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Abstract: This five-year study (2016–2021) across diverse Moroccan agro-climatic zones investigated
genotype by environment (G × E) interactions in wheat, focusing on variations in agronomic traits
and quality attributes such as protein and gluten content. Significant environmental effects were
observed on key traits, like yield, thousand kernel weight (TKW), and spikes per square meter
(Spk/m2), highlighting environmental factors’ role in wheat yield variability. In the Tassaout (TST)
location, notable genotypic effects emerged for traits like biomass, underscoring genetic factors’
importance in specific contexts, while in Sidi El Aidi (SEA) and Marchouch (MCH), genotypic effects
on yield and its components were predominantly absent, indicating a more substantial environmental
influence. These findings illustrate the complexity of G × E interactions and the need for breeding
strategies considering genetic potential and environmental adaptability, especially given the trade-
offs between yield enhancement and quality maintenance. Insights from the biplot and heatmap
analyses enhanced the understanding of genotypes’ dynamic interactions with environmental factors,
establishing a basis for strategic genotype selection and management to optimize wheat yield and
quality. This research contributes to sustainable wheat breeding in Morocco, aligning with global
efforts to adapt wheat breeding strategies to changing climatic conditions.

Keywords: genotype × environment (G × E); durum wheat; agronomic traits; quality traits; breeding
strategies; agro-climatic zones

1. Introduction

Durum wheat (Triticum durum) is a crucial cereal crop, particularly in the Mediter-
ranean regions, including Morocco, where it plays a vital role in food security and the rural
economy. The performance of durum wheat varieties is highly influenced by the complex
interactions between genotypes (G) and environmental (E) factors, collectively termed
genotype by environment (G × E) interactions. These interactions have been a focal point
in agronomic research, as they significantly impact the key traits of economic importance,
such as yield, grain quality, and resilience to changing climatic conditions [1,2].

The complexity of G × E interactions necessitates a meticulous examination to garner
substantial insights for tailoring breeding strategies. Previous research efforts have under-
scored the complexity of G × E interactions, which requires a thorough examination to gar-
ner insightful observations for tailoring breeding strategies. Previous research efforts have
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highlighted the significant impact of climatic variables on wheat performance, revealing
the marked influence of environmental conditions on vital agronomic traits, such as yield,
thousand kernel weight (TKW), and spikes per square meter (Spk/m2) [3]. These findings
underscore the imperative for a genotype-specific approach in breeding programs to maxi-
mize the inherent potential of different genotypes under varied environmental conditions.

Furthermore, advancements in statistical methodologies have facilitated a deeper
understanding of these interactions. Techniques like biplot analyses and heatmap visual-
izations have been pivotal in unraveling complex genotype–environment relationships,
assisting in evaluating and selecting genotypes with optimal performance and stability
across diverse environmental conditions [4–6]. Exploring environmental discrimination
and representativeness through biplot analysis has further enriched our comprehension
of how various environments affect the primary traits of interest, specifically yield and
protein content in wheat [7].

Identifying and understanding stable genotypes under fluctuating environmental
conditions have been active research areas. In an era of changing environmental dynamics,
pinpointing genotypes with consistent performance across diverse agro-climatic zones is
paramount for developing resilient and high-yielding varieties [8,9].

The goal of the present study, titled “Dissecting Genotype by Environment Interactions
in Moroccan Wheat: An Advanced Biplot and Heatmap Analysis Unveiling Agronomic,
Quality Traits, and Genotypic Stability for Tailored Breeding Strategies”, was to conduct an
exhaustive analysis of G × E interactions over five wheat-growing seasons in different agro-
climatic zones in Morocco. Using advanced statistical methodologies, this study sought to
illuminate the varying performance of wheat genotypes across changing environmental
settings, assess the influence of environmental conditions on primary agronomic and quality
traits, and determine genotypic stability across various environments. This initiative offers
actionable insights for breeding initiatives focused on cultivating high-yield, resilient wheat
varieties compatible with various Moroccan agro-climatic zones. Such efforts are critical
in enhancing wheat productivity and fortifying its resilience against unpredictable and
shifting climatic scenarios.

In line with these objectives, this study presents an in-depth analysis of genotype–
environment interactions and their implications for agronomic and quality traits. It estab-
lishes a sturdy analytical foundation poised to inform future breeding programs aiming to
elevate yield and quality traits amidst fluctuating environmental settings. By meticulously
examining genotype-specific responses to environmental factors, this study sets a solid
precedent for nuanced interpretations and applications in agronomic practices, marking a
significant contribution to the wheat breeding conversation in Morocco.

2. Materials and Methods
2.1. Research Locations and Climatic Variables

This study spanned five growing seasons (S): 2016–2017, 2017–2018, 2018–2019, 2019–
2020, and 2020–2021, and was carried out at three distinct research installations of the
National Institute of Agricultural Research (INRA) of Morocco. Detailed climate character-
istics of each installation are provided in Table 1.

Table 1. Characteristics of experimental stations, including soil type, precipitation, geographical
location, and altitude across five growing seasons.

Experimental
Station

Soil Type
Precipitations (mm) for the Five Growing Seasons Geographical Location

Altitude (Meters)
2016–2017 2017–2018 2018–2019 2019–2020 2020–2021 Latitude Longitude

Sidi El Aidi (SEA) Vertisol 290 505 210 242 467 33.12218◦ N 7.63315◦ W 235

Merchouch (MCH) Cambisol 348 579 179 249 518 33.60499◦ N 6.71000◦ W 399

Tassaout (TST) Alfisol 216 305 200 247 304 31.82021◦ N 7.43806◦ W 591
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2.2. Experimental Framework

In this field study, we implemented a split-plot design across 90 individual plots
to meticulously examine the responses of different crop genotypes under varying nitro-
gen levels. This design was integral in replicating the complex conditions encountered
under agricultural settings. Each plot was distinctively managed to represent various
combinations of genotypes and nitrogen treatments.

For a more targeted analysis, we focused on a subset of 30 plots, all receiving the
same nitrogen dose. This selection was made to facilitate an in-depth investigation of
genotype and environmental interactions under uniform nitrogen conditions. Maintaining
a consistent nitrogen application across these plots was essential to minimize variability due
to differences in nitrogen levels, thereby enabling a precise assessment of how genotypes
interact with environmental factors.

The data from these 30 plots were analyzed using a two-way analysis of variance.
This statistical method is well-suited for our study’s objective, as it allows for an in-depth
evaluation of the interaction effects between crop genotypes and environmental conditions
under a consistent nitrogen regime, here defined as the growing season in a particular
location. The use of the two-way ANOVA aids in the detailed and accurate interpretation
of these interactions, which is crucial for understanding the adaptability and performance
of different genotypes under a controlled nutrient environment.

The model employed for this analysis is structured as follows:

Yijk = µ+ αi + βj + (αβ)ij + εijk

where Yijk represents the observed response for the i-th genotype, j-th environment (specifi-
cally, the growing season in a location), and k-th replication; µ is the overall mean across all
genotypes, environments (growing seasons in locations), and replications; αi and βj denote
the main effects of the genotype and environment (growing season in a location), respec-
tively; (αβ)ij captures the interaction effect between the genotype and the environment
(growing season in a location); and εijk represents the random error component.

A detailed description of the genotypes that were used is presented in Table 2.

Table 2. Overview of cultivar registrations and their pedigree and breeding history.

Cultivar Code Year of Registration Pedigree and Breeding History

Faraj V1 2007 Hybrid Nassira, Qarmal, Lahn (ICARDA)
Itri V2 2017 RISSA/GAN//POHO_1/3/PLATA_3//CREX/ALLA/x Karim

Karim V3 1985 Bittern ‘S’ « JO’S’. AA”:S’//FG’S’ »
Luiza V4 2011 RASCON_39/TILO_1

Nassira V5 2003 INRA Selection on CIMMYT EII, 12 TA14/BD3//Isly # CF41530–1548

Characteristics of Experimental Plots and Agronomic Protocols

Each experimental plot covered an area of 2.7 square meters, measuring 2.5 m in length
and 1.08 m in width. Standard agronomic practices, encompassing soil treatment, weed
control, and irrigation, especially at the Tassaout (TST) location, were implemented to en-
sure optimal growth conditions. Sowing occurred in mid-November using a Wintersteiger
plot seeder, with planting schedules tailored to align with the unique climatic conditions of
each research location.

2.3. Data Collection and Trait Measurement

Data were collected on various agronomic and quality traits, adhering to stringent
protocols and international standards. Crop yield was measured in grams per 2.7 square
meters and converted into quintals per hectare for consistency. Above-ground biomass was
evaluated pre-harvest and quantified in kilograms. The thousand kernel weight (TKW)
was determined using an electronic grain counter compliant with NF V03-702 and ISO
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520 standards. Spikes per square meter (Spk/m2) were counted from designated 1-square-
meter sample areas within each plot. Additionally, quality traits, such as protein content,
gluten levels, and baking strength, were meticulously assessed using Chopin Technologies’
Infraneo near-infrared spectroscopy (NIRS). The device was calibrated regularly to ensure
accuracy at the INRA facility in Rabat. To affirm the reliability of the NIRs’ measurements,
cross-validations were conducted using a calibrated FOSS Infratec NIR analyzer at the
INRA facility in Settat. The outcomes derived from the NIR instruments were stringently
compared and authenticated against the Kjeldahl method, guaranteeing the credibility and
consistency of the reported findings.

2.4. Statistical Analysis

In the process of data processing and preliminary analysis, Microsoft Excel was
employed for basic data cleaning and preliminary exploratory analyses.

The inferential statistics in our study were conducted using Minitab 18, specifically
through a two-way analysis of variance (ANOVA). This approach is in line with the method-
ologies detailed in the “Minitab Cookbook” [10], which provides an in-depth explanation of
conducting complex ANOVAs using Minitab. To further substantiate our findings, post-hoc
comparisons of means were conducted using the Tukey’s honest significant difference
(HSD) method. This method, as detailed in the ‘Minitab Handbook’ [11], is crucial for
determining which specific means differ when the null hypothesis in ANOVA is rejected. It
effectively controls the family-wise error rate, ensuring an honest significance level across
all pair-wise tests, and is particularly well-suited for analyses conducted in Minitab.

Further, this study utilized the R programming language for calculating stability
parameters and creating statistical visualizations. The stability parameters included the
Francis cumulative, Wricke’s ecovalance (W), and Shukla’s stability variance (σ2). The
Francis cumulative method was based on the work of Francis and Kannenberg [12] in their
study on yield stability, which provided a descriptive method for grouping genotypes.
Wricke’s ecovalance (W) was derived from the methodology proposed by Wricke [13] to
capture the ecological range in field experiments. Lastly, Shukla’s stability variance (σ2) was
adopted from Shukla’s [14] work, which focused on the statistical aspects of partitioning
the genotype–environmental components of variability. These methods were integral in
analyzing the stability of various genotypes in our study.

Pearson’s correlation matrix was calculated using R to evaluate the linear relationships
between various variables. This analysis was guided by the approach described in “Apply-
ing Statistical Methods to Library Data Analysis” [15], which emphasizes the application of
statistical methods, including Pearson’s correlation, in data analysis using R.

Lastly, this study incorporated advanced multivariate analyses using R, including
discrimination vs. representativeness plots, ranking environments’ analyses, mean vs.
stability biplot analyses, and which won where/what biplot analyses. These analyses,
based on principal component analysis or singular value decomposition, followed the
methodologies outlined by Tonk et al. [16]. This approach facilitated a deeper and more
nuanced understanding of the interactions between genotypes and environments.

3. Results
3.1. Descriptive Statistics for Yield and Yield Components across Multiple Locations

The agronomic characteristics of five genotypes, coded V1 (Faraj), V2 (Itri), V3 (Karim),
V4 (Luiza), and V5 (Nassira), were evaluated across five successive growing seasons (from
2016–2017 to 2020–2021) at the experimental station Sidi El Aïdi (SEA). This study defined
“environment” as the varying growing seasons at the SEA location. A comprehensive
two-factor analysis of variance (ANOVA) was employed to assess the agronomic traits of
these genotypes over the different seasons. Post-hoc Tukey tests were conducted, iden-
tifying significant differences at the 95% confidence level, as detailed in Table 3. This
analysis provided an insightful depiction of how genotypes V1 through V5 responded to
environmental variations across seasons.
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Table 3. Interaction analysis of genotype and environment on agronomic traits at Sidi El Aidi (SEA)
across seasons.

Env (E): (Combinations of
Location * Season) Gen (G) YLD (q/ha) Biomass

(q/ha) TKW (g) Spk/m2 G/S G/m2

SEA 2017

V1 23.01 abc 105 a 37.3 bcdef 324 ab 25 a 8300 ab

V2 23.21 abc 77.5 a 33.45 def 284 abcd 26 a 7347 ab

V3 22.93 abc 78.33 a 43.1 abcde 219 abcdef 29 a 6431 ab

V4 23.66 abc 104.17 a 33.9 def 297 abc 35 a 9715 a

V5 24.65 abc 111.67 a 47.45 abc 302 ab 25 a 7622 ab

Mean 23.49 95.33 39.04 284 28 7883

SEA 2018

V1 48.82 a 120.83 a 49.13 ab 284 abcd 28 a 8092 ab

V2 44.78 ab 106.67 a 47.13 abc 373 a 21 a 7690 ab

V3 38.28 abc 103.33 a 50.5 a 213 abcdef 29 a 6143 ab

V4 40.95 abc 122.5 a 47 abc 316 ab 16 a 5071 ab

V5 39.33 abc 96.67 a 45.88 abcd 273 abcd 14 a 3677 ab

Mean 42.43 110 47.93 289 22 6135

SEA 2019

V1 15 abc 87.5 a 35.4 cdef 203 abcdefg 28 a 5549 ab

V2 16.73 abc 94.17 a 31.4 ef 270 abcd 27 a 6596 ab

V3 22.75 abc 97.5 a 33 ef 273 abcd 26 a 7155 ab

V4 27.78 abc 105.83 a 38.6 abcdef 278 abcd 26 a 6869 ab

V5 3.32 c 39.17 a 34.49 def 113 defg 22 a 2319 ab

Mean 17.12 84.83 34.58 227 26 5698

SEA 2020

V1 8.58 abc 95.37 a 32.55 ef 73 efg 27 a 1982 b

V2 5.49 bc 82.3 a 30.45 f 49 efg 25 a 1204 b

V3 4.22 bc 97.85 a 31.35 ef 32 g 27 a 842 b

V4 4.72 bc 105.64 a 30.25 f 41 fg 25 a 1034 b

V5 8.51 abc 82.7 a 31.85 ef 73 efg 21 a 1544 b

Mean 6 93 31 54 25 1321

SEA 2021

V1 14.07 abc 68.15 a 31.2 ef 111 defg 32 a 3289 ab

V2 17.76 abc 50.85 a 32.6 ef 122 cdefg 33 a 3966 ab

V3 27.2 abc 112.22 a 40 abcdef 224 abcde 19 a 5295 ab

V4 23.09 abc 90.07 a 35.6 cdef 170 bcdefg 28 a 4717 ab

V5 23.26 abc 83.3 a 35.6 cdef 184 bcdefg 26 a 4776 ab

Mean 21 81 35 162 28 4409

Analysis of variance

Gen (G) ns ns * ns ns ns

Env (E) *** ns *** *** ns ***
Gen (G) * Env (E) ns ns * ** ns ns

Notes: Location: SEA = Sidi el Aidi. Agronomic terms: Env (E) = environment, Gen (G) = genotype, YLD = yield,
TKW = thousand kernel weight, Spk/m2 = spikes per square meter, G/S = grains per spike, and G/m2 = grains
per square meter. ANOVA: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, and ns = not significant. Means with
identical letters are not significantly different at the 95% confidence interval (Tukey method).
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The ANOVA findings highlighted the considerable impact of environmental conditions
on key agronomic traits. Specifically, the analysis revealed a significant environmental effect
on yield (p ≤ 0.001). This pattern was also reflected in other traits, such as thousand kernel
weight (TKW), spikes per square meter (Spk/m2), and grains per square meter (G/m2), all
showing similarly significant environmental influences. Notably, the environmental factors
did not significantly impact biomass nor the number of grains per spike (G/S).

Regarding the genotypic impact, it was observed that the genotype had a significant
exclusive effect on the TKW (p ≤ 0.05). Traits like yield, biomass, Spk/m2, G/S, and G/m2

did not exhibit significant differences attributable to genotypic variations. Furthermore, the
interaction between genotype and environment (G * E) demonstrated statistical significance
for the TKW (p ≤ 0.05) and Spk/m2 (p ≤ 0.01), indicating variability in the performance of
different genotypes across the seasons for these traits.

In examining the annual yield performance, genotypes V5 (Nassira), V1 (Faraj), and
V4 (Luiza) demonstrated notable variations across different growing seasons. These vari-
ations showcased a pronounced increase in yield of 80.7% from the 2016–2017 season to
the 2017–2018 season, followed by a decrease of 59.6% in 2018–2019. This trend continued
with a significant decline of 65% in 2019–2020 and an extraordinary rebound of 250% in
the 2020–2021 season. It is essential to highlight that these yield changes were predom-
inantly influenced by environmental factors rather than solely by genetic attributes of
these genotypes.

Regarding analyzing other agronomic traits, the biomass evaluation revealed no
significant differences related to genotype or environmental factors. Concurrently, thousand
kernel weight (TKW) exhibited notable interactions between the genotype and environment.
Among the genotypes, V5 and V4 distinguished themselves in biomass performance, and
V5 and V3 in TKW across varying seasons. Despite these observations, it is essential to
interpret any direct relationship between biomass and the TKW with caution, considering
the complexity of the underlying interactions.

Additionally, this study observed variability in spikes per square meter (Spk/m2),
which was attributed to both environmental factors and the genotype–environment (G *
E) interaction. This variability and the observed patterns in grains per spike (G/S) and
grains per square meter (G/m2) emphasize the genotypes’ capacity to adapt to changing
environmental conditions. However, it is critical to acknowledge that the ANOVA results
indicated no significant influence of the genotype, environment, or their interaction on
G/S and G/m2. This finding indicates that the observed variations in these traits across
different seasons at the SEA location cannot be solely attributed to genetic or environmental
factors but are likely the result of a more intricate interplay between these elements.

Expanding on the insights gathered from the Sidi El Aidi (SEA) location, our analysis
was extended to the experimental station Marchouch (MCH). The comprehensive study
at MCH offers a deeper understanding of how environmental factors significantly impact
agronomic traits across different growing seasons. The results from MCH, detailed in
Table 4, underscore the notable influence of both genotype and environmental conditions,
and the interactions between these factors on vital agronomic traits.

Yield and biomass exhibited notable annual fluctuations. For instance, yield saw
a significant increase of 28.1% between the 2016–2017 and 2017–2018 seasons, followed
by a dramatic decline and a resurgence in subsequent years. Biomass trends showcased
similar variations.

The thousand kernel weight (TKW) and spikes per square meter (Spk/m2) also demon-
strated significant oscillations across the study period, reflecting environmental variability.

The grains per spike (G/S) showed dynamic fluctuations with significant genotype
(Gen) * environment (Env) interaction effects, as indicated by the analysis of variance. These
interactions underscore the complexity of agronomic traits influenced by both genetic and
environmental factors.



Plants 2024, 13, 1068 7 of 27

Table 4. Interaction analysis of genotype and environment on agronomic traits at Merchouch (MCH)
across seasons.

Env (E): (Combinations of
Location * Season) Gen (G) YLD (q/ha) Biomass (q/ha) TKW (g) Spk/m2 G/S G/m2

MCH 2017

V1 34.3 bcdef 247.5 ab 34.9 abcd 818 abcde 12 d 10,006 bcdefg

V2 35.46 bcdef 229.5 ab 33.35 abcd 726 bcdefgh 20 cd 13,740 bcdef

V3 29.17 cdef 216 ab 39.05 abcd 624 cdefghi 16 d 9785 bcdefg

V4 34.25 bcdef 236.25 ab 37.15 abcd 726 bcdefgh 19 cd 13,794 bcdef

V5 34.64 bcdef 258 a 29.75 d 875 abc 19 cd 16,262 abcd

Mean 33.56 237.45 34.84 751 17 12,717

MCH 2018

V1 42.97 abcdef 163.33 abcde 46.75 ab 240 hi 34 a 8046 cdefg

V2 56.6 abcd 166.67 abcde 45.75 abc 281 fghi 29 abc 8168 cdefg

V3 44 abcdef 148.33 abcde 38.88 abcd 278 fghi 32 ab 8710 cdefg

V4 44.47 abcdef 137.5 abcde 46.88 a 281 fghi 28 abc 7698 cdefg

V5 25.73 cdef 143.33 abcde 44.38 abcd 265 ghi 19 cd 5068 fg

Mean 43 152 45 267 28 7538

MCH 2019

V1 35.81 bcdef 154.17 abcde 39 abcd 338 defghi 12 d 4217 fg

V2 45.58 abcdef 258.33 a 39.15 abcd 429 cdefghi 13 d 5449 efg

V3 40.47 abcdef 208.33 abc 37.8 abcd 394 cdefghi 13 d 5108 efg

V4 53.1 abcde 260 a 37.45 abcd 527 cdefghi 14 d 7117 defg

V5 46.85 abcdef 210 abc 40.95 abcd 410 cdefghi 20 cd 8300 cdefg

Mean 44 218 39 419 14 6038

MCH 2020

V1 23.1 def 129.44 abcde 39.7 abcd 327 efghi 17 cd 5505 efg

V2 9.83 f 38.31 e 31.3 cd 100 i 22 abcd 2395 g

V3 9.62 f 47.1 de 30.45 d 116 i 21 bcd 2406 g

V4 14.22 f 65.89 cde 31.85 bcd 178 i 21 bcd 4096 g

V5 16.22 ef 108.38 bcde 37.35 abcd 308 efghi 19 cd 5729 efg

Mean 14.6 77.83 34.13 205 20 4026

MCH 2021

V1 62.98 abc 166.82 abcde 39.15 abcd 859 abcd 17 cd 14,693 abcde

V2 71.82 ab 154.19 abcde 35.1 abcd 783 abcdefg 22 abcd 17,099 abc

V3 76.03 a 190.06 abcd 44.4 abcd 940 ab 21 bcd 19,270 ab

V4 61.48 abc 146.81 abcde 38.55 abcd 788 abcdef 21 bcd 16,554 abcd

V5 67.7 ab 228.1 ab 41.75 abcd 1293 a 19 cd 23,895 a

Mean 68 177.2 39.79 932 20 18,302

Analysis of Variance

Gen (G) ns ns ns ns ns *

Env (E) *** *** *** *** *** ***

Gen (G) * Env (E) ns ns ns ns ** ns

Notes: Location: MCH = Merchouch. Agronomic terms: Env (E) = environment, Gen (G) = genotype, YLD = yield,
TKW = thousand kernel weight, Spk/m2 = spikes per square meter, G/S = grains per spike, and G/m2 = grains
per square meter. ANOVA: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, and ns = not significant; Means with identical
letters are not significantly different at the 95% confidence interval (Tukey method).

What was particularly striking was the significant effect of genotype on grains per
square meter (G/m2). A compelling example was observed during the 2020–2021 season,
where the V1 and V5 genotypes showed remarkably different G/m2 values under the
same environmental conditions. V1 recorded 14,693 G/m2, whereas V5 demonstrated
a significantly higher 23,895 G/m2 value. This difference was statistically significant
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according to the ANOVA and was confirmed with the Tukey’s post-hoc test, highlighting
the substantial impact of genetic factors on this trait.

Incorporating the heatmap analysis, it became discernible that the yield variations
were intricately linked to both genotype and environmental conditions at each location. The
heatmap provided a comprehensive visual summary of the yield dynamics across different
genotypes under varying environments from the SEA, MCH, and TST locations the years
from 2017 to 2021. For instance, genotypes like Faraj (V1) and Itri (V2) demonstrated
consistent yield performances under the SEA environments, corroborating the quantitative
findings from SEA. Conversely, the heatmap also vividly captured the pronounced yield
variations exhibited by genotypes like Luiza (V4) and Nassira (V5) in the TST and MCH
environments, reinforcing the observed fluctuations in yield in these locations. This integra-
tive approach combined quantitative analysis and visual representation, enabling a more
nuanced understanding of the multifaceted interactions between genotype, environment,
and yield. It also offered valuable insights into different genotypes’ adaptive capacities and
yield potentials (V1–V5) under varied environmental conditions, as depicted in Figure 1.
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Figure 1. Heatmap illustrating yield variations across genotypes (Faraj, Itri, Karim, Luiza, and
Nassira) and environments (SEA 2017–2021, MCH 2017–2021, and TST 2017–2021).

The two-way analysis of variance (ANOVA) conducted across different locations, includ-
ing the TST station, revealed distinct patterns in the effects of genotype and environment on
agronomic traits. The results for the TST location, as detailed in Table 5, show significant geno-
typic effects on biomass, thousand kernel weight (TKW), spikes per square meter (Spk/m2),
and grains per spike (G/S), all at p < 0.01. These findings at TST starkly contrast with other
environments like SEA and MCH, where such genotypic effects were less pronounced.
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Table 5. Interaction analysis of genotype and environment on agronomic traits at Tassaout (TST)
across seasons.

Env (E): (Combinations of
Location * Season) Gen (G) YLD (q/ha) Biomass (q/ha) TKW (g) Spk/m2 G/S G/m2

TST 2017

V1 58.45 ab 136.5 a 58.35 a 302 abc 27 a 8400 ab

V2 54.58 ab 113.25 abcd 46.1 abcde 235 abc 36 a 8370 ab

V3 41.93 ab 79.5 abcd 53 ab 192 abc 31 a 5770 ab

V4 58.22 ab 85.5 abcd 50 abcd 197 abc 34 a 6488 ab

V5 51.97 ab 111.75 bcd 51.4 abc 238 abc 31 a 7320 ab

Mean 53.03 105.3 51.77 232 32 7270

TST 2018

V1 39.37 ab 191.67 a 47.75 abcde 402 a 17 a 6661 ab

V2 50.73 ab 83.33 abcd 43.5 bcde 362 ab 26 a 9447 ab

V3 56.62 ab 152.5 abcd 49.25 abcde 383 a 24 a 9315 ab

V4 62 ab 162.5 abcd 47.38 abcde 356 ab 30 a 10,562 ab

V5 66.57 a 114.17 bcd 49.25 abcde 311 abc 27 a 8659 ab

Mean 55.06 140.83 47.43 362 25 8929

TST 2019

V1 48.34 ab 155 ab 41.25 bcde 373 ab 23 a 7803 ab

V2 30.79 ab 107.5 abcd 37.15 e 167 bc 33 a 5513 ab

V3 40.54 ab 134.17 abcd 45.5 bcde 265 abc 26 a 6774 ab

V4 38.66 ab 116.67 bcd 38.35 de 208 abc 28 a 5873 ab

V5 39.62 ab 86.67 cd 44.6 bcde 208 abc 27 a 5589 ab

Mean 39.59 120 41.37 243 27 6310

TST 2020

V1 35.8 ab 123.49 abc 50.75 abcd 257 abc 23 a 5889 ab

V2 25.65 ab 59.75 abcd 45.65 bcde 135 c 33 a 4528 ab

V3 19.87 b 60.73 abcd 48.75 abcde 130 c 26 a 3391 b

V4 30.5 ab 76.42 bcd 49.85 abcd 165 bc 28 a 4620 ab

V5 23.08 ab 54.54 cd 51.8 abc 122 c 27 a 3299 b

Mean 26.98 74.99 49.36 159 27 4345

TST 2021

V1 34.62 ab 130 abcd 45.6 bcde 254 abc 26 a 6661 ab

V2 62.77 ab 194.31 abcd 46.45 abcde 289 abc 41 a 11,821 a

V3 24.15 ab 144.92 abcd 40.45 cde 224 abc 25 a 5311 ab

V4 33.69 ab 127.38 bcd 47.9 abcde 259 abc 22 a 5967 ab

V5 33.23 ab 134.31 d 47.4 abcde 262 abc 24 a 6261 ab

Mean 37.69 146.18 45.56 257 28 7204

Analysis of variance

Gen (G) ns ** ** ** ** ns

Env (E) *** *** *** *** ns ***

Gen (G) * Env (E) ns * ns ns ns ns

Notes: Location: TST = Tassaout. Agronomic terms: Env (E) = environment, Gen (G) = genotype, YLD = yield,
TKW = thousand kernel weight, Spk/m2 = spikes per square meter, G/S = grains per spike, and G/m2 = grains
per square meter. ANOVA: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, and ns = not significant. Means with
identical letters are not significantly different at the 95% confidence interval (Tukey method).

At TST, the significant genotypic effects on biomass also highlighted a notable inter-
action between genotype and environment (genotype * environment). For instance, the
V3 genotype demonstrated considerable variation in biomass values, increasing from
79.5 q/ha in 2017 to 152.5 q/ha in 2018. Similarly, the V2 genotype fluctuated from
107.5 q/ha in 2019 to 59.75 q/ha in 2020. These changes underscore the significant inter-
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action effect, where different genotypes responded uniquely to environmental conditions
over the years.

The environmental impact was notably significant on all traits except for the grains
per spike (G/S) trait. For instance, the average biomass at TST showed considerable
fluctuations over the years, reflecting environmental variability. In 2017, the average
biomass was 105.3 q/ha, increasing to 140.83 q/ha in 2018, then decreasing to 120 q/ha
in 2019, and further declining to 74.99 q/ha in 2020. However, a significant recovery was
observed in 2021, with the average biomass rising to 146.18 q/ha. These variations align
with the ANOVA results’ highly significant environmental differences (p < 0.001).

Further analyses, as detailed in Table 1, elucidate the role of soil type in influencing
wheat growth. The soil types at SEA (Vertisol), MCH (Cambisol), and TST (Alfisol) sig-
nificantly impact wheat growth. Additionally, as indicated in Figure 2, soil texture varies
from clay at SEA to clay loam at MCH and TST. These variations in soil texture affect water
retention, aeration, and nutrient availability, influencing wheat traits like biomass, TKW,
Spk/m2, and G/S.
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The variability in precipitation from 2016 to 2021 also showed a substantial effect on
wheat yields and other traits. For example, SEA experienced a precipitation low of 210 mm
in 2018–2019 and a high of 505 mm in 2017–2018. These fluctuations in precipitation
directly affect wheat yields and biomass, with increased precipitation typically leading to
higher yields.

The distinct response of different wheat genotypes under varying environmental
conditions, including soil type, texture, and precipitation, underscores the need for targeted
breeding programs. Breeding programs should focus on genetic potential and environmen-
tal adaptability to optimize wheat production under specific agroecological zones.

The complex interplay between soil, the climate, and genotype is crucial in determining
the agronomic traits of wheat. The significant variations observed across locations highlight
the need for context-specific agronomic practices and breeding strategies. Understanding
these dynamics can aid in developing wheat varieties that are resilient and high-yielding
under varying environmental conditions. These findings from TST, in particular, underscore
the importance of targeted breeding and management strategies that consider both genetic
potential and environmental adaptability.

3.2. Discrimination vs. Representativeness Biplot Analysis

In Figure 3, discrimination vs. representativeness biplot analyses are depicted, eluci-
dating the discriminative capacities and representativeness of 15 scrutinized environments,
focusing on yield and protein as the principal traits of interest.
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Pattern A of Figure 3 details the analysis based on yield data. The biplot indicates
that the first component accounts for 42.19% of the variability, while the second compo-
nent explains 26.61%, representing a significant proportion of the total variability. TST
2021 stood out as the most discriminating environment, in contrast to SEA 2017, which
was marked as the least discriminating. On the other hand, MCH 2018 was identified
as the most representative environment, capturing a broad spectrum of environmental
variables. Notably, the variety of Luiza stood out, highlighting its adaptability across
varied environmental conditions. Such nuanced observations are crucial for advancing
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understanding in environmental studies, mainly when focusing on yield variability across
diverse environments.

Pattern B of Figure 3 showcases the analysis with protein as the primary trait. This
biplot was proven to be pivotal in assessing the distinguishing abilities of the environments,
as measured via the environmental vector’s length. Of the 15 environments analyzed, SEA
2018 emerged as the most discriminating environment, followed by SEA 2021, MCH 2021,
and TST 2021, while TST 2017 was perceived as the least discriminating. This biplot also
highlighted that MCH 2018 was the most representative environment, succeeded by MCH
2019 and TST 2021. The variety Itri occupied a central position in this biplot, suggesting
consistent representation across the examined environments.

Given the findings from the discrimination vs. representativeness biplot analysis, a
deeper exploration into the hierarchical framework of different environments becomes
essential, as discussed in the following section.

3.3. Ranking Environments via Biplot Analysis

Figure 4 displays the ranking environment biplots, shedding light on the hierarchical
structure of different environments based on yields and proteins. The ideal environment
occupies a central position within concentric circles, acting as the benchmark for the
target environment.
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Pattern A of Figure 4 delves into the biplot analysis for yield. The concentric circles in
this biplot represent varying degrees of proximity to the ideal environment. Under this
setting, environment TST 2021 was deemed to be the closest to the ideal environment,
indicating its superior alignment with the ideal conditions for yield. After that, MCH
2018 emerged as the second-closest environment to the ideal, demonstrating its significant
alignment with the optimal conditions for yield.

Conversely, pattern B of Figure 4 details the biplot analysis centered on proteins.
The concentric circles illustrate the environments’ alignment with the ideal conditions
for proteins. Here, environment MCH 2021 was highlighted as the closest to the ideal
environment, showing its optimal alignment with the desired conditions for proteins.
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Following this, MCH 2019 and MCH 2018 were designated as the second- and third-closest
environments to the ideal, respectively, in that order, indicating their strong alignment with
the optimal conditions for proteins.

Upon determining the hierarchical structure of the environments based on yields
and proteins, our ensuing task involved evaluating the stability of the genotypes across
these diverse environments. This progression introduced a comprehensive assessment of
genotypic stability.

3.4. Comprehensive Stability Analysis

In our comprehensive analysis, as detailed in Table 6, we employed three robust
statistical metrics, namely Francis cumulative values, Wricke’s ecovalence (W), and Shukla’s
stability variance (σ2), to evaluate the stability of five distinct genotypes across multiple
environments. The choice of multiple stability parameters was driven by the need to
capture the multifaceted nature of genotype–environment interactions. Each metric offers
unique insights, ranging from mean performance (Francis cumulative values) to interaction
variances (Wricke’s ecovalence and Shukla’s stability variance). This provides a more
nuanced and complete understanding of genotypic stability. The genotypes were ranked
based on these stability metrics to provide an integrated view of their performance.

Table 6. Comparative analysis of genotypic stability across multiple metrics.

Genotype Francis Cumulative
Values GR (Francis) Wricke’s

Ecovalence (W) GR (Wricke) Shukla’s Stability
Variance (σ2) GR (Shukla)

Faraj (V1) 48 3 3,607,727 1 457 2
ITRI (V2) 48 3 5,763,770 5 580 5

Karim (V3) 34 1 4,630,654 3 400 1
Luiza (V4) 49 5 4,084,894 2 333 3

Nassira (V5) 46 2 5,041,188 4 602 4

Contrary to our initial expectations, “V3” emerged as the most stable genotype accord-
ing to Shukla’s stability variance (σ2) with a score of 400, leading to its first-place ranking
(GR = 1) in this category. However, it displayed less stability in Francis cumulative values
with a score of 34, placing it lower in that ranking.

“V1”, on the other hand, demonstrated exceptional stability under Wricke’s ecovalence
(W) with a score of 3607,727, meriting the top rank in this specific metric. Interestingly,
“Faraj” also showed strong performance in Shukla’s stability variance (σ2), ranked second
with a score of 457, indicating its overall stability across varied conditions.

Meanwhile, “V4” exhibited noteworthy stability in Francis cumulative values, leading
the category with a score of 49, suggesting a solid adaptability to different environments. In
Shukla’s stability variance (σ2), “V4” maintained a solid performance with a score of 333.
However, it ranked third in this metric, indicating specific stability traits that may be
advantageous under certain environmental scenarios.

These findings highlight that while specific genotypes like “V3” and “V1” show strong
stability across different metrics, each genotype possesses unique stability characteristics.
This suggests the potential for specific genotypic advantages under certain environmental
conditions, underscoring the need for a nuanced approach in selecting genotypes for
diverse agricultural settings.

Upon establishing the stability of these genotypes, it was crucial to comprehend their
mean performance in correlation with their stability, which was visually represented in the
following biplots.
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3.5. Mean vs. Stability Biplot Analysis

Figure 5 displays the mean vs. stability biplots to rank the examined genotypes
hierarchically based on their mean performance and stability regarding yield and protein.
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Pattern A of Figure 5 illustrates the biplot analysis for yield. This biplot intended to
assess and rank the genotypes based on their mean yield performance and stability across
various environments. From this visualization, Luiza emerged as the most stable genotype,
followed in sequence by Nassira, Karim, and Faraj regarding stability. Conversely, Itri
displayed a higher yield mean when contrasted with the overall mean performance, while
Nassira and Karim registered lower yield means relative to the overall mean performance.

Pattern B of Figure 5 addresses the biplot analysis centered on proteins. This biplot
endeavored to categorize the tested genotypes based on their mean performance and
stability in protein content. Through this perspective, Itri was identified as the most stable
genotype, with Karim, Luiza, Nassira, and Faraj successively aligned in terms of stability.
Conversely, Luiza, Faraj, and Nassira exhibited higher protein means compared to the
overall mean performance, while Itri and Karim presented lower protein means compared
to the overall mean performance.

The insights that were gained from the mean vs. stability biplots prepare a foun-
dation for further analysis of the superior performance of the genotypes under distinct
environments, leading us to the “Which Won Where/What” biplot analysis.

3.6. Which Won Where/What Biplot Analysis

Figure 6 displays the “Which Won Where/What” polygon patterns, highlighting the
superior performance of various genotypes under distinct environments focusing on yield
and protein.
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Pattern A of Figure 6 depicts the analysis for yield. This polygon pattern identified the
leading genotypes of each environment, shedding light on their adaptability and perfor-
mance under certain conditions. Itri was the top-performing genotype under environments
MCH 2018 and TST 2021, emphasizing its adaptability and high yield under these settings.
On the other hand, Faraj emerged as the best-performing genotype in TST 2020, MCH 2020,
TST 2019, TST 2017, and SEA 2018, signifying its strong performance and versatility across
a diverse set of environments. Furthermore, Nassira and Karim were highlighted as the
leading performers in SEA 2021, demonstrating their exceptional yields under this setting.

Pattern B of Figure 6 offers a contrasting view, concentrating on proteins. The polygon
pattern here denoted the leading genotypes of each environment based on protein content.
Faraj was the top-performing genotype in SEA 2017, MCH 2017, SEA 2021, and MCH
2020, underscoring its high protein content under these settings. Concurrently, Karim was
singled out as the best-performing genotype in TST 2021, SEA 2020, TST 2018, and TST
2019, reflecting its premium protein content and adaptability under these defined contexts.

3.7. Descriptive Statistics for Quality Traits across Environments

At the SEA location, significant environmental effects (p < 0.001) were observed on
protein content, along with notable genotype–environment interaction effects (p < 0.001).
The protein content in variety V1 exhibited marked fluctuations, as shown in Table 7. Specif-
ically, the protein content ranged from 19.46% in 2017, decreased to 13.80% in 2020, and rose
to 20.90% in 2021. Comprehensively detailed in Table 7, these variations underscore the
combined influence of environmental conditions and genotype–environment interactions
on protein content.



Plants 2024, 13, 1068 16 of 27

Table 7. Interaction analysis of genotype and environment on protein content, gluten, and baking
strength at Sidi El Aidi (SEA) across seasons.

Env (E): (Combinations of
Location * Season) Gen (G) Protein (%) Gluten (%) Baking Strength (W)

SEA 2017

V1 19.46 ab 49.63 a 494.29 a

V2 19.17 ab 49.9 a 466.61 ab

V3 18.6 abcd 48.39 ab 454.14 ab

V4 18.8 abc 48.3 abc 451.57 abc

V5 17.12 bcdef 42.03 abcdef 378.54 bcdefgh

Mean 18.63 47.65 449.03

SEA 2018

V1 15.18 def 34.06 fg 324.94 gh

V2 17.06 bcdef 41.29 abcdefg 370.62 bcdefgh

V3 15.62 cdef 36.56 defg 310.27 h

V4 19.24 ab 48.44 ab 453.43 ab

V5 18.69 abcd 46.16 abcd 426.9 abcdef

Mean 17.16 41.3 377.23

SEA 2019

V1 17.73 abcde 40.06 abcdefg 392.15 bcdefgh

V2 18.57 abcd 47.53 abc 436.36 abcd

V3 17.12 bcdef 42.9 abcdef 385.59 bcdefgh

V4 17.23 bcdef 44.11 abcdef 412.67 abcdefg

V5 19.26 ab 47.32 abc 432.03 abcde

Mean 17.98 44.38 411.76

SEA 2020

V1 13.8 f 31.26 g 306.14 h

V2 14.95 ef 38.24 bcdefg 351.07 cdefgh

V3 15.2 def 38.13 cdefg 343.56 defgh

V4 13.7 f 35.07 efg 328.13 fgh

V5 14.8 ef 36.37 defg 332.01 efgh

Mean 14 36 332

SEA 2021

V1 20.9 a 47.19 abc 461.83 ab

V2 17.2 bcdef 43.96 abcdef 403.53 abcdefgh

V3 16.6 bcdef 41.63 abcdef 374.56 bcdefgh

V4 18.65 abcd 47.7 abc 446.14 abc

V5 18.1 abcde 44.38 abcde 405.47 abcdefgh

Mean 18 45 418

Analysis of variance

Gen (G) ns ** **

Env (E) *** *** ***

Gen (G) * Env (E) *** *** ***

Notes: Location: SEA = Sidi el Aidi. ANOVA: ** = p ≤ 0.01, *** = p ≤ 0.001, and ns = not significant. Means with
identical letters are not significantly different at the 95% confidence interval (Tukey method).

A genotypic influence (p < 0.01) was observed regarding gluten content at SEA. It
was also significantly influenced via both the environment (p < 0.001) and the genotype–
environment interaction (p < 0.001), and the 2016–2017 growth season marked the peak of
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mean gluten content at 47.65%, where both Faraj and ITRI excelled, showcasing values of
49.63% and 49.9%, respectively. The lowest mean was documented in 2019–2020, settling at
36.0%, with Faraj recording the lowest value of 31.26%.

Baking strength at SEA revealed significant distinctions due to genotype (p < 0.01)
and was profoundly shaped by the environment (p < 0.001), along with the genotype–
environment interaction (p < 0.001). During the 2016–2017 growth span, the mean baking
strength stood at 449.03 W, with Faraj ascending to the pinnacle spot with 494.29 W. A
decline followed in subsequent years, culminating in the nadir in 2019–2020 at an average
of 332 W. Nevertheless, the 2020–2021 season marked a revival, averaging at 418 W, with
Faraj recording a notable strength of 461.83 W.

For the Marchouch (MCH) site, protein content displayed a paramount genotype
influence (p < 0.001) and was strongly influenced by environmental factors (p < 0.001), as
detailed in Table 8. However, the interplay between genotype and environment was found
to be insignificant (ns). During the 2016–2017 growth season, the mean protein content for
all varieties was 20.16%, with Faraj attaining the peak value of 22%. A marked decrease
occurred in 2017–2018, causing the mean protein content to drop to 15%. The 2020–2021 sea-
son recorded a mean protein content of 16.64%, with Faraj showing a significant resurgence
to 18.5%.

Table 8. Interaction analysis of genotype and environment on protein content, gluten, and baking
strength at Merchouch (MCH) across seasons.

Env (E): (Combinations of Location * Season) Gen (G) Protein (%) Gluten (%) Baking Strength (W)

MCH 2017

V1 22 a 64.82 a 622.86 a

V2 20.15 ab 59.12 abc 524.59 bc

V3 18.75 bcd 55.42 cde 494 cd

V4 20.4 ab 63 ab 582.47 ab

V5 19.5 abc 56.45 bcd 522.16 bc

Mean 20.16 59.76 549.22

MCH 2018

V1 15.34 ghi 36.54 jk 330.03 hi

V2 14.88 hi 36.03 jk 297.86 i

V3 13.92 i 32.43 k 300.97 i

V4 15.1 hi 36.71 jk 307.25 i

V5 15.58 fghi 36.98 ijk 345.66 ghi

Mean 15 36 316

MCH 2019

V1 18.27 bcdef 49.6 defg 466.3 cde

V2 17.21 cdefgh 46.75 fg 403.97 efg

V3 16.41 defghi 44.13 fghi 399.31 fg

V4 17.98 bcdefg 50.51 def 450.77 def

V5 18.1 bcdefg 48.21 efg 447.4 def

Mean 18 48 434

MCH 2020

V1 17.25 cdefgh 46.85 fg 440.29 def

V2 17.05 cdefgh 46.32 fgh 400.17 fg

V3 16.75 cdefgh 45.05 fgh 407.7 efg

V4 17.9 bcdefg 50.27 def 448.53 def

V5 15.95 efghi 42.48 ghij 394.62 fg

Mean 16.98 46.19 418.26
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Table 8. Cont.

Env (E): (Combinations of Location * Season) Gen (G) Protein (%) Gluten (%) Baking Strength (W)

MCH 2021

V1 18.5 bcde 50.2 def 472.02 cd

V2 16.75 cdefgh 45.5 fgh 393.25 fgh

V3 14.6 hi 39.27 hijk 355.43 ghi

V4 17.3 cdefgh 48.62 efg 433.97 def

V5 16.05 defghi 42.75 ghij 397.29 fg

Mean 16.64 45.27 410.39

Analysis of variance

Gen (G) *** *** ***

Env (E) *** *** ***

Gen (G) * Env (E) ns * ***

Notes: Location: MCH = Merchouch. ANOVA: * = p ≤ 0.05, *** = p ≤ 0.001, and ns = not significant. Means with
identical letters are not significantly different at the 95% confidence interval (Tukey method).

Regarding gluten content at MCH, a dominant genotypic impact (p < 0.001) was
identified, coupled with a pronounced environmental influence (p < 0.001). The interaction
between genotype and environment was present, though lower in its magnitude (p < 0.05).
The 2016–2017 growth span marked the apex in mean gluten content at 59.76%, with both
Faraj and Luiza making a solid presence, sequentially registering values of 64.82% and 63%,
respectively. A trough was hit in 2017–2018, pinning the mean gluten content at 36%, with
Karim’s value dwindling to 32.43%.

Baking strength in MCH demonstrated an overarching genotypic impact (p < 0.001)
and was decisively molded through environmental factors (p < 0.001). The interrelation be-
tween genotype and environment stood out emphatically (p < 0.001). During the 2016–2017
growth phase, the mean baking strength settled at 549.22 W, with Faraj elevating to a peak
strength of 622.86 W. Subsequent growth periods witnessed a waning, bottoming out in
2017–2018 with a mean value of 316 W.

Upon integrating the insights from the heatmap analysis, we observed distinct pat-
terns in protein content across the genotypes Faraj, Itri, Karim, Luiza, and Nassira in the
environments SEA, MCH, and TST from 2017 to 2021. The heatmap illustrated the nuanced
interactions between genotypes and environments, revealing areas of high protein content,
especially in Faraj, across multiple environments. This corroborates the consistently high
values observed in the SEA and MCH sites. Conversely, areas of lower protein content
were also depicted, which aligned with the lower averages noted for Itri in the TST loca-
tion. This visual representation enhanced our understanding of the intricate dynamics of
protein content across different environments and genotypes, offering a holistic view of the
variability and specific adaptations unique to each genotype, as depicted in Figure 7.

At the Tassaout (TST) location, quality traits, including protein content, gluten content,
and baking strength, exhibited varied influences from genotypic and environmental factors,
as comprehensively detailed in Table 9. The protein content displayed a non-significant
effect from the genotype but was significantly influenced by environmental conditions
(p < 0.001). The average protein content across the growing years fluctuated, starting from
10.70% during the 2016–2017 season, increasing to 12.88% in 2017–2018, and reaching a
peak of 15.99% in 2020–2021. These variations in protein content over the years at TST,
including the specific changes for each season, are meticulously documented in Table 9.
This table clearly depicts how environmental factors across different growing seasons can
significantly influence key quality traits like protein content in wheat.
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Table 9. Interaction analysis of genotype and environment on protein content, gluten, and baking
strength at Tassaout (TST) across seasons.

Env (E): (Combinations of
Location * Season) Gen (G) Protein (%) Gluten (%) Baking Strength (W)

TST 2017

V1 10.85 cde 24.09 cd 108.25 efgh

V2 9.8 e 21.29 d 53.47 h

V3 10.7 de 23.86 cd 89.79 fgh

V4 10.45 de 23.52 cd 80.97 gh

V5 11.7 bcde 26.44 abcd 155.73 bcdefg

Mean 10.7 23.84 97.64

TST 2018

V1 12.37 bcde 27.24 abcd 215.95 abc

V2 12.22 bcde 27.4 abcd 185.05 abcde

V3 13.46 abcde 30.73 abc 265.46 a

V4 13.1 bcde 30.42 abc 222.97 abc

V5 13.26 abcde 30.67 abc 243.83 ab

Mean 12.88 29.29 226.65
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Table 9. Cont.

Env (E): (Combinations of
Location * Season) Gen (G) Protein (%) Gluten (%) Baking Strength (W)

TST 2019

V1 12.41 bcde 26.32 abcd 166.04 bcdefg

V2 15.02 abcd 31.58 abc 153.49 bcdefg

V3 14.02 abcde 29.81 abcd 194.02 abcde

V4 13.38 abcde 29.62 abcd 166.57 bcdefg

V5 13.62 abcde 30.14 abcd 210.85 abcd

Mean 13.69 29.49 178.19

TST 2020

V1 12.95 bcde 25.8 bcd 162.24 bcdefg

V2 13.05 bcde 25.5 bcd 123.38 defgh

V3 13.5 abcde 26.27 abcd 170.84 bcdefg

V4 13.25 abcde 27.77 abcd 155.41 bcdefg

V5 14.75 abcd 30.96 abc 216.52 abc

Mean 13.5 27.26 165.68

TST 2021

V1 15.5 abc 30.79 abc 194.84 abcde

V2 15.55 ab 30.16 abcd 148.55 cdefg

V3 17.9 a 34.85 a 226.81 abc

V4 15.1 abcd 31.6 abc 178.55 abcdef

V5 15.9 ab 33.29 ab 232.98 abc

Mean 15.99 32.14 196.34

Analysis of variance

Gen (G) ns ** ***

Env (E) *** *** ***

Gen (G) * Env (E) ns ns ns

Notes: Location: TST = Tassaout. ANOVA: ** = p ≤ 0.01, *** = p ≤ 0.001, and ns = not significant. Means with
identical letters are not significantly different at the 95% confidence interval (Tukey method).

The gluten content revealed a notable effect from genotype (p < 0.01) and was pro-
foundly influenced by environmental conditions (p < 0.001). In contrast, the interaction
between genotype and environment did not show significant effects (ns). The highest
average gluten content was recorded in 2020–2021 at 32.14%, with Karim and Nassira
showing elevated values of 34.85% and 33.29%, respectively. The lowest average gluten
content was observed during the 2016–2017 growing season, at 23.84%, with Itri registering
the lowest value of 21.29%.

Baking strength at TST displayed a highly significant genotypic effect (p < 0.001) and
was also markedly influenced by the environment (p < 0.001). The genotype–environment
interaction was non-significant (ns). During the 2016–2017 growing season, the average
baking strength was 97.64 W, with Itri recording the lowest value of 53.47 W. A substantial
increase was observed in the subsequent growing seasons, reaching its peak in 2017–2018
with an average of 226.65 W. Karim showed the highest value under this growing season,
registering a baking strength of 265.46 W.

The data revealed a notable trend in protein content at the Tassaout (TST) location.
TST, an irrigated site conventionally anticipated to be optimal for crop yield and quality
conditions, has the lowest protein content among the three surveyed sites. In contrast, the
SEA site, which had lower yields, showed a higher protein content. The data from SEA
and TST illustrated an inverse relationship between yield and protein content. Such results
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suggest that while irrigation may enhance yield, particularly in traditionally arid regions
like TST, it may simultaneously reduce grain protein concentration. This dynamic is crucial
for breeding programs aiming to optimize wheat yield and protein content.

Expanding on the previous insights, we then focused on examining the intricate
relationships between agronomic and quality traits within the framework of genotype–
environment interactions.

3.8. Correlations among Agronomic and Quality Traits in the Context of Genotype–Environment Interactions

In the context of genotype–environment interactions, agronomic traits, such as yield,
biomass, thousand kernel weight (TKW), spikes per square meter (Spk/m2), grain-to-straw
ratio (G/S), and grain yield per square meter (G/m2), were evaluated alongside quality
traits, such as protein percentage, gluten percentage, and baking strength. Pearson correla-
tion coefficients and their respective p-values were calculated to gauge the relationships
between these agronomic and quality traits (Figure 8).
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For instance, a moderate positive correlation was observed between yield and biomass
(r = 0.55, p < 0.05). This suggests that genotypes with increased biomass are generally
associated with higher yields. Moreover, there was a negative correlation between yield and
protein content (r = −0.33, p < 0.001), indicating that augmenting yield could potentially
reduce protein concentration. The relationship between the density of spikes per square
meter (Spk/m2) and biomass showed a significant positive trend (r = 0.74, p < 0.001),
emphasizing that a rise in spike density is linked to greater biomass levels.

In addition, a prominent positive correlation was identified between grain yield
per square meter (G/m2) and the aggregate yield (r = 0.72, p < 0.001). This relationship
highlights that an increase in grain yield per square meter significantly boosts the total yield.
As a result, G/m2 can be considered a reliable indicator for predicting yield outcomes.

In examining quality traits, a robust positive correlation was identified between protein
and gluten contents (r = 0.93, p < 0.001), signifying a robust relationship between these
two elements. This finding posits that a selection favoring higher protein content could
concurrently augment gluten levels, a critical aspect for end-use quality.

Lastly, a robust positive correlation was noted between gluten content and baking
strength (r = 0.97, p < 0.001). This observation underscores that gluten content significantly
impacts baking strength, accentuating the significance of gluten quality in determining a
genotype’s suitability for specific end applications.

The interactions and correlations presented here provide invaluable insights. The
subsequent section aimed to contextualize these findings within the broader scientific
discourse, offering a detailed understanding of the genotype–environment interaction
effects on agronomic and quality traits.

4. Discussion

This comprehensive study, spanning five wheat-growing seasons across distinct agro-
climatic zones in Morocco, has uncovered significant insights into genotype by environment
(G × E) interactions, foundational to crop breeding programs [17–19]. This study’s meticu-
lous design and robust statistical analysis have emphasized the differential performance of
wheat genotypes across variable environmental conditions, echoing earlier findings [20–23].
The marked impact of environmental conditions on vital agronomic traits, such as yield,
thousand kernel weight (TKW), and spikes per square meter (Spk/m2), highlights the
profound influence of climatic variables on wheat performance, supporting previous find-
ings [24–26].

The data revealed notable variations in yield performance that were location-specific.
Particularly at Tassaout (TST), genotypes such as Luiza and Nassira displayed pronounced
yield variations, underscoring the influence of genotype in this location. This finding
aligns with the well-documented G × E interactions in wheat, emphasizing the role of
specific environmental conditions in amplifying or mitigating genetic potential. While the
genotypic effects were insignificant at SEA and MCH, the TST results clearly illustrated
how different genotypes can exhibit varied performances under different environmen-
tal conditions. These insights correlate with previous research in this field, as reported
by Eltaher et al. [27], Farokhzadeh et al. [28], and Sukumaran et al. [29], highlighting
the critical impact of environmental factors on crop yield and performance. This vari-
ability underscores the need for tailored breeding and cultivation strategies considering
genetic makeup and location-specific environmental conditions. The heatmap analysis
provides a compelling visual representation of G × E interactions, mirroring the findings
of Hacini et al. [30]. This approach is vital for grasping how different wheat genotypes
respond to varied climatic conditions across Moroccan agro-climatic zones. Such insight
is crucial for tailoring breeding programs to enhance wheat resilience and yield potential
amidst changing environmental conditions, which is in agreement with the research of
Ayed et al. [31] and Megahed et al. [32].

Expanding on genotype-specific responses, the pronounced genotypic effects on
biomass, TKW, Spk/m2, and G/S at the TST location underscore the need for a genotype-
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specific approach in breeding programs. This is in line with the findings of Habash et al. [33],
Tomić et al. [34], and Gagliardi et al. [35], which emphasize harnessing the inherent po-
tential of different genotypes under variable environmental conditions. Looking ahead,
delving into the physiological or genetic mechanisms underpinning the observed G × E
interactions, akin to the findings of Niu et al. [36], Kebrom et al. [37], and Vicente et al. [38],
would not only enhance the robustness of these findings but also provide actionable in-
sights for breeding programs aiming at developing high-yielding, resilient wheat varieties
suited to diverse Moroccan agro-climatic zones.

The methodologies employed, especially elucidating environmental discrimination
and representativeness through biplot analysis, significantly advance our understanding
of how different environments influence principal traits like yield and protein content in
wheat. This approach resonates with earlier efforts focused on the genotype by environment
interaction, pivotal in plant breeding programs, as highlighted by Mohammadi et al. [39],
Sakin et al. [40], and Mohamed et al. [41]. The discrimination vs. representativeness biplot
analysis highlighted the heterogeneity among the analyzed environments, supporting the
idea that specific environments can significantly differentiate genotypes based on these
traits. This in-depth analysis revealed the genotype Luiza’s adaptability across varied
environments, echoing the notion supported by Verma et al. [42], Kamara et al. [43], and
Ionut et al. [44] concerning the genetic potential inherent in several genotypes to withstand
diverse environmental conditions.

Continuing with this inquiry, the environmental ranking through biplot analysis
provides a hierarchical lens to evaluate the alignment of different environments with ideal
conditions for yield and protein. This concept has been addressed in various studies,
including those by Roostaei et al. [45], Tanin et al. [7], and Chairi et al. [46], which have
explored the interactions between genotypes and environments, especially in durum wheat,
and their implications for yield and other agronomic traits. Switching to a multi-metric
assessment, the genotypic stability analysis exhibited commendable depth, employing
notable stability metrics from the literature, as highlighted by Alemu Dabi et al. [47],
Lin and Binns [48], and Shukla [14].

Adding a nuanced layer to our understanding of genotypic performance across en-
vironmental spectra, the mean vs. stability biplot analysis offers a visual interpretation
of mean performance compared to stability. This concept has been addressed in various
studies, including those by Martínez-Peña et al. [49] and Al-Sayaydeh et al. [50], which have
explored the interactions between genotypes and environments, especially in durum wheat,
and their implications for yield and other agronomic traits. The “Which Won Where/What”
analysis provides a granular view of genotypic superiority under distinct environments,
revealing the genotype-specific advantages that can be leveraged in breeding programs.

Building on the previously discussed analyses, the meticulous examination of the
interaction between genotypes and environments on various quality traits like protein
content, gluten content, and baking strength across different locations and growing seasons
reaffirms the complexity of G × E interactions. This has been a well-established notion
in the agronomic literature, as highlighted by Johnson et al. [51] and Plavšin et al. [52].
The observed trends underscore the compelling influence of environmental factors over-
riding genotypic factors in specific contexts. This corroborates previous findings where
environmental factors played a pivotal role in the expression of quality traits in wheat, as
highlighted by studies conducted by Vida et al. [53] and Pačuta et al. [54].

Delving deeper, the consistency of the Faraj genotype in maintaining a relatively high
protein content across different environments, depicted in the heatmap, echoes the potential
genetic resilience some genotypes exhibit towards environmental perturbations. While
this is consistent with the theme that environmental factors and their interactions with
genotypes play a significant role in the expression of quality traits in wheat, there is also
evidence highlighted by studies conducted by Kyratzis et al. [55] and Bnejdi [56]. The
significant decline in protein content over specific years reflects the environmental influence
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on this crucial quality trait. This observation resonates with previous findings highlighted
by studies conducted by Zhang et al. [57], Nigro et al. [58], and Muqaddasi et al. [59].

Moreover, the significant genotypic effect observed for gluten content and baking
strength across all locations emphasizes the genetic control over these traits. Studies such as
Ruan et al. [60], Hao et al. [61], and Nazco et al. [62] have previously confirmed the genetic
basis of gluten strength and its importance in durum wheat. Further, unveiling correlations
among traits, the strong positive correlation between protein and gluten content, and
gluten content and baking strength highlight the intertwined nature of these quality traits.
This observation aligns with the findings of Kirouani et al. [63], Al-Khayri et al. [64], and
Huertas-García et al. [65].

Similarly, the moderate to strong positive correlations between yield, biomass, and
spikes per square meter underscore the interconnectedness of these agronomic traits, offer-
ing a fertile ground for exploring genotype selection and management practices to optimize
yield and quality. This perspective is corroborated by the findings of Maich and Rienzo [66].

5. Conclusions

This extensive study, covering multiple growing seasons under diverse Moroccan
agro-climatic zones, has yielded critical insights into genotype by environment (G × E)
interactions, pivotal for refining wheat breeding strategies. Through meticulous experi-
mental design and statistical analyses, we identified significant yet subtle variations in the
performance of various wheat genotypes under different environmental conditions. No-
tably, significant genotypic effects on agronomic traits were evident under specific locations,
while impacts on quality traits varied, highlighting the complexity and context-specific
nature of genotypic influences. This underlines the need for nuanced breeding strategies,
especially given the variation in genotypic responses influenced by environmental factors
like erratic precipitation and drought, which are crucial in determining wheat yield in
Morocco. To mitigate these environmental challenges, integrating technologies like de-
salination for consistent irrigation and tailored breeding strategies is vital for enhancing
wheat production stability and ensuring agricultural resilience and food security. This
study also emphasizes the importance of balancing yield improvement with quality main-
tenance, necessitating careful management within breeding programs. Insights from the
biplot and heatmap analyses have deepened our understanding of the interactions be-
tween genotypes and environmental factors, supporting a breeding strategy that leverages
genotypic strengths alongside environmental variations. The correlations among various
agronomic and quality traits also lay the groundwork for strategic genotype selection and
management to optimize yield and quality. This research significantly contributes to the
wheat breeding discourse in Morocco. It aligns with global sustainable wheat breeding
initiatives, emphasizing the critical importance of genotype–environment interplays under
the changing climatic conditions.
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