing and facilitate the release of ions from the soil particles into the water. After shaking,
the flask was allowed to stand for 10 min to let the soil particles settle. Following this
sedimentation period, the supernatant was carefully filtered through filter paper to obtain
a clear solution. Finally, the pH of the clarified solution was measured using a calibrated
pH meter. The reading was taken once the value on the pH meter stabilized, ensuring an
accurate measurement of the soil pH.

The soil salt content (SSC) was determined using the potentiometric method. In this
process, a soil-to-water ratio of 5:1 was used. The soil was mixed with water and shaken on
a shaker for 15 min to ensure that the soluble salts were adequately dissolved. After shaking,
the mixture was allowed to stand for 10 min, which allowed the soil particles to settle. The
clear liquid, now known as the leachate, was then separated from the soil particles through
filtration. The conductivity of the leachate was measured using a conductivity meter, which
provided a quantitative assessment of the dissolved salt content in the soil. A plotted
standard curve was used to convert the conductivity of the leachate and soil salinity.

The soil water content (SWC) was determined using the drying and weighing method.
Initially, a dry aluminum box was taken and weighed, with this initial weight recorded as
W1 (g). Subsequently, soil samples were carefully placed into the aluminum box, whose
weight was predetermined, and the total weight was recorded as W2 (g). The box, now
containing the soil, was then opened and placed in an oven, with the lid left ajar. The
samples were dried at approximately 105 ◦C for 48 h until they reached a constant weight.
After cooling, the box with the soil was weighed once more, and this final weight was
recorded as W3 (g).

SWC% =
W2 − W3

W3 − W1
× 100% (1)

The soil total organic carbon (Soil TOC) was determined by the K2Cr2O7-FeSO4
titration method. The soil sample was weighed using an electronic balance to weigh 0.5 g
of a 100-mesh sieve of soil sample (accurate to 0.0001 g) into a conical flask. Next, 10 mL of
a 1/6 mol/L K2Cr2O7 solution (prepared by dissolving 49.04 g of K2Cr2O7 in solvent to a
final volume of 1 L) was added to the flask, followed by thorough shaking to ensure proper
mixing. Subsequently, 20 mL of 98% H2SO4 was added, and the mixture was shaken well
and allowed to react for 30 min. After the reaction time had elapsed, 100 mL of distilled
water was added to the flask to dilute the acidic mixture. The solution was then shaken well
to ensure homogeneity. Following this, 5–8 drops of o-phenanthroline indicator solution
(prepared by dissolving 1.485 g of o-phenanthroline and 0.795 g of FeSO4 in solvent to a
final volume of 100 mL) were added, and the flask was shaken well once more to ensure
an even distribution of the indicator. Finally, the solution was titrated with a 1/2 mol/L
FeSO4 solution (prepared by dissolving 140 g of FeSO4 and 15 mL of 98% H2SO4 in solvent
to a final volume of 1 L). The endpoint of the titration was indicated by a color change
in the solution, which initially shifted from blue to green and then to red, signaling the
completion of the reaction.

The soil total nitrogen (Soil TN) was determined by the semi-micro Kjeldahl method.
The soil sample was weighed using an electronic balance (accurate to 0.0001 g) and placed
into the bottom of the digestion tube, along with approximately 0.5 g of soil that was sieved
through a 100-mesh sieve. Then, 2 g of the mixed accelerator (with a K2SO4:CuSO4:SeO
ratio of 100:10:1) was added, followed by 5 mL of concentrated H2SO4. The mixture was
then heated at 350 ◦C for 1.5 h, after shaking well, and then cooled and brought to a volume
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of 100 mL. After allowing the mixture to stand overnight, the supernatant was taken, and
to it, 2 mL of KOH and a sodium tartrate solution (prepared by dissolving 100 g of sodium
tartrate in enough volume to make 1 L) were added, along with another 2 mL of KOH.
Subsequently, the supernatant from the soil sample, after it stood overnight, was added.
Next, 2 mL of sodium tartrate solution (prepared by dissolving 100 g of sodium tartrate
in enough volume to make 1 L), 5 mL of KOH solution (prepared by dissolving 100 g of
KOH in enough volume to make 1 L), 25 mL of distilled water, and 25 mL of Ghana’s
reagent was prepared by dissolving 45.0 g of HgI2 and 35.0 g of KI in 400 mL of distilled
water, which was then transferred to a 1 L volumetric flask, and 112 g of KOH was added.
After adding 800 mL of distilled water, the mixture was shaken well and cooled to a fixed
volume. Subsequently, 2.5 mL of KOH solution was added to a 1 L volumetric flask, the
mixture was shaken well, and the volume was adjusted to 50 mL. The absorbance was then
measured using a UV spectrophotometer at a wavelength of 425 nm for 30 min. Finally, the
mass of total nitrogen in the soil was determined using the standard curve. Subsequently,
2.5 mL of KOH solution was added to a 1 L volumetric flask, the mixture was shaken well,
and the volume was adjusted to 50 mL. The absorbance was then measured using a UV
spectrophotometer at a wavelength of 425 nm for 30 min. Finally, the mass of total nitrogen
in the soil was determined using the standard curve.

The soil total phosphorus (Soil TP) was determined by the Mo-Sb Colorimetric method.
The soil sample was weighed using an electronic balance (accurate to 0.0001 g), 0.5 g of
soil through a 100-mesh sieve was weighed into the bottom of the decoction tube, 8 mL
of concentrated H2SO4 and 10 drops of HClO4 were added, shaken well and decocted
at 350 ◦C for 50 min, cooled, and then volumed to 100 mL. In total, 5 mL of supernatant
was taken after standing overnight, 2 drops of indicator were added, 10 mL of distilled
water was added, and the supernatant was adjusted to a light yellow color with 4 mol/L
of NaOH (160 g NaOH was volume to 1 L), and then a drop of NaOH was added. NaOH
(160 g NaOH to 1 L) adjusted this to a slight yellow, and then a few drops of 2 mol/L
dilute H2SO4 (60 mL of concentrated H2SO4 to 1 L) adjusted it to fade. Molybdenum and
antimony anti were added (first, the molybdenum and antimony mixture was configured
(A: 153 mL of concentrated H2SO4 was added into 300 mL of distilled water, mixed and
then cooled; 10 g of ammonium molybdate in the cooled H2SO4) and dissolved completely.
B: Potassium antimony tartrate 0.5 g was fixed to a 100 mL volumetric flask. Solution B
was poured into solution A to 1 L brown volumetric flask), followed by 1.5 g of ascorbic
acid into 100 mL molybdenum and antimony mixture) at 5 mL, shaken well and then fixed
to 50 mL. After 30 min, the absorbance was recorded by an ultraviolet spectrophotometer
with a wavelength of 880 nm, and the total phosphorus content of the soil was calculated
by the standard curve.

2.4. Data Handling

Excel 2010 was used to summarize and organize the data, SPSS 24.0 was used to
statistically analyze the data, and R 4.2.3 was used to plot the graphs. One-way analysis of
variance (One way-ANOVA) was used to analyze the effects of nitrogen addition on the
plant aboveground biomass, plant nutrient content, and physicochemical soil properties. A
redundancy analysis was used to explore the significant silvers affecting biomass changes,
and structural equation modeling (SEM) was used to explore the pathways of the above-
ground biomass in response to nitrogen addition. The program packages ggplot2, ggcor,
ggpubr, and piecewiseSEM were mainly used in this study.

3. Results
3.1. Plant Aboveground Biomass Response to Nitrogen Addition

As indicated in Table 1, the aboveground biomass of the grassland communities signif-
icantly increased (p < 0.05) with the increase in nitrogen fertilizer application level. Under
the low-frequency nitrogen addition treatments, LN, MN, HN, and SN, the aboveground
biomass increased by 4.98%, 10.68%, 35.03%, and 36.80%, respectively, compared to the
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CK treatment. Conversely, under the high-frequency nitrogen addition treatments, LN,
MN, HN, and SN, the increases in aboveground biomass were −1.81%, 39.27%, 32.01%,
and 51.77%, respectively, compared to the CK treatment. The aboveground biomass of
the grassland, under both nitrogen addition modes, was greatly influenced by the level of
nitrogen addition and was less influenced by the frequency of nitrogen addition.

Table 1. Effect of nitrogen addition on aboveground biomass of grassland community.

AGB (g·m−2)
Nitrogen Addition Levels

CK LN MN HN SN

High-frequency
nitrogen addition 123.79 ± 8.13 b 121.55 ± 9.94 b 172.40 ± 16.14 a 163.42 ± 4.36 a 187.88 ± 3.48 a

Low-frequency
nitrogen addition 132.43 ± 9.77 b 139.03 ± 12.62 b 146.57 ± 4.18 ab 178.82 ± 18.86 a 181.17 ± 8.11 a

Note: Mean ± standard error. Different lowercase letters indicate significant differences between treatments
(p < 0.05).

The aboveground biomass of the grassland communities significantly increased under
both nitrogen addition modes. To explore the differences in nutrient utilization efficiency
among plants of different functional groups within these grassland communities, we ana-
lyzed the changes in aboveground biomass based on functional group classification. The
aboveground biomass of Poaceae was notably higher than that of Rosaceae and Fabaceae.
Additionally, there were considerable variations in the response patterns of plants from
different functional groups to nitrogen addition, as depicted in Figure 3. Specifically, the
changes in the aboveground biomass of Poaceae plants were significantly (p < 0.05) influ-
enced by nitrogen addition, with low-frequency nitrogen addition leading to increases of
28.94%, 15.81%, 46.19%, and 46.54%, respectively, and high-frequency nitrogen addition
resulting in increases of −8.62%, 41.03%, 33.03%, and 60.53%, respectively, compared to
the CK treatment. In contrast, the changes in the aboveground biomass of Rosaceae and
Fabaceae were less influenced by nitrogen addition (p > 0.05). Low-frequency nitrogen
addition caused increases of 19.35%, 63.49%, 76.40%, and 80.78% in Rosaceae, and decreases
of 70.28%, 42.18%, 24.75%, and 20.99% in Fabaceae. High-frequency nitrogen addition im-
proved the aboveground biomass of Rosaceae by 12.93%, 62.71%, 37.82%, and 42.25%, and
Fabaceae by 9.88%, −3.96%, 12.71%, and 22.35%, respectively. As the absolute dominant
species, Poaceae exhibited a significantly higher nitrogen utilization efficiency compared to
Rosaceae and Fabaceae. Notably, the trend of change for Fabaceae differed between the two
nitrogen addition modes, with legume biomass decreasing under low-frequency nitrogen
addition and increasing under high-frequency nitrogen addition.

3.2. Response of Plant Chemical Traits to Nitrogen Addition

Nitrogen addition had less effect on the plant TOC and more effect on the plant TN
and TP, as shown in Figure 4. Under low-frequency nitrogen addition, the TOC of Poaceae
was significantly higher than that of Rosaceae and Fabaceae, and the pattern of change in
the TOC among plants of different functional groups was consistent. With high-frequency
nitrogen addition, only the TOC of Poaceae showed a significant difference (p < 0.05), and
the change patterns for the TOC in Poaceae and Rosaceae were similar, while the change
in Fabaceae was more distinct. The changes in the TN and TP across the three functional
groups were consistent under both nitrogen addition modes, and there were significant
differences in the plant TN and TP at various nitrogen addition levels. Low-frequency
nitrogen addition significantly influenced the TN and TP in all three functional groups.
High-frequency nitrogen addition, on the other hand, had a significant impact on the TOC,
TN, and TP of Poaceae, as well as the TN and TP of Rosaceae and Fabaceae.
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Nitrogen addition had a substantial impact on the ratios of plant TOC:TN, TOC:TP,
and TN:TP, as illustrated in Figure 5. The patterns of change for TOC:TN and TN:TP
among the three functional groups of plants were consistent under both nitrogen addition
modes. However, differences among the functional groups were observed, suggesting
that, while these plants shared a similar pattern in nitrogen uptake and utilization, they
exhibited varying sensitivities to the added nutrients. The TOC:TN trends among the
three functional groups were consistent under both addition modes, with higher TOC:TN
values observed under the LN and HN treatments. The TOC:TP trends varied significantly
among the groups: under low-frequency addition, Poaceae had a higher TOC:TP in CK,
Rosaceae in HN, and Fabaceae in SN. With high-frequency addition, Poaceae showed a
higher TOC:TP in CK, MN, and SN, while Rosaceae exhibited a higher TOC:TP under
SN, and Fabaceae had a higher TOC:TP in LN and MN. The TN:TP trends were largely
similar for the three functional groups under both addition modes, with MN treatments
resulting in a higher TN:TP under low-frequency addition and both MN and HN treatments
under high-frequency addition. Low-frequency nitrogen addition significantly influenced
TOC:TN and TN:TP in Poaceae and Fabaceae, as well as TOC:TN, TOC:TP, and TN:TP in
Rosaceae. High-frequency nitrogen addition had a significant impact on TOC:TN, TOC:TP,
and TN:TP across all three functional groups of plants.
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3.3. Response of Physicochemical Soil Properties to Nitrogen Addition

Nitrogen addition had less effect on SWC and a greater effect on the soil pH and
SSC, as shown in Figure 6. The 10–20 cm soil layer pH was significantly higher than that
of the 0–10 cm soil layer under both nitrogen addition modes, there was no significant
difference (p > 0.05) in the 0–10 cm and 10–20 cm soil layer pHs under low-frequency
nitrogen addition, and there was a significant difference (p < 0.05) in the 10–20 cm soil layer
pH under high-frequency nitrogen addition, with LN being significantly lower than that of
the other treatments. SSC varied significantly under both nitrogen addition modes, with a
significant difference in SSC from the 10–20 cm soil layer under low-frequency nitrogen
addition, reaching a maximum value of 0.81 mg/g in LN, and a significant difference in SSC
from the 0–10 cm soil layer under high-frequency nitrogen addition, reaching a maximum
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value of 0.86 mg/g in SN SSC. There was no significant difference in the soil SWC between
the two nitrogen addition modes, where the 10–20 cm soil layer SWC was higher than the
0–10 cm soil layer SWC under high-frequency nitrogen addition. Low-frequency nitrogen
addition significantly affected the 10–20 cm soil layer SSC, while high-frequency nitrogen
addition significantly affected the 0–10 cm soil layer SSC and 10–20 cm soil layer pH.
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Nitrogen addition had less effect on the soil TN and a greater effect on the soil TOC
and TP, as illustrated in Figure 7. The 0–10 cm soil layer TOC was significantly higher than
the 10–20 cm soil layer TOC under both nitrogen addition modes, with the low-frequency
nitrogen addition significantly affecting the 10–20 cm soil layer TOC (p < 0.05) and the
high-frequency nitrogen addition significantly affecting the 0–10 cm soil layer TOC. There
was no significant difference in the soil TN between the two soil layers under both nitrogen
addition modes (p > 0.05). Low-frequency nitrogen addition significantly affected the
10–20 cm soil layer TP, and high-frequency nitrogen addition did not significantly affect
the soil TP in either soil layer.

The effects of nitrogen addition on the soil TOC:TN, TOC:TP, and TN:TP were small,
as shown in Figure 8. There were large differences in the patterns of change in the three
indexes between different soil layers under the two nitrogen addition modes, but the
similarity of the patterns of change in the TOC:TP and TN:TP in the same soil layer under
the same nitrogen addition mode was high (TOC:TP and TN:TP in the 0–10 cm soil layer
showed a decreasing trend with low-frequency nitrogen addition, and increased and then
decreased in the 10–20 cm soil layer; TOC:TP and TN:TP in the 0–10 cm soil layer showed an
increasing trend with high-frequency nitrogen addition, and increased and then decreased
in the 10–20 cm soil layer). There were no significant differences in the TOC:TN, TOC:TP,
and TN:TP between the 0–10 cm and 10–20 cm soil layers under the two nitrogen addition
modes (p > 0.05).
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3.4. Redundant Analysis of Biomass Changes

There was a strong correlation between plant biomass and soil environmental factors
in both modes of nitrogen addition, as shown in Figure 9. In the redundancy analysis
(RDA) constructed with low-frequency nitrogen addition, the cumulative explanation rate
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of the soil environmental factors on plant biomass was 99.56%, with Axis 1 accounting for
71.56% and Axis 2 accounting for 28.00%. In the RDA constructed with high-frequency
nitrogen addition, the cumulative explanation rate of the soil environmental factors on
plant biomass was 99.48%, with Axis 1 explaining 54.89% and Axis 2 explaining 44.59%.
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Figure 9. (a) RDA analysis of changes in biomass with high-frequency nitrogen addition and (b) RDA
analysis of changes in biomass with low-frequency nitrogen addition. Note: The RDA result plot
utilizes points to represent biomass samples, while arrows emanating from the origin symbolize
different environmental factors. The length of these arrows signifies the strength of the influence that
each environmental factor has on the changes in the aboveground community, with longer arrows
indicating a stronger influence. The angle between the arrows and the coordinate axis represents the
degree of correlation between the environmental factor and the axis, with smaller angles indicating a
higher correlation. The vertical distance from a sample point to the extension line of an environmental
factor’s arrow indicates the strength of the factor’s influence on that sample; the closer the sample
point is to the arrow, the more significant the effect of the environmental factor on the sample.
Furthermore, if a sample is situated in the direction of an arrow, it suggests a positive correlation
between the environmental factor and the changes in the sample’s species community. Conversely, if
a sample is located in the opposite direction of the arrow, it implies a negative correlation with the
changes in the sample’s species community.

3.5. Impact Pathway Analysis of Biomass Changes in Different Functional Groups

The modeling process of structural equation models is driven by theoretical assump-
tions and is suitable for verifying and exploring complex direct and indirect causal relation-
ships between multiple variables. In order to explore the differences in the responses of
plant biomass to nitrogen addition in different functional groups, as well as the relationship
between soil and plant chemical cycles, we selected the level and frequency of nitrogen
addition as the independent variables of the model, selected physiochemical soil properties,
soil nutrient content, and plant nutrient content as the observed variables of the model,
and biomass as the dependent variable of the model, and constructed a complete model
with all possible pathways. The SEM reflected the direct or indirect relationship between
the nitrogen addition level and frequency on the differences in the effects of plant biomass
of different functional groups (Figure 10). The SEM of Poaceae constructs explained 0.06,
0.01, 0.17, and 0.37 for physiochemical soil properties, soil nutrient content, plant nutrient
content, and biomass, respectively, and the nitrogen addition level directly affected the
Poaceae nutrient content and biomass. The SEM of Rosaceae constructs explained 0.07,
0.01, 0.25, and 0.43 for physiochemical soil properties, soil nutrient content, plant nutrient
content, and biomass, respectively. Nitrogen addition level directly affected the Rosaceae
nutrient content, nitrogen addition frequency directly affected the physiochemical soil
properties, and plant nutrient content directly affected the Rosaceae biomass. The SEM of
Fabaceae constructs explained 0.05, 0.02, 0.14, and 0.20 for physiochemical soil properties,
soil nutrient content, plant nutrient content, and biomass, respectively, and nitrogen addi-
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tion level directly affected the Fabaceae nutrient content, and the plant nutrient content
and physiochemical soil properties directly affected the Fabaceae biomass.
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4. Discussion
4.1. Nitrogen Addition Promotes Aboveground Biomass Growth

The biomass dynamics of grassland communities are a centralized expression of com-
munity structure and function, which can reflect the growth status of vegetation and its
response to external environmental changes [33]. The results of simulated nitrogen de-
position experiments conducted globally have shown that moderate nitrogen addition
promotes the growth of the aboveground biomass of plants [34,35], while excessive nitro-
gen addition affects the diversity of grassland communities [36,37]. Our results showed a
significant increase in aboveground biomass in both nitrogen addition modes, reaching a
maximum at SN (181.17 g·m−2 for low-frequency and 187.88 g·m−2 for high-frequency ni-
trogen addition), which indicated that plant growth in this ecosystem was severely limited
by nitrogen, and that a nitrogen addition of 20 g·m−2·a−1 did not reach the threshold for
nitrogen limitation in this ecosystem. The results of the aboveground biomass survey based
on functional groups showed that Poaceae biomass was significantly higher than that of
Rosaceae and Fabaceae, and the aboveground biomass of Poaceae was more significantly af-
fected by nitrogen additions, which is consistent with the findings of Van Sundert et al. [38]
and He et al. [39]. The addition of exogenous nutrients has shifted plant competition from
competition for limiting elements such as nitrogen and phosphorus to competition for
light [40]. Under light competition conditions, an increase in nutrients leads to a decrease
in light transmission in the lower layers of the plant and changes in habitat conditions
for some species in the community, producing competitive exclusion [41]. Based on their
advantage in morphology, Poaceae dominate rapid growth in light competition, increasing
the effect of light stress on Rosaceae and Fabaceae, so the aboveground biomass of Poaceae
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plants is more significantly affected by nitrogen addition. There were differences in the
change trends of Fabaceae under the two nitrogen addition modes, in which low-frequency
nitrogen addition inhibited the growth of Fabaceae, while high-frequency nitrogen addition
promoted the growth of Fabaceae, which was related to the nitrogen fixation ability of
Fabaceae, which makes them able to biologically fix nitrogen by mutualistic symbiosis with
rhizobacteria and be less dependent on effective soil nitrogen [42].

4.2. Nitrogen Addition Exacerbates P Limitation of Plant Growth

Plant nutrient content reflects the ability of the plant root system to obtain each
nutrient element from the soil, as well as the migration and distribution relationship
within the plant body, and the adequacy of nutrient content is an important indicator
of plant growth conditions [43]. Both deficiencies and excesses of nutrients can have
serious negative effects on plant growth, and maintaining relatively stable nutrient ratios
in plant tissues is essential for healthy plant growth [44]. Plant nutrient content can reflect
the survival strategy of plants, their growth rate, and their efficiency of nitrogen and
phosphorus utilization, and the plant TOC:TN and TOC:TP reflect the growth rate of
plants (TOC:TN responds to the efficiency of nitrogen utilization by plants and TOC:TP
responds to the efficiency of phosphorus utilization by plants) and the TN:TP reflects the
growth-restricted status of plants [45,46]. In the process of long-term coordinated evolution
between plants and their environment, the structural substances (C) and non-structural
species (N and P) composing the plant body will show differences in their responses to
environmental changes, in which the plant TOC is less fluctuated by the environment and
the TN and TP are more changed by the environment [44], which is consistent with our
findings. The small changes in the TOC of the three functional groups of plants under
exogenous nitrogen addition were due to the fact that carbon is the most basic element
that constitutes the organism. Moderate nitrogen additions can promote plant growth and
enhance photosynthesis and carbon fixation in plants. However, there is a threshold for
plant nitrogen demand, beyond which, plant growth and carbon fixation may not increase
significantly, thus limiting the effect of nitrogen addition on plant TOC. Thus, the effect
of nitrogen addition on the TOC of the plants was small and did not show statistically
significant differences. Nitrogen and phosphorus are the important elements that constitute
the organism, and they are also the main factors of plant growth limitation. The significant
changes in the TN and TP of the plants of the different functional groups under nitrogen
addition indicated that short-term nitrogen addition alleviated plant nitrogen limitation
and favored plant leaf nitrogen acquisition, so nitrogen additions would also promote plant
phosphorus uptake by changing the effective phosphorus content in the soil [47]. Through
the analysis of phytochemical characteristics, it was found that the TOC:TN and TN:TP
variation rules of different functional groups of plants were consistent, while the variation
rules of TOC:TP varied greatly, which indicated that the three functional groups of plants
were basically consistent with the nitrogen utilization rules, and there were large differences
in the efficiency of phosphorus utilization. Koerselman and Meuleman [48] suggested
that plant growth is nitrogen-limited for plants with N:P < 14, P-limited for plants with
N:P > 16, and potentially co-limited by both nitrogen and phosphorus for 14 < N:P < 16.
Gusewell [49] suggested that N:P < 10 and N:P > 10 are more appropriate for determining
nitrogen and phosphorus nutrient limitation types. Our results indicated that the plant
growth in the study area was co-limited by nitrogen and phosphorus (9.70:1–87.31:1 for
low-frequency nitrogen addition TN:TP and 10.38:1–120.55:1 for high-frequency nitrogen
addition TN:TP), but that plant demand for phosphorus was higher as the level of nitrogen
addition increased.

4.3. Nitrogen Addition Improves Plant Growth

Physiochemical soil properties are important indicators of soil quality, in which SWC
promotes crop growth and increases soil nutrient content [50,51], and soil pH and SSC
affect plant physiological responses, and them being too high or too low interferes with
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the efficiency of plant nutrient uptake [52]. Studies have shown that nitrogen addition
decreases soil pH and increases SSC [53,54], while having less effect on SWC [55], which is
not entirely consistent with our findings. The results of our study showed that there was
no significant difference in SWC and an increase in SSC between the two nitrogen addition
modes. The small difference in SWC may have been due to the increase in soil water use
efficiency by the plants after nitrogen addition, while the soil evaporation capacity was
reduced by the shading effect of plants, which balanced each other; the increase in SSC
may have been due to the incomplete use of applied nitrogen fertilizer, which was enriched
in the soil. Our study found no significant effect of nitrogen addition on the soil pH, which
differs from previous studies, where numerous fertilization trials have shown that the
application of nitrogen fertilizers leads to the accumulation of NO3

− and NH4
+ in the soil,

and that the uptake of NH4
+ by a plant releases H+ into the soil solution, leading to a

decrease in the soil pH [56]. In our study, we found significant differences in the soil pH
only in the 10–20 cm soil layer under high-frequency nitrogen additions, while there were
no significant differences in any of the other soil layers, which may have been caused by
the short duration of fertilizer application, and the high concentration of nitrogen additions
did not lead to soil acidification.

The soil nutrient content determines the state of plant growth and development and
reflects the ability of the soil to provide nutrients to plants and improve environmental
conditions [57]. Soil organic carbon is an important component of the soil and plays an
important role in soil function and ecosystem value, and nitrogen addition can inhibit
the microbial decomposition of plant-sourced organic matter inputs, as well as attenuate
mineral adsorption by dead microbial residues, which can lead to changes in the carbon
fraction [58]. Xu et al. [15] found that nitrogen addition significantly increased global
organic carbon by 4.2%, and nitrogen addition increased the plant carbon input to the
soil and reduced carbon loss during microbial decomposition and amplification, which
is consistent with our findings. Nitrogen is an important indicator of soil fertility and
plays an important role in plant growth [59], and some studies have shown that increased
nitrogen deposition can increase the soil nitrogen content, with most of the nitrogen
input to the soil being retained in soil organic matter and its mineralization playing a
key role in soil fertility and plant nutrition [60], while our study showed that nitrogen
addition had a small effect on the soil TN, which may have been related to the short
duration of fertilizer application. After nitrogen application, the soil TN was maintained
at a constant level due to the volatilization of most of the urea in the form of ammonia,
coupled with the plant and microbial utilization of inorganic nitrogen and leaching of
nitrate nitrogen. Nitrogen addition can cause soil acidification to increase the diffusion of
phosphate ions and phosphorus availability and effectiveness, and it can also promote or
inhibit the activity of soil phosphatase to increase or decrease the mineralization of soil
organic phosphorus [61,62]. The results of our study showed that only with low-frequency
nitrogen additions did the 10–20 cm soil layer TP change significantly, which may have
been related to the effect of nitrogen addition in promoting the uptake of phosphorus by
plants [63]. Soil C:N:P is an important parameter characterizing the soil C, N, and P balance,
and plays an important role in judging the soil element limitation status and element
geochemical cycle release. Huang et al. [64] showed that short-term nitrogen additions
had a small effect on soil C:N:P in desert grasslands, and our results also showed that
there were no significant differences in the soil TOC:TN, TOC:TP, and TN:TP between
the two nitrogen addition modes. Nutrient cycling in soils is intertransformed between
microorganisms, plants, and animals, and these complex interactions buffer the effects of
nitrogen addition on the soil C:N:P. Furthermore, through the coupling of different soil
chemical elements, nitrogen addition may enhance the cycling of certain nutrients, such as
N. Meanwhile, other soil elements, like elemental C and P, interact with N through their
respective cycling processes, thus contributing to the maintenance of the relative stability
of soil C:N:P ratios. Meanwhile, we also found that the patterns of TOC:TP and TN:TP
in the same soil layer were highly similar under the same nitrogen addition modes. In
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contrast, significant differences were observed between different nitrogen addition modes.
This indicates that the frequency of nitrogen addition is an important factor affecting the
physicochemical soil properties.

4.4. Nitrogen Addition Level Key to Plant Productivity

The RDA analysis revealed that plant biomass was strongly correlated with soil envi-
ronmental factors under both nitrogen addition modes. However, the correlation between
soil environmental factors and grassland productivity varied under different nitrogen
addition modes. This suggests that the frequency of nitrogen addition is a significant
factor contributing to differences in community structure. Furthermore, the frequency of
nitrogen application may induce changes in the structure and function of soil microbial
communities. Consequently, this can impact the soil nutrient cycling and plant nutrient
uptake. N and P are the main limiting elements for plant growth in terrestrial ecosystems,
and many nutrient addition experiments have shown that the diversity of grassland plants
decreases significantly with nutrient addition, which is fundamentally due to the variability
in the responses of different functional groups of plants to nutrient addition. The responses
of grassland communities under natural or anthropogenic disturbances are usually com-
plex and variable, and functional group-based studies can comprehensively evaluate the
responses of functional groups and communities to environmental fluctuations [65]. In
resource-poor habitats, different functional groups adopt different strategies in response to
limiting factors, thereby influencing the competitive hierarchy that determines community
composition and structure [66]. In order to reveal the response mechanisms of plants
of different functional groups to nitrogen addition, we constructed SEM to analyze the
influence pathways of biomass changes. The results showed that the nitrogen addition level
had a direct effect on the aboveground biomass of Poaceae and an indirect effect on the
aboveground biomass of Rosaceae and Fabaceae, which was consistent with the previous
findings, and we speculated that it might be related to the nutrient utilization efficiency
of plants. Nitrogen addition levels directly affect plant nutrient content and, thus, plant
biomass, but the extent of this effect varies considerably, with indirect effects on biomass in
Poaceae and direct effects in Rosaceae and Fabaceae, which also validates our conjecture
above. Fayiah et al. [67] argued that physicochemical soil properties are important factors
influencing changes in plant communities, and our results similarly prove the argument
that physical soil properties directly affect Fabaceae biomass, and soil TN was significantly
related to Rosaceae biomass. In addition, the frequency of nitrogen addition was also an
important factor influencing the changes in plant community structure, and this argument
can be verified from the significance of its influence pathway on plant biomass and the
path coefficient.

5. Conclusions

The purpose of this paper was to explore the response characteristics of the physic-
ochemical soil properties and phytochemical characteristics of Bayanbulak grassland to
nitrogen deposition, as well as the influence pathways of the differences in the biomass
changes of different functional groups. The results of this study show that: (1) The above-
ground biomass of the two nitrogen addition modes increased significantly and reached
the maximum value in SN, the growth of the plants in the study area was restricted by
the joint limitation of nitrogen and phosphorus, and the addition of nitrogen exacerbated
the limitation of the phosphorus element on the growth of the plants; (2) physicochemical
soil properties will directly affect plant growth, there is variability in the responses of
biomass to nitrogen addition in different functional groups, the level of nitrogen addition is
a major factor affecting the differences in changes in biomass, and the frequency of nitrogen
addition is also an important factor affecting the changes in plant community structure.

Carrying out research on the response mechanisms of Bayanbulak grassland under
different nitrogen addition modes can help us to understand the potential change trends
of the physiological and ecological characteristics of grassland against the background
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of increasing atmospheric nitrogen deposition, which is of great theoretical and practical
significance for the study of the future responses and adaptations of grassland ecosystems
in China to increasing atmospheric nitrogen deposition, and can also provide a theoretical
basis and data support for the study of the carbon balance of the region and the sustainable
development of grassland.
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